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Abstract: Nuclear power plants (NPPs), which generate electricity through nuclear fission energy, are crucial for safe 

operation due to the potential risk of exposure to radioactive materials. NPPs contain a variety of safety 

systems, and this study aims to develop an artificial intelligence-based failure prediction model that can 

predict and prevent potential failures in advance by targeting the reactor protection system (RPS). Currently, 

failure data for RPS are being collected through a testbed, so we conducted preliminary modeling using open-

source data due to insufficient data acquisition. The applied open-source data are the accelerated aging data 

of insulated gate bipolar transistors (IGBTs), and the remaining useful life of IGBT was predicted using long 

short-term memory and Monte Carlo dropout technology. Also, physical rules were applied to improve their 

prediction performance and their applicability was confirmed through performance evaluation. Through 

performance evaluation of the developed prediction models, we explored the optimal model and confirmed 

the applicability of the applied methodologies and technologies. 

1 INTRODUCTION 

A nuclear power plant (NPP) is a facility that 

produces electricity by turning a turbine with steam 

generated through nuclear fission energy. NPPs have 

hundreds of systems with different functions, 

including several safety and control systems to ensure 

the safe operation of the NPP, even in the event of an 

accident. Among them, the reactor protection system 

(RPS) monitors safety-related variables and trips the 

reactor when the monitored variables reach the set 

values. The instrumentation and control system, 

including the RPS, consists of various electronic 

components and circuits, such as analog and digital. 

The instrumentation and control system checks its 

integrity through self-diagnostics at the system level 

or periodical tests. However, self-diagnostics is 

performed only for limited functionalities, or in the 

case of the periodical tests, it is difficult to check 

integrity during normal operation. In NPP, 

malfunction of the RPS is directly related to plant 

safety, so the prognostics and health management 
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(PHM) technology that can prevent potential 

component failures during normal operation is 

required. It can be achieved through fault diagnosis 

and estimation of the remaining useful life (RUL) for 

major electronic components that are vulnerable to 

failure. 

Currently, for the PHM of electronic components, 

many studies are being conducted to predict the RUL 

of electronic components using a data-driven 

approach in various fields, such as hard disks 

(Coursey et al., 2021), lithium-ion batteries (Rouhi 

Ardeshiri et al., 2021), and insulated gate bipolar 

transistors (IGBTs) (Lu et al., 2023). Through these 

studies, the effectiveness of data-driven approaches in 

the PHM field has been confirmed. Therefore, this 

study proposes a framework for predicting the RUL 

of electronic components in the RPS using artificial 

intelligence (AI) technology. Due to limitations in 

obtaining failure data on electronic components of the 

RPS in actual NPPs, accelerated aging tests are being 

conducted on major components by establishing a test 

bed. Accordingly, this study performed a preliminary 
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modeling using open-source data to predict the RUL 

of electronic components. The preliminary modeling 

involves exploring and confirming methodologies 

using open-source data before developing a failure 

prediction model for electronic components within 

RPS. This process can identify effective approaches 

and derive a more optimal model for developing a 

failure prediction model based on actual data in the 

future.  The open-source data utilized in this study are 

the IGBT accelerated aging data provided by NASA 

(Celaya et al., 2009). Previous studies (Ismail et al., 

2020; Lu et al., 2023; Chen et al., 2024; He et al., 

2021) on predicting the RUL of IGBTs have 

primarily used neural networks, such as feedforward 

neural networks, long short-term memory (LSTM), 

and random forest methods. So, this study utilized 

LSTM (Hochreiter & Schmidhuber, 1997) and Monte 

Carlo (MC) dropout (Gal & Ghahramani, 2016) based 

on these studies. RUL prediction was performed 

using LSTM, and uncertainty about the prediction 

results was estimated through MC dropout. Also, to 

enhance the performance of the LSTM, physical rules 

reflecting the characteristics of RUL were added to 

the loss function during model training. 

The developed IGBT RUL prediction model was 

compared in performance with the basic LSTM with 

dropout, which does not include physical rules. It 

evaluates the applicability of the proposed method for 

the failure prediction model of RPS to be developed 

in the future.  

2 METHODS 

This section describes the AI method and 

optimization used in this study. The AI method 

applied to predict RUL was LSTM, and MC dropout 

technology was used to estimate uncertainty. Then, 

the optimization procedure of the RUL prediction 

model was explained.  

