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Abstract: To enhance the interpretability of Reinforcement Learning (RL), we propose Revealing Evolutionary Action
Consequence Trajectories (REACT). In contrast to the prevalent practice of validating RL models based on
their optimal behavior learned during training, we posit that considering a range of edge-case trajectories pro-
vides a more comprehensive understanding of their inherent behavior. To induce such scenarios, we introduce
a disturbance to the initial state, optimizing it through an evolutionary algorithm to generate a diverse popula-
tion of demonstrations. To evaluate the fitness of trajectories, REACT incorporates a joint fitness function that
encourages local and global diversity in the encountered states and chosen actions. Through assessments with
policies trained for varying durations in discrete and continuous environments, we demonstrate the descriptive
power of REACT. Our results highlight its effectiveness in revealing nuanced aspects of RL models’ behavior
beyond optimal performance, with up to 400% increased fidelities, contributing to improved interpretability.
Code and videos are available at https://github.com/philippaltmann/REACT.

1 INTRODUCTION

With the increasing use of large, parameterized func-
tion approximation models, there is a growing de-
mand for interpretation methods that bridge the gap
between human understanding and computational in-
telligence. This is particularly pronounced in the con-
text of complex dynamic approaches like reinforce-
ment learning (RL), where policies are usually real-
ized with parameterized neural networks. As a run-
ning example, consider a 9 × 9 gridworld, where
the agent is perfectly trained to traverse the environ-
ment and reach the target field. However, unforeseen
circumstances (like sensor failure or domain shifts)
might cause the agent to end up in fields not along this
optimal trajectory, where an overfitted policy might
even get stuck. Yet, those scenarios are equally im-
portant to interpret the inherent behavior. This yields
several challenges: First, contrary to static supervised
learning tasks like classification, RL policies are in-
herently hard to visualize, especially given the in-
tended application to varying circumstances. Second,
demonstrating the desired behavior in a laboratory
training setup does not serve as sufficient validation
to enable the interpretability of the inherent behavior.
Third, comparative evaluation plays a central role in
comprehending, explaining, and interpreting varying

phenomena by providing additional context informa-
tion and, thus, control (Vartiainen, 2002). To tackle
these challenges, we propose to evaluate a set of di-
verse edge-case demonstrations, which we obtain by
precisely disturbing the initial state. To generate a
small yet informative set of demonstrations, we em-
ploy evolutionary optimization, which can be adapted
to yield diverse solution candidates in complex solu-
tion landscapes across various (local) optima. To har-
ness these prospects, we propose a framework to indi-
rectly optimize a population of demonstration behav-
ior generated by a given (trained) policy by altering
(disturbing) the initial state. Overall, we provide the
following contributions:

• We formalize a novel interpretability joint fitness
metric to assess demonstration trajectories w.r.t.
their local (inherent) and global (comparative)
state diversity and action certainty.

• We propose an architecture for Revealing Evo-
lutionary Action Consequence Trajectories (RE-
ACT), integrating the previously defined fitness to
optimize a pool of diverse demonstrations to serve
as a basis for interpreting the underlying policy.

• We evaluate REACT in flat and holey gridworlds
and a continuous robotic control task, comparing
policies of varying training stages.
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2 PRELIMINARIES

Reinforcement Learning. We focus on problems
formalized as Markov decision processes (MDPs)
M = ⟨S,A,P,R, µ, γ⟩, with a set S of states s,
a set A of actions a, a transition probability P(s′ |
s, a) of reaching s′ when executing a in s, a scalar
reward rt = R(s, a, s′) ∈ R at step t, the ini-
tial state distribution s0 ∼ µ, and the discount fac-
tor γ ∈ [0, 1) for calculating the discounted return
Gt =

∑∞
k=0 γ

krt+k (Puterman, 1990). More specif-
ically, we consider learning in a constrained setting
with a single deterministic initial state s⋆0 and evalu-
ating with initial states drawn from µ. Furthermore,
we consider the objective of reinforcement learning
(RL) to find an optimal policy π∗ with action se-
lection probability π(a | s) that maximizes the ex-
pected discounted return (Richard S. Sutton, 2015).
Policy-based methods directly approximate the opti-
mal policy from trajectories τ of experience tuples
⟨s, a, r, s′⟩, generated by π. Proximal policy opti-
mization (PPO) extends this concept, optimizing a
surrogate loss that restricts policy updates to improve
the robustness (Schulman et al., 2017). Soft actor-
critic (SAC) bridges the gap between value-based and
policy-based approaches (Haarnoja et al., 2018). Both
algorithms have shown versatile applicability to var-
ious scenarios. Thus, we use both approaches to
train the policies we base our empirical studies on.
While enabling learning in complex high-dimensional
or continuous scenarios, using deep neural networks
to approximate the optimal policy comes at the cost of
introducing a black-box model. Therefore, even when
finding a parameterization that resembles an optimal
policy, its decision cannot be anticipated, and reasons
for action choices cannot be (readily) inferred. Yet,
RL has been proposed to provide compelling solu-
tions to various real-world decision-making problems
such as autonomous driving or robotic control (Wur-
man et al., 2022; de Lazcano et al., 2023; Rolf et al.,
2023). Such problems require transparency, e.g., to
account for safety concerns or quality control.

