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Abstract: This paper proposes a Graph hierarchy and Language model-based Explainable Entity Alignment (GLEE) 
framework to perform Entity Alignment (EA) between two or more Knowledge Graphs (KGs) required for 
solving complex problems. Unlike existing EA methods that generate embedding for entities using KG 
structure information to calculate the similarity between entities, the GLEE framework additionally utilizes 
graph hierarchy and datatype properties to find entities to be aligned. In the GLEE framework, the 
semantically similar hyper-entities of the entities to be aligned are discovered to reflect graph hierarchy in the 
alignment. Also, the semantically similar datatype properties and their values of the entities are also utilized 
in EA. At this time, language model is utilized to calculate semantic similarity of the hyper-entities or datatype 
properties. As a result, the GLEE framework can trustworthy explain why the two entities are aligned using 
the subgraphs that consist of similar hyper-entities, semantically identical properties, and their data values. 
To show the superiority of the GLEE framework, the experiment is performed using real world dataset to 
prove the EA performance and explainability.

1 INTRODUCTION 

As knowledge graphs (KGs) are proven to help 
integrate and access disparate data sources using 
machine learning and inference capabilities, various 
KGs have been developed, ranging from KGs for 
research to enterprise KGs (Zou, 2020). However, 
due to the complexity of the problems to be solved 
using KGs, it is generally difficult for a single KG to 
meet the diverse knowledge requirements of an 
application (Zeng et al., 2021). To leverage different 
KGs simultaneously, a research, Entity Alignment 
(EA), has been conducted to identify and connect 
entities that belong to different KGs but refer to the 
same real-world concept (Fanourakis et al., 2023). 
Traditionally, EA has been performed using network 
and iteration-based approaches, but recently, 
Knowledge Graph Representation Learning (KGRL), 
which generates embeddings of entities based on 
graph structures and calculates the similarity between 
entities using the embeddings, has become a 
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representative player (Zeng et al., 2021). However, 
KGRL, which is performed based on the structural 
similarity of KGs, may encounter the following 
difficulties. 

First, to solve complex problems in which 
multiple elements are intertwined, EA between KGs 
with various domains and scopes must be performed. 
At this point, it is difficult to assume that all KGs have 
a similar structure (Wang et al., 2022). Therefore, a 
method that can perform EA regardless of the 
structure or scope of KGs is needed. 

Second, as a side-effect, it is not easy to explain 
the results of EA on two KGs with different structures 
or domains. Since different KGs often have different 
naming schemes, it is hard to look up the properties 
and neighbors of the aligned entities to check whether 
the alignment is correct or not (Trisedya et al., 2023). 
To help checking the EA results, explanation is 
needed. 

To do so, this paper proposes a novel Graph 
hierarchy and Language model-based Explainable 
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Entity alignment (GLEE) framework. Even though 
graph hierarchies (Zhang et al., 2020) and datatypes 
(Kim et al., 2022; Shen et al., 2021) contain crucial 
information about entities, this information is not 
directly reflected in KGRL EA methods. In the GLEE 
framework, they are used to improve the EA 
performance and provide explanation. The GLEE 
framework consists of three steps.  

In the first step, after selecting two KGs to be 
aligned, candidate entities that can be aligned with a 
specific entity in one KG (hereafter, target entity) are 
found in the other KG. To do so, this paper calculates 
graph structural similarity (hereafter, S-similarity) 
using the existing embedding-based EA method. S-
similarity is not performed for EA directly, but for 
finding candidate entities. 

In the second step, EA is performed after finding 
the entity to be aligned with the target entity among 
candidate entities. To do so, this paper devises graph 
hierarchical similarity (H-similarity) and datatype 
similarity (D-similarity). H-similarity is calculated to 
discover common hyper-concepts shared by the target 
entity and the candidate entity. It has a larger value 
when the same hyper-entities appear in fewer hops.  
At this time, BERT (Devlin et al., 2018)-based word 
embedding is used on the entity names to determine 
whether the two hyper-entities are the same. If two 
KGs are from different languages, multilingual BERT 
model (Pires et al., 2019) is used. D-similarity is 
calculated by discovering common properties of the 
entities and counting the set of common properties 
with the same datatype values. To determine whether 
the two properties are same, BERT-based word 
embedding is used on the property names, too. The 
second step results are similarities between the target 
entity and candidate entities. 