2.1 LSTM with MC Dropout 

Figure 1 shows the structure of LSTM with MC 

dropout for RUL prediction of IGBT in this study. 

LSTM (Hochreiter & Schmidhuber, 1997) is a 

modified recurrent neural network-based 

methodology that can learn information about long 

sequences as well as short sequences. LSTM 

regulates the flow of information through gates within 

its memory cells. Figure 2 shows the LSTM cell at the 

t-13 step, and the gates include the input, forget, and 

output gates. These gates determine how to reflect 

new information, whether to maintain or discard 

previous cell state information, and ultimately, how 

to derive the final output based on input data and the 

cell state. In other words, LSTM learns the input 

sequence data and derives results. In this study, the 

time sequence of the LSTM model was empirically 

set to 15. 
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Figure 1: Model structure for RUL prediction of IGBT. 
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Figure 2: LSTM cell structure at the t-13 step. 

Also, the MC dropout (Gal & Ghahramani, 2016) 

technology was used to estimate the uncertainty in the 

prediction results. MC dropout involves applying the 

dropout technique to neural networks during training 

and keeping the dropout active during evaluation, 

thereby producing prediction results in the form of a 

distribution for the same input data. The mean and 

standard deviation values of the predicted distribution 

are used to perform the prediction value and 

uncertainty estimation, respectively. Applying MC 

dropout to the neural networks enhances 
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generalization performance and allows for the 

assessment of the reliability of the prediction results. 

In this study, the dropout rate was set to 0.1 to 

estimate uncertainty, and the results were derived 100 

times for the same input data. The dropout rate was 

experimentally applied to various values, with 0.1 

identified as the optimal value, so this study presented 

the RUL prediction results applying that value. 

As a result, RUL prediction using LSTM with MC 

dropout proceeds through the following steps. First, 

the LSTM with MC dropout model is trained based 

on the train data. Second, 100 prediction results are 

generated for the same input data using the trained 

model. At this time, dropout is also activated. Finally, 

the mean and standard deviation of the prediction 

results for the same input data are calculated. This 

allows for the evaluation of the final predicted RUL 

value and its uncertainty. 

2.2 Optimization of the RUL 
Prediction Model 

Hyperparameter optimization was performed to 

develop an optimal RUL prediction model using 

LSTM with MC dropout. The hyperparameters of the 

model are listed in Table 1, which indicates the 

specific ranges for each hyperparameter. Network 

training and comparative evaluation were performed 

for all hyperparameter combinations. Here, RUL 

prediction is a regression problem and generally uses 

mean squared error (MSE) as the loss function. In 

addition, based on a previous study (Lu et al., 2023) 

where physics-informed regularization was applied to 

improve RUL prediction performance, it was also 

used in this study.  

Table 1: Model hyperparameters and value ranges. 

Hyperparameters Value ranges 

Number of units [16, 32, 64, 128] 

Number of layers [2, 3] 

Batch size [8, 16, 32, 64] 

 

In this study, model development was performed 

individually using four different loss functions, and 

performance was compared for each applied loss 

function. Among these, two loss functions utilized 

were MSE and a scoring function. When MSE and 

scoring functions are used as loss functions, the 

model is trained to ensure that these values converge 

to lower values. The scoring function is an evaluation 

metric related to RUL prediction proposed at the 

International Conference on Prognostics and Health 

Management (PHM08) Data Challenge (Saxena & 

Goebel, 2008). In the case of the scoring function, a 

larger penalty is imposed when the RUL prediction is 

higher than the real value in terms of maintenance. 

That is, if the predicted RUL is lower than the real 

RUL, the failure can be prevented in advance through 

preventive maintenance, but if not, the failure cannot 

be prevented. The other two loss functions were based 

on them and included physical rules. The four loss 

functions are shown in Eqs. (1) to (4). In Eqs. (3) and 

(4), 𝐸𝑀𝐷𝐶  represents the monotonic decreasing 

condition for the RUL prediction. Here, the rectified 

linear unit (ReLU) is a function that outputs the input 

value as is if it is greater than 0, and outputs 0 if it is 

less than 0. Considering that the RUL value typically 

decreases over time, 𝐸𝑀𝐷𝐶  imposes a penalty when 

the difference between the current predicted RUL (𝑌̂𝑘) 

and the previously predicted RUL (𝑌̂𝑘−1) is positive. 

