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Abstract: Luge is a high-speed Olympic Winter sliding sport that is timed in milliseconds. The athlete’s steering 
performance is a crucial factor for success, but there are currently no objective methods to evaluate steering 
technique and timing. As a work in progress, we present a lab prototype of the ‘smart luge’, a sled retrofitted 
with six unobtrusive commodity force sensors. The results of a laboratory test with five simulated runs show 
that the current setup is capable of measuring the athlete’s activity during steering. This work aims to advance 
data-supported training in the luge sport by enabling the in situ measurement of luge athletes’ activity.

1 INTRODUCTION 

Luge is an Olympic Winter sliding sport in which a 
single or a pair of athletes (‘lugers’) compete for the 
shortest time riding a sled down an icy track. Luge is 
also the name of the sled that is used.  

While descending the track, the luger’s main 
influence on their runtime is their steering 
performance. The ideal strategy is to stay on the 
shortest path downward with minimal steering in 
terms of frequency and magnitude (Gong et al., 
2016). Lugers experience speeds over 150km/h 
(Schleinitz et al., 2022) so the window for optimal 
steering action is extremely small. Even minor 
mistakes can cost a race considering that run times are 
measured in milliseconds (Platzer et al., 2009). 

Trainers currently assess their athlete’s on-track 
performance using video analysis (e.g. Fedotova & 
Pilipivs, 2010). Given the high speeds and subtle 
movements involved in luge steering, this form of 
subjective feedback is inherently limited. 

In some sports, trainers have already started to 
complement their observations with objective data 
from sensors that are either worn by the athletes or are 
integrated into the sports equipment (Rajšp & Fister, 
2020). However, such sensors have not yet been 
integrated into luge training, and the scientific 
literature on this topic is sparse.   

To advance data-driven luge training we started 
the development of a ‘smart luge’. The goal is to build 
a sensor-equipped luge that can accurately and 
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reliably measure steering input. The resulting data 
can be analyzed and visualized to give trainers 
detailed and objective information on how to improve 
their trainee’s steering. This paper presents the first 
milestone of the ongoing project, a lab demonstrator 
of the ‘smart luge’. 

1.1 The Art of Luge Steering 

The basic design of a luge consists of a fiberglass 
‘pod’ in which the luger lies in a supine position 
during the race. The pod is tightly coupled to the left 
and right ‘runners’ at the bottom via a steel frame 
called the ‘bridge’. The runners are made out of wood 
or fiberglass, and they end in upwards ‘bows’ near the 
luger’s calves. At the bottom of the runners are the 
‘blades’ made from steel that glide on the ice. 

In their neutral position, the runners are slightly 
bent towards each other. Lugers steer by twisting 
them, which causes the blades to cut a leading grove 
that gets followed by the luge. The twisting of the 
runners can be achieved by a combination of (a) 
applying pressure to a bow using the calf, (b) lifting 
the bridge using handles that connect the pod and 
bridge, and (c) pressing down with one shoulder 
(Pareek et al., 2021). Depending on the desired 
direction change, these forces are applied differently 
between the left-hand and right-hand sides (Figure 1). 
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Figure 1: Our luge steering model with the anticipated 
pressure points drawn in. 

1.2 Aim and Research Questions 

The ‘smart luge’ aims to unobtrusively measure these 
theoretically derived steering movements using 
inexpensive commodity sensors in a laboratory 
environment. The objectives are (a) to develop a 
sensor-based luge prototype, (b) to calibrate the 
sensors, and (c) to capture and analyze basic left-right 
steering characteristics in a laboratory setting. 

2 METHODS 

2.1 Instrumentation 

According to our theory of luge steering, we should 
be able to detect steering maneuvers by measuring the 
pressure that (a) the calves apply to the bows, (b) the 
hands apply to the handles, and (c) the shoulders 
apply to the pod. 

We placed a FlexiForce™ sensor (Tekscan Inc., 
USA) at the anticipated steering points shown in 
Figure 1. These sensors are 0.2 mm thin force sensing 
resistors (FSR) that increase their electrical 
conductance in proportion to the force that is acting 
on them. We used the largest FSR model (A502) for 
the shoulders, the mid-size model (A401) for the 
bows, and the smallest model (A301) for the handles. 
We used thin double-sided adhesive tape to attach the 
sensors to the bows and the pod. The sensors for the 
handles were placed at the interface between the 
handles and the bridge. 

For data acquisition, we used the KRYPTON® 
CPU with two strain gauge modules and the 
DewesoftX software (Dewesoft, Slovenia). This 
setup recorded the FSR sensors’ voltage outputs at 

20kHz. The changes in electrical resistance induced 
by the FSR sensors were converted into a reciprocal 
proportional output voltage (ua). Calibration of the ua 
was achieved through a 2-point calibration method 
using standardized weights, ensuring precise force 
measurements. 