Explainability. This field of research not only con-
cerns providing explanations for specific decisions of
such black-box models but also extends to providing
their general interpretability. According to Li et al.
(2022), we classify interpretation algorithms regard-
ing three characteristics: Their representation, the
type of the model to be interpreted, and the relation
between the interpretation algorithm and the model.
The representation can be based on the importance
of (latent) features in relation to the final objective
(Lundberg and Lee, 2017). Alternatively, one can use

the model’s response to different inputs to identify be-
haviors. Some algorithms approximate the model us-
ing an interpretable surrogate model (Ribeiro et al.,
2016). Finally, some models show the interpretation
by a sample dataset showing the impact of training
(Koh and Liang, 2017; Pleiss et al., 2020). Regarding
the model to be interpreted, some approaches con-
sider the model as a black box (Pleiss et al., 2020;
Ribeiro et al., 2016). These algorithms are called
model-agnostic and can be applied to any model.
Other approaches require specific model characteris-
tics such as differentiability or even a particular type
of model (Koh and Liang, 2017). Closed-form algo-
rithms are applied after training, while composition
algorithms can (also) be integrated into the training
process. Further relations include dependence, where
the algorithms add operations to the model after train-
ing to output interpretable terms, and proxy, where an
interpretable proxy model is created. Our algorithm
represents the interpretation as a model response, dis-
playing the policy behavior throughout various trajec-
tories provoked by the initial state. Furthermore, we
consider the model a black box, where our algorithm
can interpret various models, provided any action se-
lection probability. The type of model is not rele-
vant to our approach, making our approach model-
agnostic. Furthermore, we propose a closed-form ap-
proach to be applied after training.

Evolutionary Optimization. To optimize initial
states that cause diverse demonstrations, we use a
population-based evolutionary optimization process
with populations P = {τi}0≤i≤p of size p, where the
initial population P0 is chosen randomly, state space
X with P ∈ NX, a fitness function F : X → R,
and the evolution step function E(Pt,F) = Pt+1 =
σp

(
Pt⊎mutantspm

(Pt)⊎childrenpc
(Pt)), with

a (non-deterministic) selection function σn : NX →
NX that returns n ∈ N individuals and could de-
pend on F , a mutation function mutantspm

=
{mutation(x) : x ∼ σ⌈p·pm⌉} and a crossover
function childrenpc

= {crossover(x1, x2) :
x1, x2 ∼ σ⌈p·pc⌉}, with mutation and crossover prob-
abilities (rates) pm and pc (Fogel, 2006). Individ-
uals I ∈ P are defined by their inherent features
(genotype), in which we encode an initial state s0
sampled from the initial state distribution µ defined
by the MDP. Their individual fitness is calculated
based on their resulting appearance (phenotype), i.e.,
the demonstration trajectory τ generated by executing
policy π in the given environment starting from s0. A
binary encoding of the individual state allows for im-
plementing a simple bit-flip mutation a single-point
crossover operation to recombine two parents.
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To foster parents with higher fitness, tournament se-
lection is commonly applied within function σ (Miller
et al., 1995). While evolutionary algorithms are usu-
ally used to search for one single best individual, we
are interested in the entire population of individuals
similar to (Ishibuchi et al., 2008; Neumann et al.,
2019). Deploying a fitness function that promotes di-
versity among trajectories allows us to see the differ-
ent strategies an agent follows in different situations.
Generally, all measures of the diversity of an individ-
ual I in a population P are related to the pairwise
distance between individuals in P as measured by a
suitable norm (e.g., Euclidean for real-valued repre-
sentations, Hamming for symbolic representations)
(Wineberg and Oppacher, 2003). Therefore, the indi-
vidual diversity w.r.t. the population can be estimated
byD(I,P) = 1

p ·
∑

I′∈P |I ′−I| (Gabor et al., 2018).

3 TRAJECTORY FITNESS
EVALUATION

In the following, we discuss assessing the fitness of
trajectories τ = ⟨s0, a0, r1, . . . , st, at, rt+1⟩ ∼ Pπ,s0

to serve as an insightful demonstration to interpret the
inherent behavior of policy π. Unlike the central ob-
jective of RL, we are not interested in optimizing for
the best-performing individuals but rather in a popu-
lation of diverse demonstrations following π from an
initial state s0 to be optimized. Therefore, we refrain
from using the reward metric supplied to learn the pol-
icy and define a joint fitness metricF in the following.
To illustrate our deliberations, we consider the 9 × 9
gridworld environment depicted in Fig. 1.

Figure 1: Joint fitness F elements local diversity Dl (light
blue), global diversity Dg (blue), and certainty C (orange),
compared to an exemplary optimal trajectory (white).

