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Abstract: Accurate prediction of housing prices in New York City is crucial for investors, policymakers, and consumers 
navigating one of the most volatile housing markets. This study explores various machine learning methods 
to forecast housing prices in New York City. The predictive power of Linear Regression (LR), Support Vector 
Regression (SVR), Random Forest (RF), and XGBoost (XGB) was examined using a comprehensive dataset 
with diverse housing attributes. Our results show that LR and SVR provided less accurate predictions, with 
LR achieving an RMSE of 4,091,594, a MAPE of 1.2991, and an adjusted R-squared of 0.2642, while SVR 
had an RMSE of 4,967,168, a MAPE of 0.7753, and an adjusted R-squared of -0.0844. In contrast, ensemble 
methods, namely RF and XGB, demonstrated superior performance on all accounts. RF achieved an RMSE 
of 2,145,123, a MAPE of 0.3086, and an adjusted R-squared of 0.7978, while XGB had an RMSE of 
2,483,884, a MAPE of 0.4163, and an adjusted R-squared of 0.7288. These results conclude that ensemble 
methods, which can handle complex datasets with higher dimensionality and noise, are more adept at 
predicting housing prices in varied markets such as New York City. The findings have implications for 
stakeholders in the real estate industry seeking to leverage machine learning for investment and policy-making 
decisions. 

1 INTRODUCTION 

For many individuals and families across the United 
States, the value of their home represents a significant 
portion of their overall wealth. Consequently, 
understanding and predicting housing prices is of 
paramount importance not only for current and future 
homeowners but also for a broad spectrum of 
stakeholders in the real estate market. The dynamics 
of housing prices are shaped by a complex interplay 
of attributes, from macroeconomic trends to specific 
property characteristics including location, 
neighborhood environment, architectural design, and 
property type. 

Accurate prediction of housing prices is therefore 
crucial, serving multiple purposes from investment 
analysis to personal financial planning. In this light, 
the development of a model capable of making high-
accuracy predictions of real estate values is not just 
desirable but necessary. In response to this challenge, 
considerable research efforts have been dedicated to 
exploring various predictive modeling techniques. 
Among these, machine learning methods such as LR, 
Decision Trees, RF, and Support Vector Machines 

(SVM) have been prominently featured on multiple 
datasets and diverse cases. 

New York City, a bustling metropolis renowned 
for its economic significance and cultural vibrancy, 
attracts tourists from the world. Yet, according to the 
study by Frohlich, and Stebbins in 2016, the real 
estate market of New York is characterized by its sky-
high housing price due to the stark wealth disparity 
between the top earners of New York and the majority 
of its residents. This paper aims to explore the use of 
machine learning methods to forecast housing prices 
in New York to formulate an accurate house price 
prediction model. 

Previous research has underscored the pivotal role 
that dataset quality plays in influencing the outcomes 
of studies focused on housing market predictions. 
While many studies have utilized traditional machine 
learning methods such as LR and SVR, there is a gap 
in the comprehensive evaluation and comparison of 
ensemble methods like RF and XGB in the context of 
the New York City housing market. This study not 
only leverages a highly detailed and diverse dataset 
encompassing various housing attributes but also 
systematically compares the performance of 
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traditional methods against advanced ensemble 
techniques. 

In this research, "New York Housing Market" 
dataset from Kaggle is used, which offers a 
comprehensive and realistic compilation of data 
pertaining to the New York real estate sector. The sale 
price of properties designated as the primary target 
feature for prediction and a range of independent 
variables including house type, location and area, 
among others are used to predict the sale price. Such 
a detailed and multifaceted dataset allows us to 
construct a nuanced model capable of capturing the 
complexities of New York's housing market. 

The structure of the paper is organized as follows: 
Section 2 provides a review of related work, focusing 
on methodologies used for predicting housing prices. 
Section 3 details the methodologies selected for this 
study. In Section 4, the paper analyzes experimental 
results, presenting findings and their implications. 
Section 5 offers a conclusion, summarizing the 
study’s contributions and outlining directions for 
future research. References to all cited sources are 
included at the end of the document. 

