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Abstract: Human pose estimation in 3D is crucial in complex sports scenarios, particularly for athlete head impact 
events. We investigated the effect of different 2D pose estimation methods on the performance of 3D pose 
estimation models in complex sports environments. We used a transformer-based 3D human pose estimation 
model as a base framework, creating multiple variants by replacing the 2D pose estimator. These variants 
were evaluated using real sports game videos. Four 2D pose estimators were employed: Simple Baseline, 
High-Resolution Network (HRNet), Multi-stage Pose Network (MSPN), and Residual Steps Network (RSN). 
Performance was assessed using Mean per Joint Positional Error (MPJPE), Procrustes analysis MPJPE (P-
MPJPE), and Mean per Joint Velocity Error (MPJVE) metrics. The results showed that MSPN performed the 
best in terms of position accuracy and motion velocity consistency (MPJPE, P-MPJPE and MPJVE). RSN 
presented promising absolute position accuracy (MPJPE) but showed limitations in the overall pose 
configuration (P-MPJPE). Simple Baseline and HRNet proved to be inadequate for complex sports scenarios. 
These findings indicate that different model architectures have different advantages in 3D human pose 
estimation in complex sports scenarios. This study provides insights for improving 3D pose estimation models 
in challenging real-world sports applications, contributing to the better understanding and prevention of 
sports-related head injuries. 

1 INTRODUCTION 

1.1 Background 

Concussion in sport is a critical issue in modern sports 
medicine due to its severe impact on athletes' health 
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and careers. Annually, an estimated 4 million sport-
induced concussions occur from rapid brain impacts 
(Bryan et al., 2016). These injuries cause cognitive 
impairment and, functional brain changes, and 
increase the risk of further injury (Giza & Hovda, 
2001; McKee et al., 2013; Courtney & Courtney, 
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2015). However, the precise biomechanical 
mechanisms of sports-related concussions remain 
unclear, hindering the development of effective 
prevention strategies (Ji et al., 2015). 

To mitigate concussion risks in sports, 
understanding head impact dynamics is essential 
(Camarillo et al., 2013). Finite element (FE) 
simulations have become crucial in biomechanical 
analyses, elucidating the mechanical forces and brain 
tissue deformation in concussive events (Madhukar & 
Ostoja-Starzewski, 2019). Accurate kinematic inputs, 
such as impact velocity and location, are critical for 
realistic simulations and a better understanding of 
concussion causes and effects. Consequently, 
precisely capturing head motions during impacts for 
FE simulations has become a key research focus. 

Traditional head impact kinematics 
measurements use optical markers or sensors attached 
to athletes (Camarillo et al., 2013; Cortes et al., 2017). 
However, these methods are invasive, interfere with 
natural movements, and are impractical in real-world 
sports settings (King et al., 2015; Wu et al., 2016). To 
overcome these limitations, non-contact 
measurement techniques using monocular 2D video 
data are becoming necessary. Such methods would 
enable practical and effective impact measurements 
without burdening athletes or requiring extensive 
camera equipment. 

Quantifying head impact kinematics from 2D 
monocular video involves two main phases: 1) either 
a multi-stage process (video acquisition, 2D pose 
estimation, and 2D-to-3D upgrade) or a single-stage 
approach (direct 3D pose estimation from video); and 
2) reconstructs of 3D human motion and 
determination of head impact kinematics based on the 
3D pose or shape predicted in the first phase. 

We focused on the multi-stage process of 
quantifying head impact kinematics, specifically 
extracting 2D human poses and lifting them to 3D. 
Most high-performing 3D human pose estimation 
methods use this framework, relying heavily on 2D 
pose estimation techniques (Moon et al., 2019; Rogez 
et al., 2020; Liu et al., 2022). Different 2D pose 
estimation methods significantly affect the overall 3D 
pose estimation performance. By quantifying these 
performance differences and analyzing their effects, 
we aimed to provide an objective basis for method 
selection and optimization in constructing 3D pose 
estimation models. 

Previous computer vision research has developed 
advanced deep learning models for 2D and 3D pose 
estimation (Newell et al., 2016; Cao et al., 2017; 
Pavlakos et al., 2017; Xiao et al., 2018; Sun et al., 
2019; Li et al., 2022). These supervised learning 

models are typically trained and tested on standard 
dataset videos before their application in realistic 
scenes. However, significant differences exist 
between standard datasets and actual sports videos, 
affecting model performance in real-world scenarios: 

1. Video quality and consistency: Real games are 
affected by weather, filming techniques, and lighting, 
unlike controlled standard datasets. 

2. Camera angles: Actual games are filmed from 
multiple angles, while standard datasets use optimal 
or fixed viewpoints. 

3. Scene complexity: Real games involve 
spectator interference and multiple simultaneous 
plays, contrasting with the simpler, controllable 
standard dataset videos. 

4. Data diversity: Real game videos offer genuine 
diversity but may suffer from insufficient data 
collection, while standard datasets simulate diversity 
but may have inherent selection biases. 

These differences underscore the importance of 
evaluating and refining computer vision models in 
real-world applications. Assessing model 
performance on real scene videos provides a 
comprehensive understanding of real-world 
applicability, forming a crucial basis for model 
refinement and optimization. 