In the third step, the EA is performed using the 
three kinds of similarities and explanation is 
performed using two subgraphs of the target entity 
and its aligned entity extracted from each of the two 
KGs. The subgraphs are extracted from the different 
KGs but have same graph structure and contents. In 
GLEE framework, the subgraphs consist of the paths 
with the aligned entities as the starting node and the 
hyper concept common to both subgraphs as the 
ending node, and the datatype properties and their 
data values of the aligned entities. The subgraphs are 
used to explain the EA results. 

The main contribution of this paper is providing a 
detailed steps to utilize three kinds of similarity to 
improve the EA performance and provide explanation. 
Since S-similarity has relatively low computational 
cost than H-similarity and D-similarity to find the 
similar entities in the large KGs, S-similarity is 

utilized in advance to discover the candidate pairs of 
entities to be aligned. On the other hand, H-similarity 
and D-similarity are more accurate and interpretable 
than S-similarity, but it is impossible to directly apply 
them to align entities in the large KGs. Therefore, 
they are applied in the candidate pairs obtained by 
using S-similarity. 

This paper is organized as follow. The related 
works of this paper is presented in Section 2. In 
Section 3 the illustrative scenario is provided to show 
how GLEE framework works. Section 4 depicts 
GLEE framework with the details. The superiority of 
the framework is presented in Section 5 with 
experiments. Finally, Section 6 proposes the 
conclusions and further research. 

2 RELATED WORKS 

Many studies have been performed to automatically 
align entities of different knowledge graphs (KGs). 
TransE (Bordes et al., 2013) treats the relation in a 
relationship triple as the translation from head to the 
tail entities achieving promising results in one-to-one 
relation. However, it cannot consider the multi-hop 
relationships nor process the complex relationships 
such as one-to-many, many-to-one, many-to-many. 
Therefore, many variants of TransE have 
subsequently appeared, such as TransR (Lin et al., 
2015), TransH (Wang et al., 2014), TransD (Ji et al., 
2015), TransG (Xiao et al., 2015a), TransA (Xiao et 
al., 2015b), and PTransE (Li et al., 2020). These 
studies tackle different limitations of TransE and 
enhance the ability to model structures within KGs. 

Recently, due to the growth of the deep learning 
methods, graph convolutional network (GCN) (Kipf 
& Welling, 2016)-based methods are widely adopted 
for entity alignment. GCN-Align (Wang et al., 2018) 
captures the entities’ neighborhood structures for the 
first time by utilizing GCNs and achieving promising 
results. RN-GCN (Wu et al., 2019a) incorporates 
relation information via attentive interactions 
between the KG and its dual relation counterpart. 
HGCN (Wu et al., 2019b) jointly learns entity and 
relation representations without requiring pre-aligned 
relations. EMGCN (Tam et al., 2020) perform 
unsupervised EA by using both relation and attribute 
information. 

Several recent studies use semi-supervised 
learning that generates new pre-aligned seeds during 
the iteration process. MCEA (Qi et al., 2023) uses a 
multiscale graph convolution model to embed the 
graph and uses intermediate results to guide the 
negative sampling process. PEEA (Tang et al., 2023) 
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increases the connections between far-away entities 
and labeled ones by incorporating positional 
information into the representation learning.  

Many studies have been performed to improve the 
EA performance. These studies assume that the KGs 
have similar structure and perform experiment using 
similar KGs (i.e., DBpedia English and DBpedia 
French). That is, the performance is not guaranteed 
when the KGs have different structure and scope. 
Also, they do not provide explanation of EA results 
which undermines the reliability. 
 