We strive for high diversity to achieve insightful
demonstrations. Considering a single trajectory, a di-
verse path covering a larger fraction of the available
state space (e.g., the light blue path in Fig. 1) would
be more informative regarding the behavior to be an-

alyzed than the comparably direct path resulting from
policy optimization (e.g., the white path in Fig. 1).
Even though it might be considered less optimal w.r.t.
the reward of the given environment, such behavior
might depict an edge, which is important to assess the
given policy. We refer to this measure as local diver-
sity and formalize the corresponding metric

Dl(τ) =
1

|P |
|{s ∈ τ}|, (1)

where P = {Pd | Pd ⊂ N,∀d ∈ 1, . . . , dim}, with
|P | = |P1| · ... · |Pdim| is the dim-dimensional po-
sition space extracted by ρ : S 7→ P from a state
s. In our exemplary gridworld, we consider the 2-
dimensional position of the agent with a |P | = 9 · 9
distinct states. Yet, this representation might be ex-
tended by other important, moving, or task-specific
objects like obstacles or targets. In our case, higher
local diversity implies more divergence from the opti-
mal path, increasing the relevance of the trajectory.
Furthermore, this position-centric formalization al-
lows us to consider the Euclidean distance between
states ||s− s′||2 =

√
(ρ(s)− ρ(s′)2. For use in con-

tinuous environments, we suggest applying appropri-
ate discretizations to regularize state similarities.

Considering a set of multiple trajectories T , nei-
ther solely disturbed (light blue) nor solely optimal
(white) paths accurately reflect the behavior of π. We
therefore additionally consider a global diversity Dg

(blue) of trajectories τ ∈ T formalized as

Dg(τ, T ) =
1

⌈P ⌉
min

τ ′∈T \τ
δ(τ, τ ′), (2)

based on the maximum state distance ⌈P ⌉ =
maxs,s′∈S ||s − s′||2 and the one-way distance δ be-
tween trajectories τ and τ ′ (Lin and Su, 2008):

δ(τ, τ ′) =

∑
s∈τ d(s, τ

′) +
∑

s′∈τ ′ d(s′, τ)

|τ |+ |τ ′|
, (3)

using the state-to-trajectory distance:

d(s′, τ) = min
s∈τ

(||s− s′||2) (4)

This accumulated two-way measure allows for
comparison between trajectories of different lengths.
Furthermore, using the min operator in Eq. (2) causes
equal trajectories in T to be valued at 0. Ultimately,
even if T contains only optimal yet maximally dis-
sected behavior to reach the target, presenting such
diverse demonstrations increases the overall inter-
pretability of π. Note that, even though only defined
for disturbing the agent’s position, further deviations,
such as altering layouts, are formally not precluded.
However, calculating the global diversity might re-
quire using a different distance metric, like the Lev-
enshtein distance, instead.
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Figure 2: REACT Architecture.

Both diversity measures implicitly cover insuf-
ficiencies and uncertainties of π that may occur in
states less prevalent during training. To reflect the di-
versity of the action decision itself, we furthermore
consider the certainty, formalized as the cumulative
normalized action probability of τ given π:

Cπ(τ) =
1

|τ |
∑
s,a∈τ

π(a|s). (5)

Counterintuitively, we are interested in trajecto-
ries with low certainties causing more diverse deci-
sions that may fail to solve the intended task, such as
the exemplary orange path in Fig. 1. We intentionally
chose the normalized sum of probabilities instead of
their product to promote trajectories with low certain-
ties throughout.

Overall, we define the joint fitness, combining
global diversity Dg , local diversity Dl, and certainty
Cπ of a trajectory τ in context of a set of previously
evaluated trajectories T as follows:

F(τ, T ) = Dg(τ, T ) + Fl, with (6)

Fl = min
t∈T

∣∣∣∣∣∣∣∣(Dl(τ)
Cπ(τ)

)
−
(
Dl(t)
Cπ(t)

)∣∣∣∣∣∣∣∣
2

. (7)

To reflect the τ -specific metrics of local diver-
sity and certainty in relation to the set of trajectories
T , considered for calculating the global diversity, we
consult these measures only regarding their minimum
distance between τ and T . We chose the minimum
distance of both local metrics to encourage individu-
als to maximize their local distance to the closest in-
dividual, thereby promoting diverse or uncertain be-
havior. As we defined all components of the joint
fitness to be normalized, we furthermore do not in-
troduce additional parameterizations to balance their
impact. Preliminary studies confirmed this approach.

4 REACT

To optimize a pool of demonstrations to interpret a
given policy using the previously defined fitness, we
propose revealing evolutionary action consequence
trajectories (REACT) to optimize a population of ini-
tial states causing diverse demonstrations. By show-
ing not only the optimistic optimal behavior, we aim
to increase the traceability of the learned behavior
and, ultimately, trust in the black-box policy model.
In contrast to most evolutionary approaches, we are
interested in the whole population, not just the single
best-performing individual. The overall architecture
is depicted in Fig. 2 and outlined in Alg. 1.

To form the initial population P of size p, individ-
uals encoded by the initial state s0 are generated from
µ given by the MDP of the given environment. Invalid
individuals that cannot generate any demonstration
are disregarded. As we only introduce disturbances
to the initial position of the agent, the initial state s0
can be encoded by the initial position of the agent.
To account for evaluation environments comprising
different-sized 2D-discrete and 3D-continuous state
spaces, we opt for a universal multi-dimensional 6-bit
encoding with inverse normalization to ensure precise
reconstruction of the intended position. For further
details, please refer to the appendix.