1.2 Research Purpose 

This study examined pose estimation in athlete head 
impact events, focusing on how different 2D pose 
estimation methods affect 3D pose estimation 
performance in complex real-world sports scenarios. 
We used a multi-stage 3D human pose estimation 
model as a base framework, creating variants by 
replacing the top-down 2D pose estimator. These 
variants were evaluated on real sports scene videos. 
By analyzing the effects of different 2D methods on 
the overall 3D performance, we proposed strategies 
to improve 3D pose estimation, addressing challenges 
like fast movements, occlusions, and complex poses. 
We aimed to contribute to the development of robust 
and efficient 3D human pose estimation algorithms 
for complex real-world sports scenarios. 

2 RELATED WORK 

2.1 Single-Person 2D Human Pose 
Estimation 

Single-person 2D pose estimation models typically 
employ regression-based (Toshev & Szegedy, 2014; 
Carreira et al., 2016) or detection-based approaches 
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(Newell et al., 2016; Wei et al., 2016). These 
frameworks generally consist of a pose encoder, 
which extracts high-level features from high to low 
resolution, and a pose decoder, which estimates 2D 
keypoints. Regression-based decoders directly output 
keypoint coordinates but struggle with complex poses 
due to non-linearity. Detection-based decoders 
generate keypoint heatmaps and are more robust in 
handling complex poses (Liu et al., 2022). 

2.2 Multi-Person 2D Human Pose 
Estimation 

Multi-person 2D pose estimation methods use either 
top-down (Xiao et al., 2018; Sun et al., 2019; Li et al., 
2019; Cai et al., 2020) or bottom-up approaches (Cao 
et al., 2017; Cheng et al., 2020). Top-down methods 
first localize individuals, then apply single-person 
pose estimation to each person. Bottom-up methods 
predict all keypoints simultaneously, then assign 
them to individuals. In videos, top-down approaches 
detect and predict keypoints frame-by-frame, 
propagating them across frames. Bottom-up methods 
predict all keypoints per frame, then assign them to 
individuals using spatio-temporal patterns. 

The top-down multi-person 2D pose estimation 
approach has several advantages. It could utilize a 
specialized single-person pose estimation technique 
that focuses on only one person at a time within the 
detected bounding box, thus achieving highly 
accurate keypoint localization for a single person. 
This method isolates each person and reduces 
background interference and is therefore robust to 
cluttered backgrounds. In addition, this approach 
could be integrated with existing advanced object 
detection frameworks (Faster R-CNN [Ren et al., 
2015] or YOLO [Redmon et al., 2016]) to take full 
advantage of their benefits. The segmented 
processing pipeline (detection followed by pose 
estimation) also facilitates individual optimization of 
each module, thus improving the overall performance 
of the model. 

3 METHOD 

3.1 Multi-Stage Approach for 3D 
Human Pose Estimation 

We aimed to examine how different 2D pose 
estimation methods affect 3D model performance in 
complex real sports scenarios. We used a multi-stage 
3D human pose estimation model as a base 

framework, creating multiple variants by replacing 
the 2D pose estimators within the model. 

This multi-stage 3D human pose estimation 
model consisted of two main stages, as illustrated in 
Figure 1. In the first stage, a multi-person 2D human 
pose extractor processed monocular video frames to 
extract 2D pose sequences. The second stage then 
took these 2D pose sequences as input and employed 
a 3D human pose estimation model to reconstruct 
corresponding 3D human poses.  

 
Figure 1: The proposed multi-person 3D human pose 
estimation framework. 

The multi-person 2D human pose detection stage 
in our model employed a top-down approach 
comprising two main tasks. First, for person detection 
and tracking, we utilized YOLOv8 (Jocher et al., 
2023) to detect individuals in video frames, followed 
by the BoT-SORT algorithm (Aharon et al., 2022) to 
track each detected person frame-by-frame. Second, 
for single-person pose estimation, we cropped the 
area around each detected person based on their 
bounding box. These cropped frames were then input 
into a single-person 2D human pose estimation model, 
which estimated the pose of each individual. 

In the 3D human pose estimation stage, we 
employed a transformer-based model (Li et al., 2022) 
to lift 2D pose sequences to 3D. This process 
involved two main components: the Vanilla 
Transformer Encoder (VTE) and the Strided 
Transformer Encoder (STE). The VTE processed the 
input 2D pose sequence, predicting the 3D pose 
sequence and capturing temporal information to 
ensure motion consistency. The STE then received 
the VTE output, utilizing strided convolutional layers 
instead of fully-connected layers in its feed-forward 
network. This architecture shortened the sequence 
length and effectively combined global context from 
self-attention with local context from strided 
convolution. Ultimately, the STE predicted the 3D 
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pose of the center frame and recovered the entire 3D 
pose sequence from contextual information. 

We evaluated four detection-based top-down 2D 
pose estimation models as alternatives for the 3D 
pose estimation component: Simple Baseline (Xiao et 
al., 2018), High-Resolution Network (HRNet) (Sun et 
al., 2019), Multi-Stage Pose Network (MSPN) (Cai et 
al., 2020) and Residual Steps Network (RSN) (Li et 
al., 2019). While these models perform well on 
standard datasets, their effectiveness in complex 
sports scenarios, particularly athlete head impacts, 
remains unexplored. We focused on their 
architectural features to assess their potential when 
integrated into a 3D pose estimation model. The 
models used weights pre-trained on the COCO 
val2017 dataset. The transformer-based 2D-to-3D 
lifting models were pre-trained on Human3.6M and 
HumanEva-I datasets (Li et al., 2022). 