 
Figure 1: An illustrative example of the GLEE framework. 

3 AN ILLUSTRATIVE EXAMPLE 

An illustrative example is used to show how the 
GLEE framework conducts EA and how to explain its 
results. As depicted in Figure 1, two entities 
representing the same real-world concept, the 
‘Ramses II tank,’ a specific model of a main battle 
tank, are selected from different KGs. The entity 
‘dbr:Ramses_Ⅱ_tank’ is from DBpedia and the entity 
‘wd:Q17216121’ is from Wikidata. 

First, the entities that represent the upper concepts 
of ‘Ramses II tank’ are identified to determine their 
similarity in the graph hierarchy. At this time, specific 
properties that represent relation to upper concepts 
(i.e., ‘dbo:type’ and ‘rdf:type’ in DBpedia) are used. 
In the given example, the entities have 'main battle 
tank' as a common hyper concept. If the same hyper- 
concept does not exist in 1-hop relations for the 
entities, entities of 2 or more hops are discovered and 
compared. Second, to determine their similarity 
depending on their datatypes, the common properties 
for the two entities are discovered. In the example, the 
two entities have common properties, ‘width’ and 
‘height.’ In addition, the datatype values for the 
properties are also same. Therefore, we can determine 
that two entities in different KGs represent the same 
real-world concept because they have a common 
hyper-concept and datatype. Furthermore, the 
explanation using this result is also trustworthy. 

4 GLEE FRAMEWORK 

4.1 Overall Framework  

The overall systematic procedure of the GLEE 
framework is depicted in Figure 2. The GLEE 
framework consists of three modules: Graph 
Structure-based Candidate Entity Discovery Module, 
Entity Similarity Assessment Module, and Subgraph-
based Explanation Module. 
 

 
Figure 2: Systematic procedure of the GLEE framework. 

4.2 Graph Structure-Based Candidate 
Entity Discovery  

In this module, candidate entities that can be aligned 
with the target entity on 𝐾𝐺ଵare found from 𝐾𝐺ଶ. To 
do so, the S-similarity between the target entity on 𝐾𝐺ଵ  and all entities on 𝐾𝐺ଶ  is calculated using the 
existing embedding-based EA methods. 

The target entity (𝑒௄ீభ(௧) ) can be simply represented 
as follows. 
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(𝑒௄ீభ(௧) ) ∈ 𝐸௄ீభ (1)
where 𝐸௄ீభ is the set of entities of 𝐾𝐺ଵ. At this time, 𝑒௄ீభ(௧) is an arbitrary entity on 𝐾𝐺ଵ. 

For ( 𝑒௄ீభ(௧) ) , the S-similarity with 𝑒௄ீమ(௜)  (for ∀𝑖, 𝑖 ∈ ℕ)  is calculated using cosine similarity as 
follows. 𝑆𝑠𝑖𝑚൫𝑒௄ீభ(௧) , 𝑒௄ீమ(௜)൯= 𝐺𝐸ଵ൫𝑒௄ீభ(௧) ൯ ∙ 𝐺𝐸ଶ൫𝑒௄ீమ(௜)൯ቛ𝐺𝐸ଵ ቀ𝑒௄ீభ(௧) ቁቛ ฮ𝐺𝐸ଶ൫𝑒௄ீమ(௜)൯ฮ 

(2)

where 𝑒௄ீమ(௜)  represents the 𝑖௧௛  entity in 𝐾𝐺ଶ 
(𝑒௄ீమ(௜) ∈ 𝐸ଶ, where 𝐸ଶ is the set of entities of 𝐾𝐺ଶ). 𝐺𝐸ଵ൫𝑒௄ீభ(௧) ൯  and 𝐺𝐸ଶ൫𝑒௄ீమ(௜)൯  represent the 
embeddings of 𝑒௄ீభ(௧)  on 𝐾𝐺ଵ  and 𝑒௄ீమ(௜)  in 𝐾𝐺ଶ , 
which are generated by the existing EA method. ฮ𝐺𝐸ଵ൫𝑒௄ீభ(௧) ൯ฮ  and ฮ𝐺𝐸ଶ൫𝑒௄ீమ(௜)൯ฮ  represent the 
lengths of the vectors 𝐺𝐸ଵ൫𝑒௄ீభ(௧) ൯ and 𝐺𝐸ଶ൫𝑒௄ீమ(௜)൯.  