To evaluate the individuals’ fitness, trajectories τ
are sampled from the environment, starting from their
individual initial state, following π. For improved
comparability, we furthermore remove duplicate con-
secutive states from τ . These demonstrations consti-
tute the individuals’ phenotype directly affecting their
fitness to serve as a viable representation of the given
model. The individual fitness is calculated accord-
ing to Eq. (6) based on the individual trajectory τ and
the set of previous demonstrations T to reflect the in-
dividual performance within the demonstration pool.
Note that even though we sample experiences from
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Algorithm 1: Revealing Evolutionary Action Consequence Trajectories (REACT)1.

Require: P, µ, π ▷ We use a policy trained with a single initial state
1: P← ⟨s0 ∼ µ⟩p ; T ← ∅ ▷ Generate initial population of size p and empty T
2: for individual I ∈ P do
3: τ ∼ Pπ,s0 ▷ Sample trajectory τI from initial state s0
4: FI(τ, T ) ▷ Calculate Fitness of I w.r.t. to phenotype τ and

previous demonstrations T according to Eq. (6)
5: T ← T ∪ τ ▷ Update demonstrations T
6: end for
7: for all generations g do
8: O← mutantspm

(P) ⊎ childrenpc,F (P) ▷ Generate offspring from mutation and crossover using
pm, pc, the individual fitness, and tournament selection

9: for individual I ∈ O do
10: τ ∼ Pπ,s0 ▷ Sample trajectory τI from initial state s0
11: FI(τ, T ) ▷ Calculate Fitness according to Eq. (6)
12: T ← T ∪ τ ▷ Update demonstrations T
13: end for
14: P← migration(P ⊎O,F , p) ▷ Select p best individuals for the next generation from

the population and offspring according to their fitness
15: T ← T \ {τI | I /∈ P} ▷ Remove extinct demonstrations
16: end for
17: return T

the environment, we do not consider further improv-
ing the policy at hand. Nevertheless, the proposed
architecture could serve as an automated adversarial
curriculum to generate scenarios for further training.

After evaluating the first generation, the best indi-
viduals are selected via tournament selection to cre-
ate new individuals through recombination. The re-
combination operator is executed with the recombi-
nation probability pc ∈ [0, 1] defined beforehand. To
generate the offspring, we use single-point crossover.
The new individuals are then added to the population.
Then, a mutation operator with mutation probability
pm ∈ [0, 1] is applied to random individuals from the
original population. The mutation is implemented by
a single bit-flip of one random bit in the individual’s
encoding. As we are interested in the whole popula-
tion, we keep the individual before mutation and add
the mutated individual to the population to keep the
evolution elitist. After evaluating the newly generated
offspring, as described above, one after the other, the
population is reduced to the intended size p by remov-
ing the individuals with the lowest fitness value along
with their generated demonstrations. The described
procedure is repeated for a fixed number of g genera-
tions.

1 All required implementations, appendices, and
video renderings are available at https://github.com/
philippaltmann/REACT.

Hyperparameters. The most important hyperpa-
rameter to consider is the population size p. It in-
fluences the effectiveness of the evolutionary process
and determines the number of demonstrations gener-
ated to interpret the policy. To suit human needs, p
should be comprehensibly small and sufficiently di-
verse (Behrens et al., 2023). Preliminary experiments
suggest a population size of p = 10 is a reasonable
compromise. Larger populations can be used if only
the best p individuals are considered to demonstrate
the policy’s behavior. For experimental details, please
refer to the appendix1. Furthermore, if not stated oth-
erwise, we optimize the population of demonstrations
over 40 iterations (generations). Our central goal is
to diversify the population throughout optimization,
so we use a reasonably high crossover probability
pc = 0.75 combined with a high mutation probabil-
ity pm = 0.5. In combination with the chosen binary
state encoding of length 6, representing the agent’s
initial position, this configuration causes the genera-
tion of offspring to start at further distances.

5 RELATED WORK

Evolutionary RL. Evolutionary approaches have
also been applied to optimize a population of policies
(Khadka and Tumer, 2018) to foster their explorative
capabilities. Both task-agnostic (Parker-Holder et al.,
2020) and task-specific (Wu et al., 2023) diversity
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measures have been shown to be beneficial for im-
proving the quality of the resulting policy. Note, how-
ever, that we do not consider any policy improvement
but use evolutionary optimization to generate scenar-
ios that best describe the learned policy in a given en-
vironment. Nevertheless, this line of work highlights
the importance of considering the diversity of behav-
ior in addition to its quality. Similarly, quality diver-
sity (QD) optimization arose from considering the be-
havioral novelty of solution candidates as their opti-
mization criteria (Lehman and Stanley, 2011). Ga-
bor and Altmann (2019) proposed using surrogate-
assisted genetic algorithms for building recommender
systems. Bhatt et al. (2022) integrated QD into the au-
tomated environment generation during training via a
surrogate model to improve the robustness of the pol-
icy. We take a similar approach to improve the inter-
pretability of the learned policy, optimizing for a set
of diverse policy demonstrations. However, in con-
trast to the novelty criterion, which considers solely
the distance to the current population, we propose us-
ing a joint fitness combining both local and global cri-
teria of the trajectories to be optimized.

