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Abstract: Despite the rapid development of graph neural networks (GNNs) for graph representation learning, there are 
still problems, such as the most classical model GCN and its variants, which is based on the assumption of 
homophily is proposed, making it difficult to perform well in heterophilic graphs. To solve this problem, we 
propose a decoupled graph convolutional network DAP-GCN with dual adaptive propagation mechanism. It 
learns node representations from two perspectives: attribute and topology, respectively. In heterophilic 
graphs, connected nodes are more likely to belong to different classes. To avoid aggregating to irrelevant 
information, we introduce a class similarity matrix for more accurate aggregation based on the similarity 
between nodes. In addition, we incorporate the class similarity matrix into the propagation and perform the 
aggregation in an adaptive manner to further alleviate the over-smoothing issue. Experiments show that DAP-
GCN has significant performance improvement in both homophilic and heterophilic datasets, especially in 
heterophilic datasets. 

1 INTRODUCTION 

In recent years, many researchers have worked on 
developing new GNNs methods. However, these 
methods largely ignore the limitations of the 
implicitly existing assumption of homophily, 
including the widely used Graph Convolutional 
Network  (T. N. Kipf, 2016) and its variants, which 
assumes that most of the connections occur between 
nodes of the same class or with similar features. In 
fact, heterophily is also prevalent, connected nodes 
are more likely to belong to different classes. 
Therefore, simple aggregation introduces noise 
information. These GNNs are not applicable to 
heterophilic networks. In addition, multiple 
aggregation of GCNs creates over-smoothing issues 
(Chen, 2020): after multiple iterations of GCNs, the 
nodes representation tends to be consistent. 

Many scholars have proposed different methods 
to resolve the above issues. For example, H2GCN  
(Zhu, 2020) uses higher-order neighborhoods and 
intermediate representations as outputs to solve the 
above problem. Geom – GCN(Pei, 2020)  proposes a 
new geometric aggregation method, which 
aggregates nodes that have similarity to the target 
node. However, the above methods do not distinguish 

the homophily among nodes more accurately, and the 
aggregation may absorb useless information or noise. 
Therefore, we aim to compute similarity between 
nodes and thus modeling the homophily more 
accurately between nodes. In addition, there are a 
number of methods that have been used to solve the 
problem of over-smoothing. For example, DropEdge 
(Rong, 2019) increases the diversity of input data by 
reducing a certain percentage of edge weights to zero. 
However, due to its high sensitivity to the dropout 
rate, it may lead to loss of information in the graph. 
APPNP (Gasteiger, 2019) uses personalized 
PageRank to iteratively update by combining its own 
features with neighbors. 

To solve the above issues, we present a 
decoupling graph neural network DAP-GCN with a 
dual adaptive propagation mechanism. DAP-GCN 
learns the class similarity between nodes from 
attribute and topological information. Each element 
in the class similarity matrix describes the degree to 
which the classes are the identical between the nodes. 
Specifically, DAP-GCN can extract class-aware 
information from the nodes and adaptively change the 
propagation of the nodes. On the one hand, compared 
to previous models, our method has a guiding role in 
the propagation process and nodes are more likely to 
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aggregate useful information. On the other hand, it 
considers similarity not only from attribute 
information but also from topological information, 
which is a more comprehensive consideration. 
Finally, we aggregate information from different 
layers by setting adaptive weights, which effectively 
mitigates over-smoothing. 

Our major contributions are as follows: 

• We propose a dual adaptive decoupling 
model (DAP-GCN), which mainly deals with 
the heterophilic problem of networks while 
effectively mitigating over-smoothing. 

• DAP-GCN learns the class similarity 
between nodes through attributes and 
topological information, which models the 
homophily among nodes. In addition, we 
design adaptive propagation and adaptive 
layer aggregation. 

Experiments show that DAP-GCN outperforms 
other methods on almost all datasets. It is even more 
significant in heterophilic datasets. 