Based on S-similarity, this paper designates the 
top- 𝑘  entities with high S-similarity values as 
candidate entities for 𝑒௄ீభ(௧) . The algorithm discovering 
the candidate entities for 𝑒௄ீభ(௧) is as follows.  

Algorithm 1. 

Input: 𝐾𝐺ଵ, 𝐾𝐺ଶ, and the target entity (𝑒௄ீభ(௧) ) 
Output: a candidate set of top-k entities on 𝐾𝐺ଶ 
that have high S-similarity values with 𝑒௄ீభ(௧)    
 
Step 1 Embedding generation. Generate 
embeddings of the entities using a KGRL model 
Step 2 S-similarity calculation. Calculate the 
cosine similarity between the embeddings of the 𝑒௄ீభ(௧)  and each entity on 𝐾𝐺ଶ (𝑒௄ீమ,௜) 
Step 3: Top-k selection. Identify the candidate set 
that is composed of the entities in 𝐾𝐺ଶ  that has 
high similarity with 𝑒௄ீభ(௧)  

4.3 Entity Similarity Assessment 

This module comprises two parts: graph hierarchy-
based and datatype-based entity assessment. 
 
 
 

4.3.1 Graph Hierarchy-Based Entity 
Similarity Assessment 

This submodule assesses whether the candidate 
entities belong to the same or similar class with 𝑒௄ீభ(௧) . 
To do so, graph hierarchy-based similarity (H-
similarity) is calculated between 𝑒௄ீభ(௧) and entities in 
the candidate set. At this time, H-similarity is 
calculated by gradually increasing the number of hops 
of the link connected to 𝑒௄ீభ(௧) . First, 1-hop hyper 
entities of 𝑒௄ீభ(௧)  (𝑈𝐸ଵ൫𝑒௄ீభ(௧) ൯) discovers as follows. 𝑈𝐸ଵ൫𝑒௄ீభ(௧) ൯ = ሼ𝑢𝑒௠ଵ | 𝑝𝑟௠ଵ ∈ 𝑈𝑃ଵሽ,  𝑚 ∈ ℕ (3)

where < 𝑒௄ீభ(௧) , 𝑝𝑟௠ଵ , 𝑢𝑒௠ଵ >  is 𝑚௧௛  subject-property-
object (s-p-o) triple of 𝐾𝐺ଵ.  𝑢𝑒௠ଵ  and 𝑝𝑟௠ଵ  are 𝑚௧௛ 
hyper entity of 1-hop and its property. 𝑈𝑃ଵ is the set 
of properties of 𝐾𝐺ଵ that depict hyper-hypo relations. 
In DBpedia, a representative KG, 'dbo:type' or 
'rdf:type' are examples of these properties. 

Like above, 1-hop hyper entities of 𝑒௄ீమ(௜ᇲ) (𝑈𝐸ଵ൫𝑒௄ீమ(௜ᇲ)൯) discovers as follows. (𝑈𝐸ଵ൫𝑒௄ீమ(௜ᇲ)൯) = ሼ𝑢𝑒௡ଵ| 𝑝𝑟௡ଵ ∈ 𝑈𝑃ଶሽ, 𝑛 ∈ ℕ (4)

where < 𝑒௄ீమ൫௜ᇲ൯, 𝑝𝑟௡ଵ, 𝑢𝑒௡ଵ >  is 𝑛௧௛  s-p-o of 𝐾𝐺ଶ . 𝑢𝑒௡ଵ  and 𝑝𝑟௡ଵ  are 𝑛௧௛  hyper entity of 1-hop and its 
property. 𝑈𝑃ଶ  is the set of properties of 𝐾𝐺ଶ  that 
depict hyper-hypo relations (𝑖ᇱ ∈ ℕ). 