Robust RL. We consider a process where a pol-
icy is trained with a single deterministic initial state
and evaluated with a changing initial state to sim-
ulate the policy’s edge-case behavior, allowing the
learned behavior to be interpretable. Therefore, from
a different perspective, we consider the robustness
of a policy to out-of-distribution samples, i.e., ini-
tial states that were potentially not experienced dur-
ing training, also referred to as generalization capa-
bilities. If an agent is trained well, only looking at
some episodes of the agent’s interaction with the en-
vironment usually solely shows the expected behav-
ior, including often-occurring states. However, the
agent’s strategy also includes behavior in states that
have not been encountered that often. We also want
to show this behavior. The goal is to show the most
diverse behavior and generate a small but informant
overview of the agent’s strategy. To improve the gen-
eralization capabilities, using varying training config-
urations (Cobbe et al., 2020), optimized training sce-
narios (Altmann et al., 2023), or an evolving curricu-
lum (Parker-Holder et al., 2022) has shown to be a vi-
able approach. Yet, we specifically chose a different
training approach to showcase the methodical impact
of REACT for visualizing a possibly insufficient pol-
icy in edge-case scenarios. Note that this work gener-
ally does not consider any policy improvement. Nev-
ertheless, the generated representations could be fed
back into the training process as adversarial samples,
similar to Gabor et al. (2019).

Explainable RL. There are several approaches to
the interpretability and explainability of RL (XRL),
which are surveyed by Heuillet et al. (2021) and Al-
harin et al. (2020). Similar to general explainabil-
ity approaches previously introduced, RL interpre-
tation algorithms can be divided into different cate-
gories. One central aspect is their scope, reflecting
either local decisions or the global strategy. A fur-
ther distinction is drawn between post-hoc methods,
which keep the original model (Lage et al., 2019),
and intrinsic methods, replacing the original model
with a more explainable surrogate (Guo et al., 2021;
Huang et al., 2017). Combinations of both are also
possible. Furthermore, XRL algorithms can be ap-
plied before, during, or after training. Finally, XRL
algorithms can be classified according to their type
of explanation. The most common types are tex-
tual explanations, image explanations, collections of
states or state-action pairs, and explanations through
rules. We approach XRL by generating a collection
of demonstration trajectories that show diverse be-
havior based on a given policy interacting with an en-
vironment. We thereby strive for a scope that includes
the global inherent strategy. Furthermore, we op-
timize the diversity of those demonstrations using an
evolutionary process, which can be considered a post-
hoc method. Specifically, REACT does not require a
particular policy specification and, therefore, does not
need to be integrated prior to or during training. Sim-
ilarly, Amir and Amir (2018) propose creating a pol-
icy summary containing a fixed number of important
states and their surrounding states. The effect of an
action on that state identifies the importance of states.
The goal is to find states where a slight action mod-
ification would strongly influence the cumulative re-
ward. Therefore, the approach is mainly based on the
value function rather than relying on an external opti-
mization mechanism. Such states have also been re-
ferred to as critical states, where the chosen action
has a significant impact on the outcome, which can
be used to interpret policies trained using maximum
entropy-based RL (Huang et al., 2018). While RE-
ACT is similar regarding its global scope, we refrain
from integrating the reward into the fitness to be op-
timized and instead use it to validate finding a set of
diverse demonstrations. Likewise, Sequeira and Ger-
vasio (2020) consider the agents’ actions and states
in the environment, but also its policy, to compile a
summarizing video of interestingness elements. The
frequency, execution certainty, transition value, and
sequences determine interesting elements, intending
to show a maximally diverse set of highlights. In con-
trast to both, we consider demonstrations of complete
trajectories instead of patching together possibly un-
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related sequences due to their impact. Therefore, we
refrain from experimental comparison to those ap-
proaches. Nevertheless, to measure the quality of
demonstrations, we use the fidelity metric proposed
by Guo et al. (2021), adapted to indicate increased fi-
delity with higher scores, which we introduce in the
following section.

RL Testing. Like REACT, Tappler et al. (2022) use
a genetic algorithm to find an interesting trace for test-
ing RL policies. Zolfagharian et al. (2023) optimize
full episodes to search for faulty behavior and train
a predictive model. REACT, on the other hand, op-
timizes the initial state that causes the trace, given
a policy to be analyzed. Pang et al. (2022) propose
a similar fuzz test framework for RL, modifying the
initial state to generate fresh sequences. In contrast
to REACT, they do so by estimating the sensitivity of
the given model to its seed instead of applying evo-
lutionary operators on the initial state. Overall, how-
ever, those approaches are primarily motivated to gen-
erate test cases, preferably where the model fails. RE-
ACT aims to generate a balanced representation of the
learned behavior, specifically including edge cases.