3.2 Simple Baseline 

Simple Baseline is a 2D human pose estimation 
model based on convolutional neural networks 
(Figure 2). The model first uses a ResNet as the 
backbone network, and a complete pose encoding-
decoding network is constructed by adding a small 
number of deconvolutional layers after the backbone 
network. The encoding part learns a high-level 
feature representation of the human body pose, and 
the decoding part up-samples the feature maps 
according to the input image size to generate a 
heatmap of the keypoints of the human body. 

 
Figure 2: Simple Baseline architecture (Xiao et al., 2018). 

3.3 HRNet 

HRNet is a multi-stage, multi-branch fusion network 
architecture for 2D human pose estimation (Figure 3). 
Unlike traditional encoding-decoding architectures, 
HRNet maintains high-resolution feature 
representations throughout the network, avoiding the 
loss of spatial information due to down sampling. The 
network consists of multiple parallel sub-networks, 
each processing feature information at different levels. 
At each stage, multi-level features from different 

branches are fused and interact with each other 
through cross-connections. As the network 
progresses, the high-resolution branch gradually 
integrates contextual information from the low-
resolution branch while maintaining the high-
resolution details required for keypoint localization. 
Through multi-level feature fusion and refinement, 
HRNet realizes the effective combination of global 
and local information. In the last stage of the network, 
the feature maps of all branches are summarized and 
up-sampled to the original resolution of the input 
image to generate a heatmap of keypoints.  

 
Figure 3: High-Resolution Network (HRNet) architecture 
(Sun et al., 2019). 

3.4 MSPN 

 
Figure 4: Multi-Stage Pose Network (MSPN) architecture 
(Cai et al., 2020). 

MSPN is a multi-stage network structure for 2D 
human pose estimation (Figure 4). The network 
works by cascading multiple prediction stages, each 
of which receives the fusion information of the 
feature maps output from the previous stage and the 
feature maps at each level of the previous stage. 
Through this linking, each stage can optimize the 
prediction results from the previous stage, combining 
global and local information to refine keypoint 
locations. Through iterative optimization over 
multiple stages, the network can gradually improve 
the accuracy of keypoint localization. To better 
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instruct the network learning, MSPN introduces 
supervised signals at each intermediate stage, 
allowing the network to learn the multi-level feature 
representations required for the pose estimation task 
at different stages. In the final stage, the network 
generates a high-resolution heat map of the keypoints 
as the final output.  

3.5 RSN 

RSN is a multi-stage network architecture for 2D 
human pose estimation (Figure 5). The network 
cascades multiple residual steps to progressively 
refine and optimize the prediction of keypoints. Each 
RSN module in a residual step shares similarities with 
ResNet in its overall structure, but differs from 
ResNet in the structure of its component units. The 
RSN module consist of multiple Residual Steps 
Blocks (RSBs), which divide the input features into 
four branches, each with a different number of 3×3 
convolutional layers (ranging from zero to three). 
Through the dense connected structure of these 
branches and 3×3 convolutional layers, the overall 
network has access to a wide range of receptive fields, 
making it well-qualified to learn delicate 
representations of the features, as well as capturing 
information about the features at a variety of different 
scales. In addition, RSN introduces supervised 
signals in the middle of each residual stage, allowing 
the network to learn meaningful feature 
representations at different stages. 

 
Figure 5: Residual Steps Network (RSN) architecture (Li et 
al., 2019). 

After RSN undergoes feature fusion within the 
RSB and in each residual step, features at different 
levels are fused together, which contain both low-
level precise local information and high-level global 
information. These features contribute differently to 
the final prediction results. To solve this problem, 
RSN proposes an efficient attention mechanism, the 
pose refine machine (PRM), to weight between the 
local and global representations of the output features 
to further refine the location of the keypoints, and 
ultimately output the keypoint heatmap. 

4 EXPERIMENTS 

4.1 Test Dataset 

To evaluate the proposed human pose estimation 
variants in real sports scenarios, we used 15 rugby 
game video clips, that were approved by the ethics 
committees of Tokyo Medical and Dental University 
and Tokyo Institute of Technology. From these clips, 
we manually identified 16 significant impact events. 
Each event included 21 consecutive frames: 10 pre-
impact, 1 impact, and 10 post-impact frames, totaling 
336 impact-related frames, within which 218 target 
persons were detected and tracked. After data 
cleaning, our final multi-person pose dataset 
comprised 3,521 frames.  

To create a reference standard for our study, we 
undertook a two-step process. First, we manually 
labeled 17 keypoints for each athlete in every frame, 
ensuring consistency with COCO dataset definitions. 
Subsequently, we lifted these 2D keypoint 
coordinates to 3D space using our transformer-based 
model, creating a comprehensive 3D representation 
of each pose. These manually labeled and 3D-lifted 
coordinates serve as the ground truth for our analysis. 