2 RELATED WORK 

Housing prices are influenced by a complex interplay 
of factors, including but not limited to the type of 
house, its location, and size. Given the unique 
dynamics of New York City's real estate market, a 
thorough consideration of these variables is crucial 
for enhancing the accuracy and depth of research in 
this domain. Historically, the field of housing price 
prediction has explored a broad spectrum of 
methodologies, ranging from Hedonic Pricing 
Models (HPM) to advanced machine learning 
methods including LR, SVM, RF, and Gradient 
Boosting Machines(GBM). This study employs 
machine learning methods to identify the most 
effective approaches for modeling the intricacies of 
New York City's housing market 

Central to the discourse on housing valuation is 
the HPM, which systematically accounts for both the 
internal characteristics of properties and the external 
SVM economic factors influencing their value. This 
approach has been notably applied by researchers like 
Goodman, and Hallvorsen and Pollakowski, 
highlighting its utility in dissecting the multifaceted 
nature of real estate valuation (Goodman 1978 & 
Halvorsen and Pollakowski, 1981). Despite its 
widespread use, the HPM has faced criticism, 
particularly concerning its assumptions of linearity 

and the challenges posed by multicollinearity among 
variables. These critiques underscore the model's 
limitations in capturing the nonlinear dynamics and 
interdependencies inherent in the housing market, 
prompting a shift towards more flexible and robust 
machine learning techniques in recent studies. 

In response to the limitations identified in HPM, 
researchers turned to Machine Learning Methods 
(MLMs) for more sophisticated analyses. Ho 
employed three distinct MLMs— SVM, RF, and 
GBM—to analyze approximately 40,000 housing 
transactions over 18 years in Hong Kong (Ho et al., 
2021). Their findings indicated superior performance 
of RF and GBM over SVM, as evidenced by lower 
scores in mean squared error (MSE), root mean 
squared error (RMSE), and mean absolute percentage 
error (MAPE).  

A prevalent strategy among researchers in this 
domain involves the creation of ensemble models, 
which combine multiple machine learning algorithms 
to improve predictive accuracy. For instance, Quang 
Truong developed an ensemble model by integrating 
Lasso and XGB (Truong et al., 2020), whereas Ali 
Soltani constructed an ensemble from RF and 
Gradient-Boosted Trees (Ali et al., 2021). Both 
studies reported enhanced predictive performance 
with these ensemble models, underscoring the 
effectiveness of this approach in housing price 
prediction. 

In light of the comprehensive review of data 
science applications in the realm of housing price 
prediction, the study decidedly leans towards the 
adoption of machine learning models. This choice is 
informed by the inherent limitations of HPM, 
particularly their assumption of linearity, which is 
found problematic. Simple regression techniques, 
while foundational, fall short in capturing the 
complexity of the housing market's dynamics in this 
context. Consequently, ensemble learning stands out 
as a critical methodological approach in the 
investigation, notable for its ability to unravel feature 
importance. This aspect of ensemble learning not 
only enhances the predictive performance of the 
models but also aligns with the key objectives of the 
paper, providing a deeper understanding of the 
variables that significantly impact housing prices. 

3 METHOD  

The initial step in this study involves conducting an 
overview of the dataset to understand its 
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characteristics and preparing the input data through 
preprocessing. Following this, a variety of machine 
learning models—LR, SVR, RF, and XGB—are 
constructed and trained to generate results for 
subsequent analysis. Figure 1 illustrates the workflow 
of the research methodology as detailed in the paper. 

 
Figure 1: Overall Workflow (Picture credit: Original). 

3.1 Dataset Overview 

This paper utilizes the New York Housing Market 
Dataset sourced from Kaggle, which contains data on 
4,802 houses sold in New York, United States 
(Elgiriyewithana, 2024). The dataset includes 17 
numerical attributes for each property; however, this 
study focuses on a subset of these attributes that are 
most relevant to our analysis, which are outlined in 
Table 1 below. 