6 EVALUATION

Setup. To validate the proposed architecture, we
use a simple, fully observable discrete Flat-
Grid11 environment with 11 × 11 fields shown in
Fig. 3a(Altmann, 2023). The goal of the policy is
to reach the target state (rewarded +50), where there
are neither holes nor obstacles that could disrupt the
agent’s path. A step cost of −1 is applied to en-
courage choosing the shortest path. Episodes are ter-
minated upon reaching the target state or after 100
steps. We use PPO (Schulman et al., 2017) with de-
fault parameters (Raffin et al., 2021) to train a policy
that we can then evaluate with REACT. To show di-
verse behavior, we intentionally terminated training
early (after 35k steps), just after the agent confidently
reached the target. Using such an imperfect policy has
a higher probability that the agent has not yet explored
the entire environment. For evaluation purposes, we
also want it to display behavior that leads the agent
not to reach its goal. Note that the policy is trained
with a single initial state shown in Fig. 3a. The fol-
lowing results are averaged over ten random seeds to
increase the significance of the experimental results
presented to optimize the demonstrations based on a
single, previously trained policy.

Metrics. To provide an intuition over the resulting
demonstrations T , we summarize them in a single 3D
histogram, displaying the state-frequency of all grid
cells. Compared to showing the discrete paths (cf.
Fig. 1), this allows the visualization of results over
multiple optimization runs without diminishing the
depiction of the demonstration diversity by averaging
them. Since viewing the behavior diversity of the fi-
nal demonstrations is very subjective, we additionally
consider the cumulated demonstration fidelity:

S =
∑
τ∈T

|τ |
|T |

∣∣R̄− rτ
∣∣ , (8)

with the absolute mean reward R̄ = 1
|T |

∑
|rτ | and

the total trajectory length |T | =
∑
|τ |, adapted from

(Guo et al., 2021). Intuitively, the fidelity of an expla-
nation measures the approximation quality w.r.t the
given model, where a higher value indicates higher
coverage (Molnar, 2020). As we consider a set of tra-
jectories to serve as an explanation, S could also be
viewed as their Shapley values, i.e., the impact of each
trajectory on the total demonstration (Shapley and
Shubik, 1954). Consequently, S also closely resem-
bles the population diversity D, defined earlier. Fur-
thermore, we consider the final return and final (tra-
jectory) length. Both metrics are crucial when train-
ing the optimal policy (maximizing the return while
minimizing the solution length) and do not influence
the optimized fitness function. However, we are not
interested in the minimum or maximum of the returns
or lengths but instead in the range of the metrics and
how uniformly the individuals are spread across dif-
ferent returns and trajectory lengths. Therefore, we
use box plots to visualize our results, where a bigger
range between the whiskers promises greater diver-
sity, and larger boxes indicate an even distribution.
We also report the deterministic policy performance
in the unaltered training environment, which is often
used to validate learned behavior and serves as a base-
line. Note that the fidelity for a single trajectory with
any contrasting behavior is always zero. This already
accurately reflects the deficiencies of considering a
single training scenario for the evaluation. Further-
more, we compare REACT to a random search ap-
proach, implemented as the initial population P0 be-
fore applying the evolutionary process. This Random
approach could be considered most closely related to
comparable interpretability approaches, altering the
environment without optimization while maintaining
comparability to REACT.

Results. Fig. 3 shows the evaluation results. The
trained policy reaches a return of 34 with a trajectory
length of 16 (cf. Fig. 3c). Using a random pool of
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Figure 3: REACT Evaluation: Fidelity (c) and Final Return (c) of Random (d) and REACT (e) demonstrations of a PPO policy
trained for 35k steps in the FlatGrid11 (a) show increased diversity and even distribution of REACT-generated demonstrations
over random or static initial states, with the training performance in the unaltered environment shown as a blue line in (c).

initial states increases the encountered return while
reducing the trajectory length of the resulting demon-
strations by moving the initial state closer to the tar-
get. Yet, random demonstrations still mostly yield
behavior in the upper reward region. REACT man-
ages to diversify the pool of demonstrations further,
more evenly covering a larger region of final returns.
Looking at the final fidelities in Fig. 3b, REACT is
able to double the demonstration quality compared
to the Random approach. Analyzing the resulting
demonstrations from a single population, shown in
Figs. 3d and (e), reveals two further insights: Overall,
most trajectories successfully reach the target, shown
by the highest occurrence of the target state, indi-
cating a successfully trained policy that is robust to
the introduced state disturbances. Yet, REACT pro-
duces more diverse trajectories distributed over far-
ther states. Some states even resulted in the policy
failing to navigate to the target, as indicated by out-
liers with a final return of -100.

Fitness Impact. Besides yielding diverse demon-
strations, we also want to ensure the appropriateness
of the proposed joint fitness. Fig. 4 therefore provides
an additional in-depth analysis of the impact of the fit-
ness components across the single last population of
10 individuals (a) and throughout the 40 optimization
generations (b).