In the GLEE framework, it is assumed that the 𝑈𝑃ଵ  and 𝑈𝑃ଶ  are already discovered. Applying the 
same method to the 1-hop hyper entities, hyper 
entities with 2 or more hops can also be discovered as 
follows: 𝑈𝐸௣൫𝑒௄ீభ(௧) ൯  and 𝑈𝐸௤൫𝑒௄ீమ(௜ᇲ)൯ (𝑝 =1, . . , 𝑃, 𝑞 = 1, . . , 𝑄). 

To compare hyper entities of 𝑒௄ீభ(௧)  and 𝑒௄ீమ(௜ᇲ) , 
entity name-based BERT embeddings are generated. 
Since entity names of hyper concepts (e.g. 'ship' and 
'tank') are typically abstract compared to entity names 
of hypo concepts (e.g. 'USS Inchon' and 'Ramses 2 
tank'), it can be assumed that BERT works well on 
names of hyper entities. 

As a next, H-similarity between 𝑒௄ீభ(௧)  and 𝑒௄ீమ(௜ᇲ) (𝐻𝑠𝑖𝑚൫𝑒௄ீభ(௧) , 𝑒௄ீమ(௜ᇲ)൯) is  calculated based 
on the number of hops and BERT-based word 
embeddings as follows. 𝐻𝑠𝑖𝑚 ቀ𝑒௄ீభ(௧) , 𝑒𝐾𝐺2(𝑖′)ቁ = max௠,௡,௣,௤ 𝑠𝑖𝑚൫𝑢𝑒௠௣ , 𝑢𝑒௡௤൯𝑀(𝑝, 𝑞)   (5)

where 𝑢𝑒௠௣  is the 𝑚௧௛  entity of p hops in 𝑈𝐸௣ ൫𝑒௄ீభ(௧) ൯ and 𝑢𝑒௡௤  is the 𝑛௧௛  entity of q hops in 
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𝑈𝐸௤ ቀ𝑒௄ீమ൫௜ᇲ൯ቁ.  𝑠𝑖𝑚(𝑢𝑒𝑚𝑝 , 𝑢𝑒𝑛𝑞)  is the BERT 
embedding-based cosine similarity between the 
names of the 𝑢𝑒௠௣  and 𝑢𝑒௡௤ . 𝑀(𝑝, 𝑞)  represents the 
maximum function as follows. 
 𝑀(𝑝, 𝑞) = ൜𝑝 (𝑝 ≥ 𝑞)𝑞 (𝑝 < 𝑞) (6)

 

At this time, the two hyper entities from 𝐾𝐺ଵ and 𝐾𝐺ଶ that maximize the score (argmax𝑢𝑒𝑚𝑝 ,𝑢𝑒𝑛𝑞 ௦௜௠൫𝑢𝑒𝑚𝑝 ,𝑢𝑒𝑛𝑞൯ெ(௣,௤) ), in 

other words, the hyper entities used to calculate the 
H-similarity, are defined as the common hyper 
entities in 𝐾𝐺ଵ  and 𝐾𝐺ଶ  and will be utilized in 
explanation. 