4.2 Evaluation Metrics 

We evaluated each 3D human pose estimation variant 
model using three key metrics: Mean per Joint 
Positional Error (MPJPE), Procrustes analysis 
MPJPE (P-MPJPE), and Mean per Joint Velocity 
Error (MPJVE). MPJPE (Ionescu et al., 2013) 
measures absolute positional accuracy by calculating 
the average Euclidean distance between ground truth 
and predicted joint positions. This metric can be used 
to evaluate the keypoint localization performance of 
models in the context of rapid movements by 
assessing the resilience to motion instability, complex 
postures, partial occlusions, and background 
interference. P-MPJPE (Martinez et al., 2017) 
provides a normalized accuracy assessment by 
aligning the estimated 3D pose with the ground truth 
before error calculation, allowing a fair comparison 
of pose estimates at different scales and orientations. 
This metric can be used to assess the proficiency of 
the model in capturing the overall pose structure and 
serves as a key indicator of its ability to interpret 
complex postures and adapt to diverse camera 
perspectives. MPJVE (Pavllo et al., 2019) employs 
the first-order derivative of MPJPE to assess the 
temporal smoothness of predicted results. This metric 
is particularly crucial for video-based quantification 
of head impact velocities, for which consistency in 
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motion estimation is of paramount importance. These 
metrics collectively provide a comprehensive 
evaluation of both positional accuracy and temporal 
consistency in real-world scenarios, especially for 
head impact events in complex sports settings. 

4.3 Statistical Analysis 

We conducted statistical analyses on the MPJPE, P-
MPJPE, and MPJVE error samples for the four model 
variants to identify pairwise significant differences in 
performance. Our analysis process began with a 
Shapiro-Wilk test to check for normal distribution in 
all sample groups, followed by Levene's test to assess 
variance consistency between comparison groups. 
We then performed Kruskal-Wallis H-tests on the 
MPJPE, P-MPJPE, and MPJVE results for all four 
models. Statistical significance was set at p-value 
<0.05. This comprehensive analysis was used to 
thoroughly compare the performance of the four 
model variants across all three metrics. 

4.4 Implementation Details 

In our experiments, the Simple Baseline used ResNet 
as the backbone network with a depth of 152 layers. 
The initial number of channels of the HRNet model 
was set to 48. The MSPN model consisted of 4 
cascaded single-stage modules; the overall network 
depth was 50 layers. The RSN model consisted of 3 
residual steps in cascade; the overall network depth 
was 50 layers. Before using the 2D keypoints output 
from the four models as input to the 3D model, we 
converted the 2D keypoints from COCO format to 
H36M format. For 3D pose estimation, the 
transformer-based 3D human pose estimation model 
used 3 VTE and 3 STE encoder modules with the 
number of channels set to 256. The temporal motion 
kernel size and stride factor of the STE modules were 
set to 3. The receptive field of the model inputs was 
27 frames, and the left and right padding operations 
were performed on inputs with <27 frames to 
compensate for the complete number of frames. 

5 RESULTS 

In this study, we constructed four 3D human pose 
estimation models, each based on a different 2D pose 
estimation method. An example of the visual results 
of the four variant 3D human pose estimation models 
on our real-world rugby video dataset are presented 
in Figure 6. Table 1 summarizes the quantitative 
results of the three metrics for all four models. 

The performance of the four variant models varied 
across the three metrics. For MPJPE, the MSPN-
based model showed the lowest error (86.12 mm), 
closely followed by the RSN model (86.78 mm), with 
HRNet and Simple Baseline models showing slightly 
higher errors (87.62 mm and 87.55 mm, respectively). 
In terms of P-MPJPE, the MSPN model again 
outperformed the others with an error of 55.80 mm, 
while the remaining models had errors between 56.72 
and 57.48 mm. For MPJVE, the MSPN model 
performed best (83.92 mm/frame), followed by RSN 
(85.27 mm/frame), with Simple Baseline and HRNet 
showing slightly higher velocity errors (85.68 
mm/frame and 86.22 mm/frame, respectively). 

 
Figure 6: Visual results of four variant 3D human pose 
estimation models on real-world rugby video dataset. 

To assess the statistical significance of the 
observed differences in metrics, we conducted a 
series of tests. The Shapiro-Wilk test revealed that 
none of the sample groups followed a normal 
distribution. Levene's test indicated inconsistent 
sample variances for all three metrics across the four 
groups. Consequently, we employed the Kruskal-
Wallis H test followed by pairwise comparisons. The 
Kruskal-Wallis H test demonstrated significant 
differences among the four models for all three 
metrics (p<0.05 for MPJPE, P-MPJPE and MPJVE), 
indicating that the performance variations between 
the models were statistically meaningful.  

 Real-world sports scenatios are characterized by 
dynamic variables such as fluctuating lighting 
conditions, intermittent occlusions, and rapid 
movement patterns. Such environmental diversity 
introduces significant sample heterogeneity, 
potentially yielding counterintuitive statistical results. 
In these cases, the larger mean differences lack 
significance whereas the smaller ones are significant. 
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To address this concern, our analysis integrated 
statistical significance with actual sample values, 
aiming for a balanced and accurate interpretation of 
the observed data. 