Table 1: Selected Dataset Attributes. 

Attributes Description 

BROKERTITLE Title of the broker 

TYPE Type of the house 

PRICE Price of the house 

BEDS Number of bedrooms 

BATH Number of bathrooms 

PROPERTYSQFT Square footage of the property

ADMINISTRATIVE
_AREA_LEVEL_2 

Administrative area level 2 
information 

LOCALITY Locality information 

SUBLOCALITY Sublocality information

LATITUDE Latitude coordinate of the house

LONGITUDE Longitude coordinate of the 
house 

3.2 Preprocessing 

The dataset contains several categorical variables 
such as “BROKERTITLE”, “TYPE”, and 
“LOCALITY”, which need to be converted into 

numerical formats for analysis. Due to the focus of 
the research, only 
"ADMINISTRATIVE_AREA_LEVEL_2", 
"LOCALITY", and "SUBLOCALITY" are retained, 
while other detailed locational variables are 
discarded. Entries in 
"ADMINISTRATIVE_AREA_LEVEL_2" that 
consist solely of 5-digit numbers, presumably zip 
codes, are also removed as they are not relevant to this 
study. 

Additionally, the "TYPE" variable entries marked 
as "pending" or "contingent" are discarded because 
they do not align with the research objectives. 
Numerical values in BATH and PROPERTYSQFT 
that represent averages used to fill missing data are 
removed, as the averages change significantly after 
preprocessing, indicating they could distort the 
analysis. 

Additionally, the scale of the dataset significantly 
impacts the performance of certain machine learning 
algorithms (Ahsan et al., 2021). To address this, the 
Min-Max scaler is employed to normalize the dataset. 
This technique adjusts each feature to fall within a 
specified range, specifically between zero and one, 
according to the formula:  xୱୡୟ୪ୣୢ =  ୶ ି ୶ౣ౟౤୶ౣ౗౮ ି ୶ౣ౟౤                     (1) 

Beyond scaling, the dataset undergoes division 
into a training set, comprising 80% of the data, and a 
test set, constituting the remaining 20%. 

3.3 Model Selection 

This study opts to utilize ensemble learning models 
for regression tasks to predict housing prices. 
Ensemble models, by integrating multiple machine 
learning algorithms, can achieve better predictive 
performance than any single constituent algorithm. 
An ensemble is composed of several base learners, 
often developed from algorithms like decision trees 
or neural networks. These ensembles are typically 
categorized into two types: Boosting and Bagging. 
Boosting builds learners sequentially with a high 
degree of interdependence, whereas Bagging—
employed by models such as RF—creates learners 
independently and in parallel (Zhou, 2021). For this 
research, XGB and RF have been selected for their 
exemplary representation of ensemble learning 
techniques. 

To facilitate comparisons and more in-depth 
performance analysis, additional classical machine 
learning models have been implemented. Serving as 
benchmarks, LR and SVR have been included to 
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provide a baseline against which the more complex 
ensemble approaches can be evaluated. 
 LR 

LR, a foundational statistical method, establishes 
a relationship between a dependent variable y and 
independent variables X through the equation y =β଴ + βଵXଵ+. . . +βଵXଵ + ε . Characterized by its 
simplicity and interpretability, the method allows for 
straightforward insights into how features influence 
the target variable, making it computationally 
efficient and accessible. Despite its advantages, LR 
assumes a linear relationship between variables, 
which may not always hold true. Besides, it is 
sensitive to outliers, potentially limiting its ability to 
model complex patterns. However, its direct 
approach to modeling makes it particularly well-
suited for tasks like housing price prediction, where 
the linear influence of features including location and 
square footage on price can be assumed. The model's 
interpretability is a significant asset, providing clear 
insights into the factors affecting real estate prices 
and offering a solid baseline for more complex 
analyses. 