2.2 Study Design 

The first author of the present paper who had 
participated in an Olympic luge competition was the 
test luger for this pilot study (sex: male, weight: 
85 kg, height: 188 cm). The instrumented luge was 
placed on top of a table such that the luger faced the 
wall. We projected a pre-recorded point-of-view 
video of a luge run onto that wall. The track in the 
video was familiar to the test luger who was asked to 
steer as he would if he had been in the video. The 
same run was repeated five times. A webcam that was 
synchronized with the sensor hardware recorded the 
entire study setup. 

We noted the frames in which the luger in the 
video entered and exited a curve, as well as the 
curve’s direction (left, right), and noted them in an 
Excel sheet. We excluded the first curve because it 
follows the startup phase where the luger is trying to 
gain momentum with their hands in a sitting position. 
Thus, we did not consider it a regular curve. 
Furthermore, we excluded curve 11 (the ‘Kreisel’) 
which requires more complex steering motions and 
thus would not be comparable to the other curves of 
the track. 

2.3 Data Analysis 

The resulting data was analyzed with MATLAB (The 
MathWorks, Inc., USA). For each run, using the 
synchronized webcam footage, we discarded all data 
that was recorded before the pre-recorded video 
started and after it ended. Then we used the curve start 
and end points to segment the remaining data. We 
normalized the data for each curve to 1000 samples. 
Furthermore, each curve was split into three phases: 
‘entry’ (0% - 25% of samples), ‘core’ (25%-75%), 
and ‘exit’ (75% - 100%). We plotted the average 
signal of each of the six FSR sensors, along with the 
standard error, across all five runs. 

To quantify the (dis)similarity of the sensor 
signals we calculated Pearson’s correlation 
coefficient (r) for each pair of sensors and each curve 
phase’s mean. Coefficients higher than 0.1, 0.3, 0.5, 
and 0.7 represent small, moderate, large, and very 
large correlations, respectively (Hopkins et al., 2009). 
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3 RESULTS 

Figure 2 shows the average signal (+/- standard error) 
for each sensor with the individual curves colored in. 
The maximum values for the bows (left: 12N ± 1, 
right: 17N ± 1) and the shoulders (left: 23N ± 3, right: 
18N ± 2) differ considerably from the maximum 
values of the  handles  (left:  631N ± 81,  right: 404 ± 

72). 
Figure 3 shows the three correlation matrices, one 

for each curve phase. In all three phases, the handles 
have a very large correlation (r between 0.85 and 
0.87). The left and right shoulders have a consistently 
negative correlation (r at entry: -0.27, core: -0.88, 
exit: -0.42). The left and right bows show a moderate 
positive correlation at curve entry (r=0.37) which 
 

 
Figure 2: Plots of the calibrated force signal [N] with the standard error of all six FSR sensors averaged over all five runs. 
Grey sections mark right curves, orange sections mark left curves. The first curve and the dark gray "Kreisel" section were 
excluded from the analysis. 

 
Figure 3: Correlation matrices of the average force signals from the six FSR sensors, grouped by curve phases. Significant 
correlations are printed in bold (significance levels *: p < 0.05, **: p < 0.01). 
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changes to a negative correlation in the core phase 
(r=-0.63) and at the exit (r=-0.35). Furthermore, we 
observed that in the core and exit phases, the shoulder 
and bow on opposite sides correlate strongly (r 
between 0.68 and 0.75) while the shoulder and bow 
on the same side have a large negative correlation (r 
between -0.81 and -0.52). In general, the mean 
absolute r value was highest in the core phase (0.56), 
followed by the exit (0.47) and entry (0.41) phases. 

4 DISCUSSION 

We demonstrated a lab prototype of the ‘smart luge’, 
a luge sled that was retrofitted with six FSR sensors 
to measure the force that is applied by the luger to 
induce steering. 

Figure 4 compares the results with our 
expectations based on our luge steering model (Figure 
1). We found that sensors that we expected to 
correlate positively had a very large positive 
correlation, and the sensors that we expected to 
negatively correlate had a large negative correlation. 
What was unexpected were the high peak force values 
of the left and right handles) and their continuously 
high correlation between the left-hand and right-hand 
side. 

 
Figure 4: Correlations between the FSR sensor values in the 
core phase. Blue arrows indicate an expected negative 
correlation, and black arrows indicate an expected positive 
correlation.  

One explanation might be the FSR sensor 
placement under the screwed-down handles. Since 
both handles are tightly coupled with the bridge, 
when one handle is pulled, the handle on the opposite 

side moves up as well and squeezes the sensor rather 
than twisting away as we had expected. Further 
attention is necessary to understand the deformations 
of the bridge and how they connect to the athlete’s 
steering input. 

5 CONCLUSION 

In light of this pilot study’s results, we consider the 
presented ‘smart luge’ demonstrator as capable of 
measuring a luger’s steering maneuvers in a 
laboratory environment. 

The next step would be to test the system on a real 
ice track. However, in its current state, the data 
acquisition hardware is too bulky to be safely 
transported on the luge. Furthermore, because we 
expect a considerable amount of vibration on the ice, 
a more sophisticated post-processing/filtering of the 
FSR sensor signals is likely necessary to detect the 
luger’s steering input. Furthermore, we will optimize 
the sensors’ surface sizes and geometries to better 
detect the applied forces. 
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