As shown in Figure 7, pairwise comparisons 
resulted in the following conclusions:  

 
Figure 7: Statistical results of the four models on MPJPE, 
P-MPJPE and MPJVE. * p-value <0.05. 

 HRNet-based model underperformed Simple 
Baseline-based model in MPJPE, P-MPJPE 
and MPJVE (all p<0.05). 

 MSPN-based model outperformed Simple 
Baseline-based model in MPJPE, P-MPJPE 
and MPJVE (all p<0.05).  

 RSN-based model outperformed Simple 
Baseline-based model in MPJPE and MPJVE 
but underperformed in P-MPJPE (all p<0.05). 

 HRNet-based model underperformed MSPN-
based model in MPJPE, P-MPJPE (although 
not statistically significant) and MPJVE 
(p<0.05). 

 HRNet-based model outperformed RSN-
based model in P-MPJPE (p<0.05) but 
underperformed in MPJPE and MPJVE 
(although not statistically significant).  

 MSPN-based model outperformed RSN-based 
model in P-MPJPE and MPJVE (p<0.05), but 
showed no significant differences in MPJPE 
(p=0.48).  

 

 

Table 1: MPJPE (mm), P-MPJPE (mm) and MPJVE 
(mm/frame) results for the four variant models. 

MPJPE P-MPJPE MPJVE
Simple Baseline-based 87.55 56.72 85.68

HRNet-based 87.62 57.24 86.22
MSPN-based 86.12 55.80 83.92
RSN-based 86.78 57.48 85.27

6 DISCUSSION 

In this study, we employed a multi-stage 3D human 
pose estimation model as our base framework. We 
created several variant models by systematically 
replacing the top-down 2D pose estimator within this 
framework and evaluated their performance using 
real sports scenario videos. Our comparison focused 
on four 3D human pose estimation models, each 
utilizing a different 2D pose estimation methodology: 
Simple Baseline, HRNet, MSPN and RSN. Through 
this approach, we were able to assess the unique 
capabilities and limitations of these 2D pose 
estimation models when applied to the task of 3D 
pose estimation from 2D inputs in complex, real-
world sports scenarios. 

The MSPN-based and RSN-based variants 
presented superior performance in MPJPE (86.12 mm 
and 86.78 mm, respectively). The MSPN-based 
variants also performed excellently in terms of the 
MPJVE (83.92 mm) and P-MPJPE (55.80 mm) 
metrics. The exceptional performance of the MSPN 
and RSN models can be attributed to their multi-stage 
cascade structure. This architecture enabled iterative 
refinement of keypoint locations across multiple 
stages, which progressively enhanced localization 
accuracy. Moreover, a key feature of MSPN and RSN 
is the introduction of supervised signals at each 
intermediate stage, which compelled every level of 
the network to generate robust and reliable feature 
representations, rather than relying solely on the final 
output layer. Furthermore, the MSPN and RSN 
incorporate a sophisticated multi-level feature fusion 
mechanism at each cascade stage, which effectively 
integrated local and global features. Global features 
provided information about the overall body 
configuration to facilitate an understanding of the 
relative positions of different body segments. 
Concurrently, local features focused on specific 
keypoints or joint regions to offer precise localization 
details. In addition, the RSB in the RSN model 
employs a densely connected structure of branches 
and convolutional layers. This structure enabled the 
network to obtain a wide receptive field and generate 
fine feature representations, while simultaneously 
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capturing feature information at various scales. These 
structural characteristics significantly facilitated the 
model's feature representation capabilities, thereby 
enhancing both the accuracy and robustness of the 
model and allowing the model to locate keypoint 
positions more accurately when confronted with fast 
movements, complex postures and occlusion 
situations. 

Despite the strong performance RSN in absolute 
keypoint localization, its slightly higher P-MPJPE 
(57.48 mm) suggested limitations in capturing the 
overall pose configuration. This may stem from an 
over-emphasis of local features, leading to an 
inadequate understanding of global pose structure. 
While the PRM module aimed to balance local and 
global features, its placement at the final stage of the 
network may limit its ability to compensate for the 
local focus of the backbone. The challenge for RSN 
lies in effectively utilizing enhanced global 
information from deeper network layers while 
maintaining sensitivity to local details. Unlike HRNet, 
which achieves global-local information fusion 
through parallel sub-networks with cross-connected 
feature branches, the multi-stage cascade architecture 
of RSN faces difficulties in effectively transmitting 
and maintaining global information between stages. 
Although RSN incorporates mechanisms for global 
and local multi-level feature fusion within each 
residual step, these connections may be insufficient 
for effective inter-stage global information 
transmission. The network struggles to fuse deep-
level global features with shallow-level local features 
and propagate this fused information through 
subsequent refinement stages. To address this, one 
potential solution is to enhance global information 
transmission across the stages, similar to the cross-
stage global information linking of MSPN. This 
approach could ensure more effective transmission 
and maintenance of global information throughout 
the network, potentially improving the ability of RSN 
to capture the overall pose configuration while 
retaining its strength in local feature representation. 