2 PRELIMINARIES 

2.1 Problem Setup 

Given an unoriented, non-weighted graph 𝐺 
=(𝑉,𝐸,𝑿), where 𝑉  ={𝑣ଵ ,𝑣ଶ ,𝑣ଷ ,…,𝑣}is the set of 
nodes, 𝐸 represents the set of edges between node 𝑖 
and node 𝑗, and 𝑿∈𝑅× is the node features matrix. 
The 𝑖-th row of 𝑿 denotes the attributes of node 𝑖 . 
The topology of 𝐺  is represented by the adjacency 
matrix 𝑨 = [𝑎 ]∈𝑅×  , which is 𝑎=1 when the 
node 𝑣 is connected to 𝑣 and 𝑎=0 otherwise. 

2.2 Homophily & Heterophily & 
Homophily Ratio 

Homophily: given a graph, interconnected nodes 
usually belong to the same class or have similar 
features, e.g. papers are more likely to cite papers 
from the same field. 
Heterophily: interconnected nodes in a network may 
be of different classes or have different features, e.g. 
Most people prefer to connect with the other sex in a 
dating network. Importantly, heterophily emphasizes 
the diversity of features. 

Homophily Ratio(Tang, 2009): given a graph 𝐺 
= ( 𝑉,𝐸,𝑿 ), the homophily ratio ℎ  =  

|ሼሺ௨,௩ሻ:ሺ௨,௩ሻ∈ா∧௬ೠୀ௬ೡሽ||ா| , ℎ ∈ [0,1], ℎ denotes the overall 
level of homophily in the graph, and |𝐸|  is the 
number of edges connected between nodes of the 
same class. When ℎ  is closer to 1, homophily is 
stronger; graphs with ℎ approaching 0 have stronger 
heterophily. 

2.3 Decoupling Methods 

Some researchers have demonstrated that the 
coupling of transformations and propagation during 
message passing affects network performance. Over-
smoothing can be effectively mitigated by separating 
the two operations, transformation and propagation. 
One of the most classical neural network models, 
GCN, follows the pattern of neighbor aggregation (or 
message passing). The general 𝑙 -th layer of graph 
convolution is expressed as: 𝒂ሺሻ = PROPAGATIONሺሻ ቀቄ𝒙ሺିଵሻ, ቄ𝒙ሺିଵሻ⌊𝑗 ∈ 𝒩ሽቅቁ𝒙ሺሻ = TRANSFORMATION ሺሻ൫𝒂ሺሻ൯.                  (1)  

The forward propagation process of a typical 
representative GCN can be expressed as: 𝑿() = 𝜎൫𝑨𝑿(ିଵ)𝑾()൯ (2) 
In traditional message passing mechanisms, 
transformation and propagation are intertwined. That 
is, each transformation bridges the propagation 
operation. As the sensory domain increases, the node 
representations are propagated repeatedly over many 
iterations. The node representations converge, i.e., the 
over-smoothing.  𝒁 = MLP(𝑿)      ∈ ℝ×𝑯 = 𝑨𝒁, 𝑙 = 1,2,⋯ , 𝑘     ∈ ℝ× (3) 

The idea of decoupling is to separate 
transformation and propagation. 𝑿  is first 
downscaled by MLP to obtain 𝒁, and 𝒁 is propagated 
many times to obtain 𝑯. 

3 THE FRAMEWORK 

We first give an overview and then describe the 
design approach and the details of specific modules 

3.1 Overview 

We bring the class similarity matrix into the message 
passing process of GCN and develop a graph 
convolutional network with homogeneity and 
heterogeneity. The framework consists of three parts,  
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Figure 1: The structure of DAP-GCN, consisting of (a) class similarity matrix estimation, (b) class similarity matrix guided 
adaptive propagation and (c) adaptive layer aggregation.

(1) the learning process of class similarity matrix, (2) 
adaptive propagation guided by class similarity 
matrix, and (3) adaptive layer aggregation. 