To accurately show the influence of the local di-
versity (light blue) and the certainty (orange), we vi-
sualize their population distance, which is combined
in the minimum local distance (yellow) to be accu-
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Figure 4: FlatGrid JointFitness Analysis.

mulated with the global diversity (blue) (cf. Eq. (6)).
Interestingly, already with a population size of 10, in-
dividual fitness decreases throughout the population,
reaffirming the chosen population size. Individuals
evaluated with a lower global fitness (baring higher
similarity to the overall population) show higher lo-
cal distances, i.e., dissimilarities to the population re-
garding the diversity of the behavior itself, which con-
ceptually justifies considering both diversity perspec-
tives. In addition, all fitness components are shown
to influence the whole behavior optimization, evenly
increasing throughout the 40 generations. The con-
siderably minor improvement in the last ten genera-
tions indicates convergence of the optimized demon-
strations.

Holey Gridworld

To further evaluate our approach, we use the more
complex HoleyGrid environment shown in Fig. 5a,
extending the previous FlatGrid with holes immedi-
ately terminating an episode with a reward of −50.
The holes add additional complexity to the gridworld
since the policy needs to learn to circumvent them to
reach the target successfully. The policy to be ana-
lyzed is trained with PPO for 150k steps in a static
layout, just reaching successful behavior, with a re-
turn of 36 and a trajectory length of 14 (cf. Fig. 5c).

The evaluation results in Fig. 5 reveal a smaller
range of returns than the FlatGrid results, presum-
ably caused by the additional holes. In contrast to
the unaltered training environment in which the pol-
icy navigates successfully, we are able to reveal un-
successful behavior with returns slightly below −50.
Again, REACT covers a slightly larger fraction of the
return compared to demonstrations from randomly
generated initial states. Regarding their fidelity (cf.,
Fig. 5b), the final REACT demonstrations signifi-
cantly outperform the Random demonstrations with
a mean of around 24, even though dropping slightly
below the Random baseline at around 13 in the ini-
tial generations. This is also reflected in the demon-
stration 3D histograms in Figs. 5d and (e). REACT
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Figure 5: HoleyGrid Evaluation: Fidelity (b) and Final Return (c) of Random (d) and REACT (e) demonstrations of a PPO
policy trained for 150k steps in the HoleyGrid11 (a) indicate further edge-case demonstration being generated using REACT
over random or static initial states. The blue line in (c) displays the training performance in the unaltered environment.

demonstrations almost cover the whole state space,
where, due to the nature of the fitness, we can assume
all remaining states to yield comparable behavior that
would not increase the demonstration diversity. The
unoptimized demonstrations only cover more direct
solution paths, which is also reflected in the smaller
interquartile range of the according returns. Please
refer to the appendix for an in-depth analysis of opti-
mization progress and the impact of joint fitness.

Combining the high demonstration coverage of
10 highly diverse yet comprehensibly compact tra-
jectories, we argue that REACT allows a human to
properly assess the trained policy’s inherent behavior.
Concretely, the analyzed policy can be described as
robust with high certainty, given the above-zero in-
terquartile range of the demonstration returns, where
further training in some problematic edge cases could
be desirable depending on the intended application.
Overall, REACT increases the interpretability of the
policy at hand, especially compared to a single train-
ing trajectory with randomly chosen initial positions.

Continous Robotic Control

Finally, we demonstrate the effect of REACT in a
more complex real-world application, where it could
be utilized to decide between deploying different poli-
cies. For this, we use the continuous robotic control
environment FetchReach shown in Fig. 6a.

Environment. The agent is represented by a manip-
ulator, the robotic arm, with six degrees of freedom,
and its end effector, a gripper. The task is to control
the robotic arm by applying a three-dimensional force
vector to move the gripper to reach the target state
(green point). In contrast to the previous gridworld
environments, both action- and observation-space are
real-valued. Furthermore, the task is open-ended such
that episodes continue for 50 steps regardless of suc-
cessfully reaching the target. Therefore, we use a
sparse reward function, where the agent is penalized
−1 for every step in which it is not close to the target,

i.e., where the Euclidean distance between the effec-
tor and the target is greater than 0.05. During train-
ing, the effector’s position is always initialized at the
center, while the target is randomly positioned within
a 0.3-sized cube around the center to improve gener-
alization of the learned behavior (de Lazcano et al.,
2023).

REACT Parameters. Given the increased environ-
mental complexity, we adapted the parameterization
of REACT according to preliminary studies. Most
importantly, to remove all random factors from gen-
erating demonstrations, we include the target position
and the agent (gripper) position in the initial state to
be optimized. This results in a 6-dimensional state en-
coding, which we encode with a bit-length of 9 to re-
duce the intervals between possible states to less than
0.001. Furthermore, we replace the total number of
possible states |{s ∈ S}| for calculating the local di-
versity (cf. Eq. (1)) by the trajectory length |τ |, which
results in the static horizon H = 50 for this envi-
ronment. Also, as previously denoted, we use a dis-
cretization of states s ∈ τ such that the visited frac-
tion of the state space remains reflected as intended.
Finally, we increased the population size to 30 and
used 1000 generations. Lastly, instead of analyzing a
single moderately trained policy, we compare policies
from three stages of training.