Simple Baseline performed competitively on P-
MPJPE (56.72 mm) metrics. Unlike the complex 
architecture of RSN, which focus on accurate 
localization of keypoints but may overlook the overall 
pose configuration, simpler structure of Simple 
Baseline potentially achieves a better balance 
between local accuracy and global consistency in 
pose estimation tasks. This balance likely contributes 
to its advantages in P-MPJPE. However, the Simple 
Baseline model exhibited higher MPJPE (87.55 mm) 
and MPJVE (85.68 mm/s) compared to more intricate 
architectures such as MSPN and RSN. Although the 

simple architecture may offer an improved balance 
between local and global features and has advantages 
in computational efficiency (Xiao et al., 2018), it 
struggled with the challenges prevalent in complex 
sports scenarios. Addressing these challenges require 
sophisticated model architectures capable of more 
nuanced feature extraction and integration. 

HRNet presented the highest MPJPE (87.62 mm) 
and MPJVE (86.22 mm/frame). Despite its excellent 
performance in various computer vision tasks (Liu et 
al., 2022), this model encountered limitations in 
complex sports scenarios. Its multi-parallel branch 
structure, designed to maintain high-resolution 
features and facilitate frequent cross-resolution 
information exchange, proved crucial for precise 
keypoint localization (Sun et al., 2019). However, in 
fast movements, owing to image motion blur, the 
parallel structure's independent processing of feature 
information at each branch of the parallel structure 
can lead to spatial inconsistencies in the features. 
High-resolution branches may capture the blurred 
local features, whereas low-resolution branches retain 
more stable global features that are unaffected by 
blurring. This disparity can result in spatial 
misalignment during feature fusion, ultimately 
reducing the localization accuracy. Conversely, 
models with serial structures, such as MSPN and RSN, 
employ progressive down sampling and up sampling 
process This stepwise process maintained spatial 
correspondence of features throughout the network, 
avoiding the feature fusion misalignment problem in 
the HRNet architecture. Moreover, utilizing feature 
skip connections between the same level in down 
sampling and up sampling can also improve the 
sophistication of the feature alignment. Furthermore, 
HRNet consistently maintains high-resolution 
features throughout its architecture. These high-
resolution features were highly susceptible to 
background interference and partial occlusions, 
which may also lead to reduced accuracy in the 
keypoints localization of HRNet, which is highly 
dependent on these high-resolution features. In 
addition, during rapid and continuous movements, the 
high-resolution features can become unstable due to 
motion blur. HRNet's reliance on these volatile 
features may also lead to jittery localization results, 
thus contributing to its poor performance on MPJVE.  

Our results from complex sports scenarios, 
particularly athlete head impacts, demonstrated that 
the choice of 2D pose estimation method significantly 
influenced the overall 3D pose estimation 
performance. The MSPN-based model is suitable for 
applications requiring high accuracy in keypoint 
localization within complex sports scenarios 
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involving rapid movements, partial occlusions, 
background interference and complex postures. RSN 
has strength in absolute keypoint localization within 
complex sports scenarios but has potential limitations 
in capturing the overall pose configuration. The 
Simple Baseline model is an efficient choice for 
applications that focus on capturing the overall 
structures of human poses. However, these models, 
along with the HRNet models, exhibited suboptimal 
performance in terms of absolute keypoint 
localization accuracy and temporal consistency. 
Consequently, their applicability to complex sports 
scenarios remains limited. 

In addressing the challenges of complex sports 
scenarios, different model architectures offer distinct 
advantages. MSPN and RSN, with their multi-stage 
cascading and intermediate supervision strategies, 
along with the effective fusion of local and global 
features, demonstrated specialized capabilities in 
handling the spatial and temporal complexity of 
sports poses. RSN's densely connected structure of 
RSBs, characterized by multiple branches and 
convolutional layers, and MSPN's stage-by-stage 
linking of high-level features from its deep layer 
network, may contribute to enhanced performance in 
complex sports scenarios. 

Our study proposed improvement strategies for 
3D pose estimation models integrating top-down 2D 
models to address challenges in complex sports 
scenarios. However, several limitations should be 
acknowledged. Primarily, our performance 
evaluation was conducted on a specific dataset, which 
may limit the generalizability of our results to 
different sports scenarios or types. Future research 
should expand the scope to investigate model 
performance across a wider range of sports activities 
and examine the impact of diverse training datasets 
on model performance. Furthermore, this study did 
not delve into the computational efficiency of the 
evaluated models. Given the real-time processing 
requirements common in sports applications, future 
work should analyse the trade-off between accuracy 
and computational cost. This analysis could lead to 
the development of strategies for model compression 
or optimization techniques, aiming to enhance real-
time performance while maintaining model accuracy. 

In addition, our study focused exclusively on 3D 
pose estimation models integrating top-down 2D 
approaches, which offer high accuracy through 
specialized single-person pose estimation techniques 
and robustness to noisy backgrounds by isolating 
individuals. However, this approach has limitations, 
particularly in handling occlusions within the 
bounding box of a target person. In contrast, bottom-

up 2D models, which we did not investigate, offer 
potential advantages in dealing with partial 
occlusions. These models rely less on a complete 
understanding of the entire scene, instead employing 
a part-to-whole reasoning approach. This 
methodology allows for gradual construction of the 
overall pose understanding based on visible local 
features, potentially yielding more complete 
representations even when occlusions are present. 
Thus, it may offer more flexibility in significant 
occlusion situations due to their ability to piece 
together available information from visible parts. 