3.2 Similarity Matrix Estimation 

We extract class-aware information from both 
attribute information and topological information. 
First Angle: From attribute. It has been shown that a 
MLP considering only features performs better in 
heterophilic graphs. Therefore we use it as a 
component of this module to compute the attribute-
based class similarity matrix. The 𝑙-th layer of the 
MLP is indicated as: 𝒁() = 𝜎 ቀ𝒁(ିଵ)𝑾()ቁ          ∈  ℝ× (4) 
where 𝒁() = 𝑿  , 𝑾()  is the learnable parameter 
matrix of MLP and σ(·) used is a sigmoid function. 
The output of the 𝑙-th layer of mlp is 𝒁(). The soft 
labeling matrix 𝑩 ∈ 𝑅× is the can be obtained as 
follows: 𝑩 = softmax൫𝒁()൯ (5) 
where the matrix 𝑩 contain the factors symbolized by 𝑩 . Each factor 𝑩  indicates the probability that 
node 𝑣𝑖 belongs to class 𝑐. Let 𝜃  indicate the 

parameters in the MLP. We predict the labels by 
minimizing the loss of the MLP to get the best 𝜃∗ . Θ∗ = argmin ℒ = argmin 1|𝑉|   ௩ೌ∈ಽ 𝐽൫𝑏,𝑦൯ (6) 

where 𝐽 is the cross-entropy loss, 𝑏 is the forecast 
labeling of the node 𝑣 passing through the MLP, and 𝑦 is true one-hot label. 𝑉 denotes the labeled nodes 
in the training set. The class similarity matrix 𝑭 based 
on attribute considerations, can be characterized as 
follows. 𝑭 = 𝑩𝑩் (7) 

where 𝐹 = 𝑏𝑏்  denotes the degree to which node 𝑣 
and node 𝑣 belong to the identical class. 
Second Angle: From topological. Network 
topologies contain a large amount of useful 
information. We need as much labelled information 
as possible to capture class similarity in the topology 
space. However, labels are scarce and difficult to 
obtain in semi-supervised node classification tasks. 
Therefore, a generalized label propagation algorithm 
with a learnable edge weight matrix is used to assign 
pseudo-labels to unlabelled nodes in the form of 
topological information that can respond to the edge 
weights between nodes during label propagation, and 
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then the edge weights are used to compute the class 
similarity matrix. 

  First, we introduce the classical label 
propagation algorithm. It usually assumes that two 
linked nodes are more likely to have the identical 
class. Therefore, the labels are iteratively propagating 
between neighbors nodes. This is formalized as 𝒀() 
= [𝒚ଵ(),𝒚ଶ(), . . . ,𝒚()]் , ∈ 𝑅× denote the soft label 
matrix of the iterative 𝑙 -layer ( 𝑙  > 0), where 𝒚 
denotes the predicted label distribution of node 𝑣 in 
the 𝑙-layer. The label propagation of the 𝑙-th layer is 
defined as follows: 𝒀() = 𝑫ିଵ𝑨𝒀(ିଵ),𝒚() = 𝒚(),∀𝑣 ∈ 𝑉 (8) 

The degree matrix is represented by 𝑫  and 𝑫 =∑𝑨 . However, classical label propagation 
techniques assume homophily and cannot be adapted 
to networks with heterophily. To address this, Guided 
by the labels, we improve the classical labeling 
propagation by means of a learnable weight matrix. 
The degree to which two nodes belong to the same 
class is represented by the learned weight matrix. To 
capture more homophily nodes, label propagation is 
performed on the 𝑘-order structure of the network, 
due to the network having varying degrees of 
heterophily. The 𝑘-order formalized as 𝑴 is defined 
as. 𝑴 = 𝑨 + 𝑨ଶ + ⋯+ 𝑨 (9) 
The iterative l-layer's generalized label propagation is 
defined as. 𝒀() = 𝑫ିଵ(𝑴⊙𝑻)𝒀(ିଵ) (10) 
The diagonal matrix of matrix 𝑴⊙𝑻 is represented 
by 𝑫ିଵ. In this equation, nodes use learnable edge 
weights as propagation instructions to propagate 
labels to their 𝑘 -hop neighborhoods. Finally, we 
minimize the loss in a run of the generalized label 
propagation algorithm, which in turn learns the 
optimal edge weights 𝑇∗.  𝑇∗ = argmin் ℒ = argmin் 1|𝑉|   ௩ೌ∈ಽ 𝐽 ቀ𝒚ෝ𝒂𝒍𝒑,𝒚𝒂ቁ (11) 