This ensures that the RUL prediction adheres to the 

natural characteristic of decreasing over time. 𝐸𝐵𝐶𝐶 

represents the boundary condition that the normalized 

RUL cannot be less than 0 or greater than 1. Also,  𝛼,
𝛾, and 𝛽 are constants that adjust the proportions of 

each term. These values were the same as those used 

in the previous study (Lu et al., 2023). By applying 

various hyperparameters and loss functions, the RUL 

prediction model for IGBT was developed, and the 

performance of each was evaluated. 
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𝐸𝑃𝐼𝑁𝑁(𝑀𝑆𝐸) = (1 − 𝛼) ∙ 𝐸𝑀𝑆𝐸 + 𝛼 ∙ 𝛾 ∙

𝐸𝑀𝐷𝐶 + β ∙ 𝐸𝐵𝐶𝐶  

(3) 

 

𝐸𝑃𝐼𝑁𝑁(𝑆𝑐𝑜𝑟𝑒) = (1 − 𝛼) ∙ 𝐸𝑠𝑐𝑜𝑟𝑒 + 𝛼 ∙ 𝛾 ∙

𝐸𝑀𝐷𝐶 + β ∙ 𝐸𝐵𝐶𝐶  

(4) 

 

where  

𝑌𝑘: Real RUL values 

𝑌̂𝑘: Predicted RUL values 

𝛼, 𝛾, 𝛽: Constants 
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3 DATA PREPARATION 

The IGBT accelerated aging data provided by the 

NASA Ames Laboratory Prognostics Center of 

Excellence were used (Celaya et al., 2009). The data 

were obtained by performing accelerated aging under 

thermal overstress conditions with a square signal 

bias at the gate. That is, accelerated aging was 

performed as temperature and voltage conditions 

changed over time until failure occurred. The failure 

criterion in IGBT accelerated aging data is defined by 

the occurrence of the transistor latch-up phenomenon. 

This phenomenon is confirmed based on the 

characteristic that the collector-emitter voltage of the 

provided data drops rapidly. In this study, IGBT 

accelerated aging data for 4 devices with supply and 

measurement information were used. It includes 

supply temperature and voltage, collector-emitter 

current and voltage, etc.  

The failure time is determined based on the time 

of latch-up occurrence, and the difference between 

the current time and the failure time is calculated as 

the RUL value. This is expressed in Eq. (5). 

 

𝑅𝑈𝐿 = 𝑡𝑓 − 𝑡𝑖 (5) 

 

where 𝑡𝑓 and 𝑡𝑖 represent the failure time and current 

time, respectively. 

As input variables, environmental variables that 

were considered to be obtainable were selected 

because it is difficult to acquire information on 

electronic components within the RPS in actual 

NPPs. Environmental variables include operation 

time, temperature, and voltage. Also, mean and 

weighted average values were utilized as additional 

input variables. The input variable groups are divided 

into three groups as follows: 

 

1. Operation time, Temperature, and Voltage 

2. Operation time, Temperature, Voltage, and 

Mean Temperature/Voltage 

3. Operation time, Temperature, Voltage, Mean 

Temperature/Voltage, Weighted Average 

Temperature/Voltage 

 

The data were divided into train, validation, and 

test datasets. Three devices (Device 2, 3, and 4) were 

used as train and validation datasets, and the 

remaining device (Device 5) was used as test datasets. 

The data for the selected input variables were 

transformed into a normal distribution using a 

standardization method. The data for the output 

variable (i.e., RUL value) were normalized to a value 

between 0 and 1 to apply physical rules. 

4 RESULTS 

Using the LSTM with MC dropout method, the RUL 

prediction models for IGBT were developed 

according to the input variable group and applied loss 

function. A total of 12 prediction models were 

developed, and for each model, the combination of 

hyperparameters that exhibited the best performance 

was selected as the final model for each model. Mean 

absolute error (MAE) and R-square (R2) were used as 

prediction performance evaluation metrics, which are 

calculated as Eqs. (6) and (7). MAE indicates better 

performance as its value decreases, while R2 indicates 

better performance as it approaches 1. 