Finally, this study focused on a multi-stage 
framework for 3D human pose estimation, which first 
estimates 2D poses and then lifts them to 3D. This 
approach leverages robust 2D pose estimation 
techniques and performs well in human pose 
estimations (Liu et al., 2022). However, it has a 
critical limitation: its heavy reliance on the accuracy 
of 2D pose estimation. Significant errors in the 2D 
stage are difficult to correct in the subsequent 3D 
lifting process, even with robust algorithms. As deep 
learning and computer vision techniques advance, 
single-stage methods that predict 3D human poses or 
body shapes directly from monocular videos are 
evolving (Mehta et al., 2018; Lin et al., 2023). These 
methods show promise in overcoming current 
limitations, potentially reducing model complexity 
and improving generalization capabilities. Future 
research directions should include evaluating the 
integration of bottom-up 2D pose estimation models 
in the multi-stage framework and comparative 
analysis of multi-stage and single-stage approaches in 
complex sports scenarios, especially in athlete head 
impact events. These studies will provide deeper 
insights into the strengths and limitations of various 
model architectures, paving the way for 
advancements in pose estimation techniques tailored 
to complex real-world sports scenarios. By exploring 
these diverse approaches, researchers will be able to 
work towards more robust, efficient, and accurate 
pose estimation methods capable of handling the 
unique challenges presented in dynamic sports 
environments. 

7 CONCLUSION 

We aimed to investigate the impact of different top-
down 2D pose estimation methods on the 
performance of a multi-stage 3D pose estimation 
model in complex sports scenarios, especially in 
athlete head impact events. 
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We found that different architectures used for 2D 
human pose estimation models have different 
advantages in the 3D human pose estimation task in 
complex sports scenarios: multi-stage cascading and 
intermediate supervision (MSPN and RSN), stage-
by-stage linking of high-level features in deep layer 
network (MSPN), fusion of local and global features 
(MSPN and RSN), and densely connected structure 
with branches and diverse convolutional layers 
(RSN). Based on these findings, we concluded that 
the choice of 2D pose estimation method and their 
network architectures have a significant effect on the 
performance of 3D pose estimation in complex sports 
scenarios, and that different models and architectures 
are suitable for different application scenarios. 

These findings provide strategies for improving 
3D pose estimation models and insights and future 
perspectives for the development of robust and 
efficient 3D human pose estimation algorithms for 
complex real-world sports scenarios. 

ACKNOWLEDGEMENTS 

This work was supported by JST SPRING, Japan 
Grant Number JPMJSP2106. 

REFERENCES 

Liu, W., Bao, Q., Sun, Y., & Mei, T. (2022). Recent 
advances of monocular 2d and 3d human pose 
estimation: A deep learning perspective. ACM 
Computing Surveys, 55(4), 1-41. 

Xiao, B., Wu, H., & Wei, Y. (2018). Simple baselines for 
human pose estimation and tracking. In Proceedings of 
the European conference on computer vision (ECCV) 
(pp. 466-481). 

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: 
Towards real-time object detection with region 
proposal networks. Advances in neural information 
processing systems, 28. 

Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep high-
resolution representation learning for human pose 
estimation. In Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition 
(pp. 5693-5703). 

Cai, Y., Wang, Z., Luo, Z., Yin, B., Du, A., Wang, H., ... & 
Sun, J. (2020). Learning delicate local representations 
for multi-person pose estimation. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, 
August 23–28, 2020, Proceedings, Part III 16 (pp. 455-
472). Springer International Publishing. 

Li, W., Wang, Z., Yin, B., Peng, Q., Du, Y., Xiao, T., ... & 
Sun, J. (2019). Rethinking on multi-stage networks for 

human pose estimation. arXiv preprint 
arXiv:1901.00148. 

Bryan, M. A., Rowhani-Rahbar, A., Comstock, R. D., & 
Rivara, F. (2016). Sports-and recreation-related 
concussions in US youth. Pediatrics, 138(1). 

Giza, C. C., & Hovda, D. A. (2001). The neurometabolic 
cascade of concussion. Journal of athletic training, 
36(3), 228. 

Courtney, A., & Courtney, M. (2015). The complexity of 
biomechanics causing primary blast-induced traumatic 
brain injury: a review of potential mechanisms. 
Frontiers in neurology, 6, 221. 

McKee, A. C., Stein, T. D., Nowinski, C. J., Stern, R. A., 
Daneshvar, D. H., Alvarez, V. E., ... & Cantu, R. C. 
(2013). The spectrum of disease in chronic traumatic 
encephalopathy. Brain, 136(1), 43-64. 

Ji, S., Zhao, W., Ford, J. C., Beckwith, J. G., Bolander, R. 
P., Greenwald, R. M., ... & McAllister, T. W. (2015). 
Group-wise evaluation and comparison of white matter 
fiber strain and maximum principal strain in sports-
related concussion. Journal of neurotrauma, 32(7), 
441-454. 

Camarillo, D. B., Shull, P. B., Mattson, J., Shultz, R., & 
Garza, D. (2013). An instrumented mouthguard for 
measuring linear and angular head impact kinematics in 
American football. Annals of biomedical engineering, 
41, 1939-1949. 