where 𝒚𝒂𝒍𝒑 is the label distribution of 𝑣 predicted by 
generalized label propagation. We continuously 
optimize the loss and thus obtain the best 𝑇∗ which 
maximizes the probability of correctly propagating 
labels among nodes. It reflects the extent to which 
two node classes are identical. The weight matrix 𝑻 is 
used as the class similarity matrix for topological 
space estimation. Finally, we combine the similarity 
matrices estimated in attribute and topological spaces 
using adjustable parameters. 

𝑷 = 𝛼𝑭 + 𝛽𝑻 (12) 
where 𝛼 and 𝛽 are hyperparameter. 

3.3 Adaptive Guidance Dissemination  

After obtaining the class similarity matrix 𝑷 . We 
introduce the learnable 𝑷  into the propagation 
process. The propagation weights between neighbors 
are adaptively changed according to the class 
similarity between nodes. This distinguishes the 
degree of homophily between nodes. To capture more 
homophilic nodes, we use feature propagation on 𝑘-
hop neighborhoods. The feature propagation process 
of DAP-GCN at iteration 𝑙-th layer is. 𝑯 = 𝑨 ⊙ 𝑷𝒁, 𝑙 = 1,2,3, … , 𝑘       ∈ ℝ× (13) 

We use a symmetric normalized propagation 
mechanism 𝑨 = 𝑫෩ିభమ𝑨෩𝑫෩ିభమ, where 𝑨෩ = 𝑨 + 𝑰, and 𝑘 
is a hyperparameter of the number of propagation 
layers. Here, 𝑐 represents the amount of node classes. 

3.4 Adaptive Guidance Dissemination  

According to Eq. (13), we obtain the node 
representations (𝑯ଵ, 𝑯ଶ, 𝑯ଷ, … ,𝑯) for the different 
layers in the model graph by multiple propagation. 
We should treat different layers of information 
differently. Because each layer contains a different 
amount of useful information. Therefore, we 
adaptively aggregate information from different 
layers based on the learned weights. We use a 
learnable projection vector 𝒒 with 𝑯 to compute the 
corresponding weight 𝑸. Based on 𝑸 (𝑘=0, 1, 2, 3, 
...), we obtain the useful information retained by 𝑯. 
Finally, we splice and integrate each layer of 
representation. 𝑯 = stack(𝒁,𝑯ଵ,⋯ ,𝑯) ∈ ℝ×(ାଵ)×𝑸 = 𝜎(𝑯𝒒) ∈ ℝ×(ାଵ)×ଵ𝑸෩ = reshape (𝑸) ∈ ℝ×ଵ×(ାଵ)𝑿௨௧ = softmax ቀsqueeze൫𝑸෩𝑯൯ቁ      ∈ ℝ× , (14) 

where 𝒁  is obtained by applying the MLP 
network to the original feature matrix. The trainable 
projection vector 𝒒  is of size 𝑅×ଵ  and σ ( · ) is a 
sigmoid function. The data sizes are adjusted using 
stacking, reshaping, and squeezing to ensure 
compatibility during computation. 
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4 EXPERIMENTS 

4.1 Datasets  

We selected three homophily graphs and four 
heterophily graphs for the semi-supervised node 
classification (Gao, 2018) task. The datasets used for 
the task include three homophilic graphs (Cora, 
Citeseer, and Pubmed)(Namata, 2012) and three 
heterophilic graphs (Cornell, Texas, and Wisconsin) 
representing web pages and hyperlinks. Additionally, 
the participant co-occurrence network dataset for 
films is included, where nodes denote actors and 
edges denote actors appearing in the same movie. 
Table 1 shows the statistical information for each 
dataset, with R representing the heterophily ratio of 
the graph. 