Training. Having proven beneficial in various con-
tinuous control tasks, we train the policies to be
compared using SAC (Haarnoja et al., 2018), imple-
mented with default parameterization (Raffin et al.,
2021). To demonstrate the comparative evaluation ca-
pabilities, we trained policies for 100k, 3M, and 5M
steps, which we refer to as SAC-100k, SAC-3M, and
SAC-5M respectively for the following. Therefore,
we are able to compare policies from three training
stages, ranging from early convergence to possibly
over-trained, thus overfitting the training task.
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Figure 6: REACT Evaluation: Final Return (e) and Length (f) of Random (Red) and REACT (Green) demonstrations of SAC
policies trained in the FetchReach (a) environment for 100k (b), 3M (c), and 5M (d) steps demonstrate the applicability of
REACT in discerning policies from different training stages by disclosing their inherent behavior. (g) summarizes our results.

Results. The overall evaluation results are shown in
Fig. 6. The performance of all models in the unaltered
training environment shows both increasing returns of
around −1.8, −1.7, and −1.6 and decreasing trajec-
tory distances of around 0.73, 0.12, and 0.11 for SAC-
100k, SAC-3M, and SAC-5M respectively. With a
maximum target distance of 0.3, based only on these
results, the primal SAC-100k could be disregarded
due to the significantly more extensive movement,
even though reaching competitive rewards. However,
REACT reveals further important insights on which
to base model interpretations and subsequent deci-
sions. Regarding the final trajectory length, REACT
shows diverse demonstrations to be evenly distributed
around the single training experience for SAC-100k,
with both the length and the variance of the length de-
creasing upon further training. Compared to demon-
strations based on random initial states, REACT again
shows a slight increase in the overall diversity and
even distribution of demonstrations. More interest-
ing results, however, are shown for the final return,
where random configurations, similar to the training
configuration, do not reveal any insightful differences
between the models. On the other hand, REACT re-
veals the overall return variance increasing with fur-
ther training, with the median of returns even de-
creasing. It is important to note that the return is
not included in the fitness to optimize the demon-
strations. Thus, these observations emerge from di-
verse behavior generated by the policies. Given the
increasing returns observed for the training configu-
ration, this could most likely be explained as over-

fitting behavior. To give an intuition of the scope
and nature of the resulting demonstrations, we finally
consider the path of all Random (red) and REACT
(green) trajectories shown in Figs. 6b-(d). Due to
the continuous nature of the environment and the in-
creased number of individuals, we did not plot the
resulting demonstrations as cumulative distributions
(mainly because averaging would diminish any diver-
sity within the populations). Although this kind of vi-
sualization does not allow for the precise analysis of
each resulting trajectory, it perfectly conveys the over-
all nature of the generated demonstrations2. Again,
REACT covers a comparably larger fraction of the
state space more evenly and even detected a policy
insufficiency of SAC-3M, causing the demonstration
of an outlier. In summary, the shortest-trained policy
reaches targets the fastest, showing the lowest penal-
ties and thus the highest returns but with the lowest
precision and, hence, the highest movement and tra-
jectory length. Longer-trained policies, on the other
hand, show higher penalties. They reach the target
slower yet more precisely, as indicated by the over-
all lower trajectory length. The assessment of those
characteristics heavily depends on the intended appli-
cation; however, REACT has revealed those critical
characteristics of the inherently learned behavior.

Finally, Table 6g summarizes the final fidelities.
Overall, REACT improves the demonstration qual-
ity compared to the Random baseline, roughly main-
taining its low score throughout the different models.

2Video renderings are available at https://github.com/
philippaltmann/REACT.
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Notably, REACT extracts viable characteristics, espe-
cially for more mature models, significantly outper-
forming the chosen baseline and showcasing its scal-
ability.

7 CONCLUSION

To enhance the interpretability of RL, we introduced
Revealing Evolutionary Action Consequence Trajec-
tories (REACT). REACT adds disturbances to the en-
vironment by altering the initial state, causing the pol-
icy to generate edge-case demonstrations. To assess
trajectories for demonstrating a given policy, we for-
malized a joint fitness combining the local diversity
and certainty of the trajectory itself with the global
diversity of a population of demonstrations. To op-
timize a pool of demonstrations, we apply an evolu-
tionary process to the population of individuals, en-
coded as the initial state, evaluated by the joint fitness.
To evaluate REACT, we analyzed various policies
trained in flat and holey gridworlds as well as a con-
tinuous robotic control task at different training states.
Comparisons to the unaltered training environment
and randomly generated initial states showed that RE-
ACT reveals a set of more diverse and more evenly
distributed demonstrations to serve as a varietal ba-
sis to assess the learned (inherent) behavior. In ad-
dition to the final return, we analyzed the demonstra-
tions’ utility using an adapted fidelity metric. How-
ever, we refrain from human evaluations and leave
the subjective assessment of the appended demonstra-
tions to the reader. Furthermore, we only introduced
disturbances of the initial agent and target positions.
Thus, future work should examine extending REACT
to further variations of the environment, such as the
overall layout or the task itself. Also, the resulting
pool of demonstrations could be used either to further
improve the policy regarding revealed vulnerabilities
or to infer a global causality model to further foster
the policy’s interpretability. Overall, we believe that
REACT represents a universal policy-centric starting
point for improving the overall interpretability of the
currently mostly opaque RL models.
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