 SVR 
SVR presents a robust framework for predicting 
housing prices, distinguished by its ε-insensitive loss 
function which ensures robustness to outliers by 
neglecting errors within a predefined threshold(ε ) 
(Zhang and Donnell, 2021). This characteristic, 
coupled with the ability to model complex non-linear 
relationships through the kernel trick, makes SVR 
particularly adaptable to the diverse patterns inherent 
in housing market data. Furthermore, SVR’s 
formulation as a convex optimization problem 
guarantees a unique global solution, thereby 
enhancing model reliability. The optimization 
problem, minimized over w,b, and slack variables ξ, ξመ 
is defined as min୵,ୠ,ஞ,ஞ෠(ଵଶ ||w||ଶ + C ∑(ξ୧+ξመ୧) where 
C acts as a regularization parameter to balance model 
complexity against fitting precision. However, SVR's 
sensitivity to hyperparameter settings and 
computational intensity for large datasets can be 
viewed as drawbacks. Despite these challenges, its 
capacity for capturing the nuanced dynamics of 
housing prices through a controlled and theoretically 
sound approach underscores SVR's utility in real 
estate market analysis. 

 RF 
RF is recognized as a leading ensemble learning 
method that enhances the Bagging approach by 
creating a collection of decision trees during the 
training process. RF adds a layer of randomness to 

this process, selecting the best split from a random 
subset of features at each node, rather than 
considering all features. This method is especially 
effective for regression tasks, as it averages the 
predictions from all trees to produce the final output, 
thereby reducing variance and improving accuracy 
over individual decision trees. 

A significant advantage of RF is its capability to 
evaluate the influence of each feature in the 
prediction process. Within the scope of housing price 
prediction, the relevance of a feature is quantified 
using the Mean Decrease Impurity (MDI), commonly 
referred to as Gini Importance. The MDI for a 
feature X୨ is determined by summing the decrease in 
impurity (Δi(s, t))  across all trees in the forest for 
every node t where  X୨ is used, weighted by the 
proportion of samples (p(t)) reaching node t, and then 
averaging this sum over all trees M: 

IMP(X୨) = ଵெ ∑ ∑ 𝑝(𝑡)𝛥𝑖(𝑠, 𝑡)⬚௧∈థ:௑ೕ ௦௣௟௜௧௦ ௧ெ௠ୀଵ     (2) 

This impurity decreases, averaging over all trees, 
provides a robust metric for assessing how critical 
each feature is for predicting the outcome variable Y, 
such as the price of a house. The inclusion of feature 
importance analysis in RF not only aids in the 
prediction task but also offers insights into the 
dataset, highlighting which features are most 
influential in determining housing prices. Despite its 
computational intensity and potential for decreased 
interpretability due to its complex structure, RF's 
remarkable accuracy, robustness against overfitting, 
and effectiveness in managing outliers and noisy data 
render it an outstanding model for the analysis and 
prediction of housing prices. 

 XGB 
XGB stands for "Extreme Gradient Boosting," 
represents an evolution of Gradient Boosting 
Decision Trees, designed for enhanced scalability and 
efficiency. This distributed machine learning system 
builds on the concept of boosting, where a sequence 
of weak models (typically decision trees) are 
employed to form a highly accurate ensemble. Unlike 
RF, which extends bagging by constructing trees in 
parallel without interaction, XGB improves upon 
traditional boosting methods by focusing on 
optimizing a more sophisticated objective function 
that incorporates both the prediction accuracy and 
regularization terms to control model complexity. 

In the context of a dataset D = ሼ(X୧, Y୧)ሽ୧ୀଵ୫  where X୧ = (X୧ଵ, X୧ଶ, . . . , X୧ୢ)୘ ∈  Rୢ  represents the feature 
vector and y୧  the target value, XGB employs K 
additive functions to predict the outcome, expressed 
as yො୧ = ∑ 𝑓௞(𝑥௜)୏୩ୀଵ  where each f୩ ∈  F is a function 
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represented by the decision trees in the model space 
F. The objective function it minimizes is given by L = ∑ 𝑙(𝑦௜, 𝑦ො௜)⬚୧ + ∑ Ω(f୩)⬚୩  where l is a 
differentiable convex loss function that quantifies the 
difference between the predicted yො୧  and actual y୧ 
values, and Ω is a regularization term that penalizes 
the complexity of the model to prevent overfitting. 