4.3.2 Datatype-Based Entity Similarity 
Assessment 

In this sub-module, D-similaity is calculated to 
compare the object values of 𝑒௄ீభ(௧)  with those of 𝑒௄ீమ(௜ᇲ) (𝑓𝑜𝑟 ∀ 𝑖ᇱ). At this time, the objects of 𝑒௄ீభ(௧)  
and 𝑒௄ீమ(௜ᇲ)  are limited to those with a ‘datatype 
property.’ In other words, the objects are data values, 
such as integers, characters, or strings. For all s-p-o 
triples of 𝐾𝐺ଵ and 𝐾𝐺ଶ, a set of properties with data 
values as objects is found for each as follows. 𝐷𝑃ଵ൫𝑒௄ீభ(௧) ൯ = ሼ𝑝𝑟௠|  𝑑௠ ∈ 𝐷ሽ (7)𝐷𝑃ଶ൫𝑒௄ீమ(௜ᇲ)൯ = ሼ𝑝𝑟௡| 𝑑௡ ∈ 𝐷ሽ (8)
where 𝑑௠ and 𝑑௡ are 𝑚௧௛ and 𝑛௧௛ data values of the 
objects of s-p-o triples of 𝐾𝐺ଵ and 𝐾𝐺ଶ. 𝐷 is a set of 
data values. 
 

For each 𝑝𝑟௠ (for ∀ 𝑚),  this paper finds a 
property that is semantically similar to 𝑝𝑟௠  among 
the elements of 𝐷𝑃ଶ൫𝑒௄ீమ(௜ᇲ)൯. To do so, BERT-based 
similarity between the properties is calculated. As a 
result, this paper obtains the semantically similar 
property to 𝑝𝑟௠ (𝑠𝑠𝑝(𝑝𝑟௠)) in 𝐷𝑃ଶ൫𝑒௄ீమ(௜ᇲ)൯:  𝑠𝑠𝑝(𝑝𝑟௠)= ቐ 𝑁𝑈𝐿𝐿,  𝑖𝑓 argmax௣௥೙ 𝑠𝑖𝑚(𝑝𝑟௠, 𝑝𝑟௡) < 𝛿argmax௣௥೙ 𝑠𝑖𝑚(𝑝𝑟௠, 𝑝𝑟௡),                  𝑜/𝑤 (9)

 

where 𝑠𝑖𝑚(𝑝𝑟௠, 𝑝𝑟௡) is the cosine similarity between 
BERT embeddings of the names of 𝑝𝑟௠ and 𝑝𝑟௡. At 
this time, if the  argmax௣௥೙ 𝑠𝑖𝑚(𝑝𝑟௠, 𝑝𝑟௡)  value is 

smaller than predefined threshold 𝛿 , 𝑝𝑟௡ is 
determined to be not the same as 𝑝𝑟௠. 
 

Next, the data value of 𝑠𝑠𝑝(𝑝𝑟௠) and that of 𝑝𝑟௠ 
are extracted and compared. If the data value is a 
string of natural language texts, BERT embedding is 
utilized to determine whether they are same or not. As 
a result, this paper identifies data value pairs 
consisting of a data value of 𝑝𝑟௠  and that of 𝑠𝑠𝑝(𝑝𝑟௠) for all 𝑚. At this time, the two elements of 
every pair must be identical or semantically similar. 
After counting the number of elements of 𝐷𝑃ଵ൫𝑒௄ீభ(௧) ൯ 
and the identified data pairs, the D-similarity is 
calculated as follows. 

 𝐷𝑠𝑖𝑚= 𝑛𝑜(data pairs with same data values)𝑛𝑜(elements of 𝐷𝑃ଵቀ𝑒௄ீభ(௧) ቁ)  (10)

The D-similarity calculation procedure is 
summarized as following algorithm. candidate 
entities for 𝑒௄ீభ(௧) is as follows.  

Algorithm 2. 

Input: sets of the properties of 𝑒௄ீభ(௧)  and 𝑒௄ீమ(௜ᇲ) 
that have data values as objects 
Output: D-similarity between two object values.  
 