4.2 Baseline 

We compared DAP-GCN with the following 
approaches: (1) MLP, which consider only features; 
(2) DeepWalk (Perozzi, 2014), which randomizes the 
walk but considers only network topology 
information; and (3) the classical GNN models: GCN 
and GAT (Veličković, 2017). (4) Graph neural 
network models dealing with heterophily graph 
include Geom-GCN, H2GCN , GPR-GNN (Chien, 
2021), and AM-GCN (Wang, 2020). 

 

4.3 Overall Results 

Ensure fair and valid experimental results. In the 
homophilic dataset, we take 20 labeled nodes in each 
class to be used as training set, 500 nodes to be used 
as validation set and 1000 nodes to be used as test set 
and run a fixed training/validation/testing of 100 runs 
separated from (Liu, 2020). In the heterophilic 
dataset, the Geom-GCN setup is used. For the above 
comparisons, we use the optimal parameters 
originally set by the authors. In DAP-GCN, a two-
layer MLP is utilized to estimate the class similarity 
matrix. Two layer graph convolution operation is 
utilized to propagate the class similarity. The Adam 
optimizer (Kingma, 2014), and the default 
initialization in PyTorch are used. 

4.4 Node Classification 

Tables 2 and 3 display the results of node 
classification for both homophily and heterophily, 
and they both use the average accuracy as a metric. 
Significantly, bolded text indicates optimal 
performance, underlining indicates second highest 
performance. The analysis shows that DAP-GCN 
outperforms all other methods, particularly in 
heterophilic graphs. This demonstrates the 
importance of applying a class similarity matrix based 
on  the graph convolution framework in heterophilic 
graphs. Among the four heterophilic graphs, DAP-
GCN's performance is almost always the best. For 
example, in Wisconsin, DAP-GCN improves 36.37%  

Table 1: Mean and standard deviation of node classification in homophiy. 

Datasets/Accuracy(%) Cora CiteSeer PubMed 

MLP 61.65±0.61 61.12±1.09 74.24±0.73 
ChebNet 80.51±1.13 69.65±1.43 78.17±0.66 
GCN 81.41±0.80 71.14±0.72 78.84±0.64 
GAT 83.13±0.45 70.82±0.53 79.17±0.45 
APPNP 83.32±0.52 71.85±0.45 80.16±0.27 
SGC 81.74±0.11 71.38±0.26 78.91±0.16 
JK-Net 81.83±0.56 70.75±0.74 78.81±0.72 
DAGNN 84.51±0.53 73.46±0.55 80.53±0.44 
Ours (DAP-GCN) 85.32±0.28 74.23±0.28 81.16±0.45 

Table2：Statistics of datasets. 

Datasets Texas Wisconsin Cornell Film Cora CiteSeer PubMed 
Nodes 183 251 183 7600 2708 3327 19717 
Edges 309 499 295 33544 5429 4732 44338 
Features 1703 1703 1703 931 1433 3703 500 
Classes 5 5 5 5 7 6 3 
R 0.09 0.19 0.3 0.22 0.81 0.74 0.8 
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Table 3: Mean and standard deviation of node classification in heterophiy. 

Datasets/Accuracy(%) Texas Wisconsin Cornell Film 
MLP 
GCN 
GAT 

DeepWalk 
Geom-GCN 

H2GCN 
GPR-GNN 
AM-GCN 

80.98±4.69 
53.86±4.45 
57.28±3.26 
49.19±3.45 
66.35±6.42 
79.68±7.23 
84.62±4.34 
78.42±7.32 

85.35±3.47 
50.42±7.32 
54.36±5.48 
53.42±5.13 
62.44±5.36 
82.54±4.35 
83.86±3.23 
81.74±4.86 

83.39±7.42 
54.12±8.75 
54.62±7.19 
44.15±9.14 
55.68±8.15 
78.45±4.55 
82.96±5.62 
78.37±4.98 

36.35±1.55 
28.36±1.56 
29.15±1.54 
23.78±0.64 
32.39±1.46 
36.83±1.36 
36.45±1.42 
33.61±1.12 

Ours (DAP-GCN) 85.45±4.46 86.79±3.86 84.65±4.29 36.82±0.93 

Table 4: Ablation study of DAP-GCN. 