XGB's approach to training the model in an 
additive manner addresses the challenges of 
optimizing in the Euclidean space by sequentially 
fitting new models to correct the errors made by 
existing ones, with an emphasis on computational 
efficiency and model performance. Moreover, XGB's 
ability to evaluate the importance of each feature 
post-training makes it invaluable for understanding 
the drivers behind the predictive model, an aspect 
especially relevant for tasks like housing price 
prediction, where identifying significant predictors is 
crucial. This blend of accuracy, efficiency, and 
interpretability has propelled XGB to prominence 
within the machine learning community. 

4 RESULT AND DISCUSSION  

Prior to commencing with the experiments, it is 
essential for readers to grasp the interplay between 

the variables under study. To facilitate this 
understanding, two visual aids were prepared: a 
correlation heatmap and a scatterplot depicting the 
relationship between house price and area: 

Figure 2 presents the correlation heatmap, 
elucidating the degree of association between 
variables. Notably, PRICE, the target variable, 
exhibits the strongest correlation with 
PROPERTYSQFT at a coefficient of 0.46. Additional 
variables such as BATH, BEDS, and TYPE display 
moderate correlations with PRICE, underscoring the 
multifaceted nature of the housing market influences. 
The heatmap serves as a preliminary guide to 
identifying which features might warrant a more 
detailed analysis. 

Figure 3 ventures into the specific dynamic 
between floor area and sale price within the dataset, 
which comprises properties ranging in size from 230 
to 55300 sq.ft. and in price from $49,500 to 
$195,000,000. The scatterplot indicates a diffuse yet 
generally positive relationship between area and 
price; however, it stops short of suggesting a strong 
linear correlation. This nuance underscores that while 
sale price tends to rise with increasing area, it is also 
significantly shaped by other factors. The graph 
illustrates this general trend, hinting at the complexity 
of real estate valuation where multiple variables 
influence the final price. 

 
Figure 2: Correlation Heatmap (Picture credit: Original). 
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Figure 3: Scatter plot of relationship between house price and area (Picture credit: Original). 

4.1 Implementation Details 

All computational experiments in this study were 
conducted using the Python 3.11.5 environment. Key 
libraries utilized include Pandas for data 
manipulation, Scikit-Learn for machine learning 
algorithms, and XGB for gradient boosting models. 
The hardware setup consisted of a 12th Gen Intel(R) 
Core(TM) i7-12700H CPU, an NVIDIA GeForce 
RTX 3070 Ti Laptop GPU, and 32GB of RAM. 

The models were configured with specific 
parameters to optimize performance and ensure 
reproducibility: 

LR: The model was implemented using ordinary 
least squares regression without any modifications, 
providing a baseline for performance comparison. 

SVR: The SVR model was equipped with a Radial 
Basis Function kernel, defined mathematically as: k(x, x′)  =  exp(െγ||x െ x′||ଶ)             (3) 

where x′ represents the kernel center, and γ the width 
of the kernel, is set to ଵ୬୳୫ୠୣ୰ ୭୤ ୤ୣୟ୲୳୰ୣୱ, allowing the 
model to handle non-linear relationships. The 
regularization parameter C was set to 1 and ε set to 
100 for avoiding overfit. 

RF: The model was configured with 100 trees, 
using mean squared error as the criterion for node 
splits.  

XGB: The model employs the gbtree booster with 
200 gradient boosted trees, targeting mean squared 

error as the objective function and RMSE for 
performance evaluation. 