Step 1 Property finding For all s-p-o triples of 𝐾𝐺ଵ 
and 𝐾𝐺ଶ, find a set of properties with data values 
as objects and set them to 𝐷𝑃ଵ൫𝑒௄ீభ(௧) ൯  and 𝐷𝑃ଶ ቀ𝑒௄ீమ൫௜ᇲ൯ቁ, respectively 
Step 2 Property matching For each 𝑝𝑟௠ , find 
semantically identical property of it among the 
properties of 𝐷𝑃ଶ ቀ𝑒௄ீమ൫௜ᇲ൯ቁ and set it to 𝑠𝑠𝑝(𝑝𝑟௠) 
(for ∀ 𝑚) 
Step 3 Find data value of matched properties 
Extract data value linked to 𝑝𝑟௠ and 𝑠𝑠𝑝(𝑝𝑟௠) and 
identify whether they are same or not 
Step 4: D-similarity Calculation Calculate the D-
similarity based on the ratio of the matched data 
values to the total number of datatype properties of 𝑒௄ீభ(௧)  

4.4 Subgraph-Based Explanation 

Using the S-similarity, H-similarity, and D-similarity, 
one of the candidate entities of  𝐾𝐺ଶ is determined as 
the aligned entity of 𝑒௄ீభ(௧) . The aligned entity of 𝑒௄ீభ(௧)  
(𝐴𝐸 ቀ𝑒௄ீభ(௧) ቁ)is determined as follows. 
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𝐴𝐸 ቀ𝑒௄ீభ(௧) ቁ = argmax௘಼ಸమ൫೔ᇲ൯ 𝛼 ∙ 𝑆𝑠𝑖𝑚 ቀ𝑒௄ீభ(௧) , 𝑒௄ீమ(௜ᇲ)ቁ+ 𝛽 ∙ 𝐻𝑠𝑖𝑚 ቀ𝑒௄ீభ(௧) , 𝑒௄ீమ(௜ᇲ)ቁ+  𝛾 ∙ 𝐷𝑠𝑖𝑚 ቀ𝑒௄ீభ(௧) , 𝑒௄ீమ(௜ᇲ)ቁ 

(11)

where 𝛼 , 𝛽,  and 𝛾  are the hyperparameters ( 0 ≤𝛼, 𝛽, 𝛾 ≤ 1, 𝛼 + 𝛽 + 𝛾 = 1). 
To explain the EA results, this paper utilizes the 

subgraphs of the target entity and the corresponding 
aligned entity extracted from 𝐾𝐺ଵ  and 𝐾𝐺ଶ , 
respectively. The subgraphs are generated with two 
phases as follows. First, this paper generates paths 
from for the target and aligned entity to the upper 
entities they have in common, respectively. Second, 
for the target and aligned entity, the paths are 
expanded using the semantically similar datatype 
properties and their data values, respectively. An 
example of the subgraphs is illustrated in Figure 1 

As shown in Figure 1, the two subgraphs are 
extracted from different KGs but are composed of 
semantically similar properties and entities. The 
upper entities, properties, and data values (a.k.a. s-p-
o) that are common to the two subgraphs, are used to 
explain why two entities in different KGs are aligned. 
For example, in Figure 1, ‘dbr:Ramses_Ⅱ_tank’ in 𝐾𝐺ଵ  and ‘wd:Q17216121’ in 𝐾𝐺ଶ  are aligned 
because they have the hyper entity with the same 
entity name (main battle tank) and the common 
datatype properties with the same data values (width 
3.42 and height 2.40). 

5 PERFORMANCE EVALUAITON 

To demonstrate the GLEE framework's performance, 
this paper selects entities of DBpedia and Wikidata. 
DBpedia and Wikidata are KGs that are generated 
based on Wikipedia but have different term usage and 
structure since they are developed and maintained by 
different organizations. The selected entities belong 
to 5 categories: ‘vessels,’ ‘tanks,’ ‘aircrafts’ 
‘generals,’ and ‘military units.’ 

For the entities, we generate the pairs of entities 
that one belongs to DBpedia and the other belongs to 
Wikidata. Some pairs may consist of entities 
depicting the same real-world concept (‘exactly same’ 
in the table), while others may not. Depending on the 
entities, entity pairs are classified into three types: 
exactly same pair, intra-category pair, and inter-
category pair. The first is the pairs consist of two 
entities which are semantically same, the second are 
pairs consist of entities that are not same and belong 
to the same category, and the third are pairs consist of 

entities that are not same and belong to different 
categories. 