 

MAE =
1

𝑁
∑ |𝑌𝑘 − 𝑌̂𝑘|𝑁

𝑘=1   (6) 

 

𝑅2 = 1 −
∑ (𝑌𝑘−𝑌̂𝑘)2𝑁

𝑘=1

∑ (𝑌𝑘−𝑌̅)2𝑁
𝑘=1

  
(7) 

 

Table 2 shows the RUL prediction results of IGBT 

according to all input variable groups and applied loss 

functions. The performance was progressively 

improved in the order of input variable groups 1, 2, 

and 3. It indicates that utilizing mean and weighted 

average values when predicting RUL is more 

meaningful than using only temperature and voltage 

values. Based on the applied loss functions, the 

prediction performance on the train and validation 

datasets was similar for the other three models, except 

for the LSTM (MSE) model. However, the prediction 

performance on the test datasets was relatively better 

for the LSTM (MSE) model. 

Figure 3 shows the RUL prediction results 

according to the input variables. The prediction error 

decreases as the input variable group number 

increases from 1 to 3. Figure 4 shows the prediction 

results with confidence intervals for input variable 

group 3. This demonstrates that a model 

incorporating physical rules exhibits lower 

uncertainty in predictions than a model that does not 

incorporate physical rules. This study reviewed the 

input variables and AI methods to be applied as 

preliminary modeling of the failure prediction model 

for RPS in the future. So, we expect to utilize these 

input variables and methods when developing failure 

prediction models in practice. 
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Table 2: Prediction results for all input variable groups. 

Input variable 

group 
Model 

Train datasets Validation datasets Test datasets 

MAE R2 MAE R2 MAE R2 

Group 1 

LSTM (MSE) 50.73 0.9856 44.54 0.9888 65.04 0.9788 

PI-LSTM (MSE) 40.36 0.9903 36.64 0.9920 80.14 0.9681 

LSTM (Score) 31.88 0.9924 25.08 0.9962 85.64 0.9625 

PI-LSTM (Score) 37.34 0.9919 35.81 0.9942 93.99 0.9587 

Group 2 

LSTM (MSE) 56.82  0.9835  54.27  0.9863  53.54  0.9854  

PI-LSTM (MSE) 20.49  0.9981  23.49  0.9975  83.50  0.9523  

LSTM (Score) 23.49  0.9973  19.50  0.9977  71.59  0.9606  

PI-LSTM (Score) 24.57  0.9965  24.83  0.9967  78.15  0.9555  

Group 3 

LSTM (MSE) 33.24  0.9946  31.22  0.9952  43.58  0.9909  

PI-LSTM (MSE) 21.51  0.9978  22.77  0.9978  47.99  0.9838  

LSTM (Score) 35.56  0.9936  36.62  0.9933  54.58  0.9850  

PI-LSTM (Score) 35.76  0.9939  37.31  0.9938  46.56  0.9893  

 

 

Figure 3: IGBT RUL prediction results according to input variable groups. 
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Figure 4: Prediction results for device 5 in input variable group 3.

5 CONCLUSIONS 

In this study, prior to developing a failure prediction 

model for RPS, a preliminary modeling was 

performed using IGBT accelerated aging data to 

develop a failure prediction model and evaluate its 

performance. In the IGBT accelerated aging data, the 

failure point is defined based on the occurrence of the 

transistor latch-up phenomenon, and the RUL value 

was calculated based on this. In addition, variables 

that were judged to be obtainable in real NPPs, such 

as operation time, temperature, and voltage, were 

selected as input variables. Based on the selected 

environmental variables, model development and 

performance evaluation were conducted by dividing 

into three input variable groups. RUL prediction was 

performed through a combination of LSTM and MC 

dropout technology. Additionally, to enhance 

prediction performance, the model development 

incorporated physical rule constraints into the loss 

function for RUL prediction.  As a result, using mean 

and weighted average values, rather than just 

temperature and voltage values, led to better RUL 

prediction performance. Among these, the 

performance of the model developed using a loss 

function including physical rules was slightly better. 

The results of preliminary modeling are expected to 

be useful when developing fault prediction models 

based on accelerated aging data for major electronic 

components within the RPS in the future. 
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