Madhukar, A., & Ostoja-Starzewski, M. (2019). Finite 
element methods in human head impact simulations: a 
review. Annals of biomedical engineering, 47(9), 1832-
1854. 

Cortes, N., Lincoln, A. E., Myer, G. D., Hepburn, L., 
Higgins, M., Putukian, M., & Caswell, S. V. (2017). 
Video analysis verification of head impact events 
measured by wearable sensors. The American journal 
of sports medicine, 45(10), 2379-2387. 

Camarillo, D. B., Shull, P. B., Mattson, J., Shultz, R., & 
Garza, D. (2013). An instrumented mouthguard for 
measuring linear and angular head impact kinematics in 
American football. Annals of biomedical engineering, 
41, 1939-1949. 

Wu, L. C., Nangia, V., Bui, K., Hammoor, B., Kurt, M., 
Hernandez, F., ... & Camarillo, D. B. (2016). In vivo 
evaluation of wearable head impact sensors. Annals of 
biomedical engineering, 44, 1234-1245. 

King, D., Hume, P. A., Brughelli, M., & Gissane, C. (2015). 
Instrumented mouthguard acceleration analyses for 
head impacts in amateur rugby union players over a 
season of matches. The American journal of sports 
medicine, 43(3), 614-624. 

Li, W., Liu, H., Ding, R., Liu, M., Wang, P., & Yang, W. 
(2022). Exploiting temporal contexts with strided 
transformer for 3d human pose estimation. IEEE 
Transactions on Multimedia, 25, 1282-1293. 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). 
You only look once: Unified, real-time object detection. 
In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 779-788). 

Component Replacement Study of 3D Human Pose Estimation Models in Real-World Complex Sports Scenarios: Focusing on Head Impact
Events

81



Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics 
YOLO (Version 8.0.0) [Computer software]. 
https://github.com/ultralytics/ultralytics 

Rogez, G., Weinzaepfel, P., & Schmid, C. (2019). Lcr-
net++: Multi-person 2d and 3d pose detection in natural 
images. IEEE transactions on pattern analysis and 
machine intelligence, 42(5), 1146-1161. 

Moon, G., Chang, J. Y., & Lee, K. M. (2019). Camera 
distance-aware top-down approach for 3d multi-person 
pose estimation from a single rgb image. In 
Proceedings of the IEEE/CVF international conference 
on computer vision (pp. 10133-10142). 

Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). 
Realtime multi-person 2d pose estimation using part 
affinity fields. In Proceedings of the IEEE conference 
on computer vision and pattern recognition (pp. 7291-
7299). 

Newell, A., Yang, K., & Deng, J. (2016). Stacked 
Hourglass Networks for Human Pose Estimation. 
European Conference on Computer Vision. 

Aharon, N., Orfaig, R., & Bobrovsky, B. Z. (2022). BoT-
SORT: Robust associations multi-pedestrian tracking. 
arXiv preprint arXiv:2206.14651. 

Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose 
estimation via deep neural networks. In Proceedings of 
the IEEE conference on computer vision and pattern 
recognition (pp. 1653-1660). 

Carreira, J., Agrawal, P., Fragkiadaki, K., & Malik, J. 
(2016). Human pose estimation with iterative error 
feedback. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 4733-
4742). 

Wei, S. E., Ramakrishna, V., Kanade, T., & Sheikh, Y. 
(2016). Convolutional pose machines. In Proceedings 
of the IEEE conference on Computer Vision and 
Pattern Recognition (pp. 4724-4732). 

Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T. S., & 
Zhang, L. (2020). Higherhrnet: Scale-aware 
representation learning for bottom-up human pose 
estimation. In Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition 
(pp. 5386-5395). 

Pavllo, D., Feichtenhofer, C., Grangier, D., & Auli, M. 
(2019). 3d human pose estimation in video with 
temporal convolutions and semi-supervised training. In 
Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition (pp. 7753-7762).  

Pavlakos, G., Zhou, X., Derpanis, K. G., & Daniilidis, K. 
(2017). Coarse-to-fine volumetric prediction for single-
image 3D human pose. In Proceedings of the IEEE 
conference on computer vision and pattern recognition 
(pp. 7025-7034). 

Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. 
(2013). Human3. 6m: Large scale datasets and 
predictive methods for 3d human sensing in natural 
environments. IEEE transactions on pattern analysis 
and machine intelligence, 36(7), 1325-1339. 

Martinez, J., Hossain, R., Romero, J., & Little, J. J. (2017). 
A simple yet effective baseline for 3d human pose 

estimation. In Proceedings of the IEEE international 
conference on computer vision (pp. 2640-2649). 

Mehta, D., Sotnychenko, O., Mueller, F., Xu, W., Sridhar, 
S., Pons-Moll, G., & Theobalt, C. (2018, September). 
Single-shot multi-person 3d pose estimation from 
monocular rgb. In 2018 International Conference on 
3D Vision (3DV) (pp. 120-130). IEEE. 

Lin, J., Zeng, A., Wang, H., Zhang, L., & Li, Y. (2023). 
One-stage 3d whole-body mesh recovery with 
component aware transformer. In Proceedings of the 
IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (pp. 21159-21168). 

icSPORTS 2024 - 12th International Conference on Sport Sciences Research and Technology Support

82