Method Texas Wisconsin Cornell Film 
w/o F、T 80.23±3.56 82.36±2.69 82.15±4.23 32.36±2.36 
w/o F 83.36±5.32 84.76±4.68 83.45±3.43 34.85±4.63 
w/o T 82.72±3.78 82.63±3.25 83.37±2.36 35.44±5.74 
Our(F+T) 85.45±4.46 86.79±3.86 84.65±4.29 36.82±0.93 

and 32.43% on average over the traditional GNN 
models GCN and GAT, respectively. Compared to 
other approaches to heterophily, such as H2GCN, 
Geom-GCN and GPR-GNN, DAP-GCN improves 
the average accuracy by 2.93% to 24.35%. These 
results demonstrate the reliability of DAP-GCN in 
heterophilic graphs. The performance of the 
homophily network improves to varying degrees. For 
example, in Cora, The average performance of DAP-
GCN was 3.91% and 2.19% better than that of GCN 
and GAT, respectively, which are assumed to be 
strongly homophilic. DAP-GCN performs 
exceptionally well in both heterophily and homophily 
networks, further validating the method's 
effectiveness homophily network improves to 
varying degrees. For example, in Cora, The average 
performance of DAP-GCN was 3.91% and 2.19% 
better than that of GCN and GAT, respectively, which 
are assumed to be strongly homophilic. DAP-GCN 
performs exceptionally well in both heterophily and 
homophily networks, further validating the method's 
effectiveness. 

4.5 Ablation Experiments 

Table 4 shows the ablation experiments on each of the 
four heterophilic datasets, using the average accuracy 
as the metric. The necessity of these two components 
in the class similarity matrix estimation module is 
verified. Classification accuracy is used as a metric. 
Four cases are given in the table:(1) calculation of 
similarity matrix without attribute and topology 
information; (2) similarity matrix with topology 
information only; (3) similarity matrix with attribute 

information only; and (4) the model used in this paper 
that considers both attributes and topology. The 
experimental results show that the performance 
decreases when different components are removed. It 
shows that each component plays a role as well as the 
necessity of considering both attributes and topology. 
Secondly, in the first three datasets, the performance 
of w/o T is slightly higher compared to w/o F, 
indicating that attribute information is slightly more 
influential than topology information in small and 
medium-sized graphs. In the film dataset, w/o F is 
higher, suggesting that on large graphs, it is likely that 
topology information has more influence. 
 

 
Figure 2: Results of DAP-GCN with different depths. 

4.6 Over-Smoothing Analysis 

Figure 2 shows the performance of four datasets at 
different aggregation levels (number of hops). We 
used two homophilic datasets (Cora, Citeseer) and 
two heterophilic datasets (Cornell, Texas) to test our 

A Decoupled Graph Convolutional Network with Dual Adaptive Propagation Mechanism for Homophily and Heterophily

135



 

method's reliability. We verified accuracy for 1 to 100 
layers. It can be concluded that our model's 
performance remains stable even when increasing the 
number of layers. Additionally, there is no 
representation convergence due to the increase in the 
number of layers, which is the opposite of GCN. This 
demonstrates that decoupling the propagation from 
the transformation can alleviate the over-smoothing 
problem. 

5 CONCLUSIONS 

We propose a decoupled graph convolutional 
network DAP-GCN with a dual adaptive propagation 
mechanism. It can be applied to both homophilic and 
heterophilic networks. DAP-GCN extracts class-
aware information by learning class similarity 
matrices from attribute information and topological 
information. The matrix adaptively changes the 
propagation process of the network based on the class 
similarity between nodes. Finally, the information is 
extracted adaptively in different layers. DAP-GCN 
mainly solves the heterophilic problem and also 
effectively mitigates the over-smoothing problem. 
Experiments on real datasets show that DAP-GCN 
provides better performance than current methods 
under both homophilic and heterophilic graphs. 
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