For the three kinds of entity pairs, this paper 
calculates H-similarity and D-similarity. For each 
category, this paper calculates the average values of 
H-similarity and D-similarity for the three types of 
pairs. At this time, D-similarity is calculated for 
DBpedia and Wikidata respectively, since D-
similarity depends on the number of datatype 
properties of the target entity. One regards the entity 
of DBpedia in the pair as the target entity, and the 
other regards the entity of Wikidata in the pair as the 
target entity. This paper does not calculate S-
similarity in the experiment since it is just applying 
existing KGRL methods, and we do not have 
contribution to it. The similarities are summarized in 
Table 1. 

Table 1: Similarity of the pairwise entities. 

Category 𝐻𝑠𝑖𝑚 𝐷𝑠𝑖𝑚 
(DBpedia) 

𝐷𝑠𝑖𝑚 
(Wikidata) 

Vessels 

Exactly 
same 0.795 0.733 0.733 
Intra-

category 0.527 0.000 0.000 
Inter-

category 0.505 0.000 0.000 

Tanks 

Exactly 
same 0.972 0.403 0.594 
Intra-

category 0.783 0.000 0.000 
Inter-

category 0.647 0.000 0.000 

Aircrafts 

Exactly 
same 0.753 0.345 0.424 
Intra-

category 0.629 0.100 0.143 
Inter-

category 0.613 0.000 0.000 

Generals 

Exactly 
same 0.683 0.793 0.442 
Intra-

category 0.661 0.000 0.000 
Inter-

category 0.479 0.000 0.000 

Units 

Exactly 
same 0.917 0.572 0.642 
Intra-

category 0.734 0.000 0.000 
Inter-

category 0.546 0.000 0.000 

For all entities, ‘exactly same’ entity pairs have 
the highest H-similarity and D-similarity values. It is 
proven that the proposed similarities are effective for 
EA. In case of H-similarity, ‘intra-category’ has 
higher H-similarity value than that of ‘inter-category.’ 
It is because intra-category pairs have relatively short 
paths to the common hyper entity than inter-category 
pairs. In case of D-similarity, values of ‘intra-
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category’ and ‘inter-category’ are almost zero. That 
is, it is hard to have the same datatype property with 
same data value of the entities that depict different 
real-world concepts. 

The core contribution of the GLEE framework is 
to provide explanation of EA results using graph 
hierarchy and datatypes. To show how GLEE 
framework explains the EA result, this paper selects 
a pair of entities as an example that was aligned in the 
experiment. The entities depict ‘Leopard 2’ which is 
a tank and extracted the subgraphs from DBpedia and 
Wikidata. The subgraphs are depicted in Figure 3. 
Even though the two graphs are extracted from the 
different KGs, they both have the hyper entities which 
depict ‘main battle tank.’ Also, the datatype 
properties in the subgraphs have the same meaning 
and the datatype values are same. Using these 
subgraphs, it can be acknowledged that the aligned 
entities depict the same real-world concept. 

 
Figure 3: An example of generated subgraphs. 

6 CONCLUSIONS 

This paper proposed a method to align the entities of 
different KGs not only using the graph structure, but 
also using the graph hierarchy and datatypes. In the 
proposed method, graph structure-based EA model is 
applied to derive the candidate pairs of entities to be 
aligned, and the information on graph hierarchy and 
datatypes is utilized to find the exact pairs. By doing 
so, alignment performance can be improved, and 
explanation of the alignment can also be provided. 
However, this paper has the following limitations. 
First, it cannot provide an explanation in perspective 
of graph structural similarity. That is, the information 
on the relations with multi-hop neighbor entities is 
not provided as an explanation. Second, the impact of 
each property, object or datatype to the alignment is 
not provided, whether they are critical for alignment 
or somewhat meaningless. Therefore, in our further 

research, we will develop a method to discover 
neighbor entities which are crucial for alignment and 
provide weights that depict importance of properties 
and objects of the aligned entities. 
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