In this study, three metrics are applied to assess 
model performance: RMSE, MAPE, and Adjusted Rଶ. RMSE highlights the impact of significant errors 
by emphasizing larger discrepancies in predictions. 
MAPE provides a percentage-based measure of 
average prediction errors, offering an intuitive 
understanding of model accuracy relative to actual 
values. Adjusted Rଶ evaluates the explanatory power 
of the model, adjusting for the number of predictors 
to ensure the complexity is warranted. These metrics 
collectively ensure a balanced evaluation of accuracy, 
sensitivity to relative errors, and model effectiveness. 

4.2 Evaluation of Model Performance 

The comparative evaluation of the four predictive 
models is summarized in Table 2. 

Table 2: Evaluation of Model Performance. 

Model RMSE MAPE Adjusted Rଶ
LR 4091594 1.2991 0.2642 

SVR 4967168 0.7753 -0.0844 

RF 2145123 0.3086 0.7978 

XGB 2483884 0.4163 0.7288 
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Figure 4: True Price and Model Predicted Price Comparison (Picture credit: Original). 

The evaluation of model performances revealed 
distinct strengths and weaknesses across the 
methodologies. LR struggled, as evidenced by a high 
MAPE of 129.91% and a low adjusted R² of 0.2642, 
likely due to its inability to capture the complex 
relationships present in the dataset. Likewise, SVR 
showed a marginal improvement in performance with 
a MAPE of 77.53%, but possibly suffered from the 
dataset’s high dimensionality and noisy data, which 
resulted in a higher RMSE of 4,967,168 and a 
negative adjusted R² of -0.0844. In contrast, the 
ensemble methods, RF and XGB, demonstrated 
robustness and superior performance, effectively 
handling the dataset's complexities. RF, with an 
RMSE of 2,145,123, MAPE of 30.86%, and an 
adjusted R² of 0.7978, along with XGB, which 
achieved an RMSE of 2,483,884, MAPE of 41.62%, 
and an adjusted R² of 0.7288, clearly distinguished 
their predictive accuracy and generalization 
capability over the simpler models due to their ability 
to model non-linear relationships and mitigate issues 
stemming from noisy and high-dimensional data. 

In Figure 4, each scatter plot visually illustrates 
the relationship between the actual and predicted 
housing prices for the respective models, where each 
point corresponds to an individual record from the 
test set. The true values are plotted along the x-axis, 
while the predicted values are on the y-axis. The 
black line in each plot represents the line of best fit, 
showcasing the average direction of the data; points 

clustering around this line suggest more accurate 
predictions. The red line serves as the identity line, 
marking where predicted values match the actual 
prices perfectly. 
Upon analysis, the LR and SVR plots reveal greater 
divergence from the identity line, highlighting a 
propensity for underestimation. The plots for RF and 
XGB, while showing a tighter grouping around the 
identity line for lower-priced properties, indicate 
deviations at higher price points. This pattern 
suggests a more pronounced accuracy in predictions 
for moderately priced homes, with deviation 
becoming more evident as the value increases 

5 CONCLUSION 

This study utilized various machine learning 
techniques to forecast housing prices in New York, 
focusing on the evaluation of LR, Support SVR, RF, 
and XGB. LR and SVR exhibited less than optimal 
performance, characterized by high RMSEs and 
MAPEs, along with low adjusted R² values. This was 
attributed to LR's inability to capture complex 
patterns in the dataset and the impact of high 
dimensionality and noise on SVR's performance. In 
contrast, the ensemble methods, RF and XGB, 
showed strong results. RF, configured with 100 trees 
and mean squared error as its split criterion, achieved 
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an RMSE of 2,145,122, a MAPE of 30.86%, and an 
adjusted R² of 0.7978. XGB also performed well, 
with an RMSE of 2,483,884, a MAPE of 41.62%, and 
an R² of 0.7288. These results highlight the efficacy 
of ensemble methods in handling complex predictive 
modeling challenges, suggesting their potential to 
lead future research not only in housing price 
prediction but also in other areas of economic 
forecasting facing similar complexities. 
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