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Abstract: The exponential growth of databases across various domains necessitates robust techniques for handling 

missing data to maintain data integrity and analytical accuracy. Traditional approaches often struggle with 

real-valued datasets due to inherent limitations in handling uncertainty and imprecision. Nearest 

Neighbourhood algorithms have proven beneficial in missing data imputation, offering effective solutions to 

address data gaps. In this paper, we propose a novel method for missing data imputation, termed Intuitionistic 

Fuzzy Rough-Nearest Neighbourhood Imputation (IFR-NNI), which extends the application of intuitionistic 

fuzzy rough sets to handle missing data scenarios. By integrating Intuitionistic Fuzzy Rough Sets into the 

nearest neighbor imputation framework, we aim to overcome the limitations of traditional methods, including 

information loss, challenges in managing uncertainty and vagueness, and instability in approximation 

outcomes. The proposed method is implemented on real-valued datasets, and non-parametric statistical 

analysis is performed to evaluate its performance. Our findings indicate that the IFR-NNI method 

demonstrates excellent performance in general, showcasing its effectiveness in addressing missing data 

scenarios and advancing the field of data imputation methodologies. 

1 INTRODUCTION 

The extraction of meaningful insights from data is 

fundamental for understanding phenomena and 

facilitating processes such as classification and 

regression. Across diverse domains including science, 

communication, and business, vast amounts of data are 

generated and utilized. However, datasets frequently 

encounter missing data due to various factors such as 

input errors, faulty measurements, or non-responses in 

assessments. For instance, in wireless sensor networks, 

missing data is often inevitable due to sensor faults or 

communication malfunctions (Li and Parker, 2014), 

while in DNA microarray studies, missing data may 

arise from insufficient resolution or image corruption 

(Sun et al., 2010). Additionally, repositories like the 

UCI Machine Learning Repository commonly contain 

datasets with substantial proportions of missing values. 

The presence of missing values poses significant 

challenges, particularly in the context of machine 

learning techniques, where interpretation and analysis 

may be severely compromised. Consequently, missing 

data imputation emerges as a critical issue across 
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scientific research communities, particularly in data 

mining and machine learning domains (Aydilek and 

Arslan, 2012; Nelwamondo et al., 2013).  

      Addressing missing values can be approached in 

various ways. While simple strategies like deletion or 

substitution with zero or mean values are common, 

they often lead to information loss and bias in 

assessments. Alternatively, imputation methods aim to 

estimate missing values using statistical or machine 

learning approaches. The nature of missing data can be 

categorized into three types: missing completely at 

random (MCAR), missing at random (MAR), and not 

missing at random (NMAR) (Little and Rudin, 2019). 

Understanding these categories is crucial for selecting 

appropriate imputation techniques. Statistical methods 

typically employ simple approaches like mean or mode 

imputation, while machine learning-based methods 

involve building models to predict missing values 

(García-Laencina et al., 2010). Nearest Neighbour 

(NN) based methods have gained popularity for 

missing value imputation due to their accuracy and 

simplicity. However, they require specifying the 

number of neighbors and suffer from high time 
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complexity and local optima issues. Conversely, 

statistical methods may introduce bias and complexity, 

relying on initial guesses and eigenvector 

representations (Troyanskaya et al., 2001).  
      The use of rough set theory introduced by Pawlak 

(2012) for missing data imputation is motivated by its 

strength in handling vagueness and incompleteness in 

data without requiring additional information. It 

provides robust approximations and decision rules 

directly from the dataset, ensuring both effectiveness 

and interpretability. The use of intuitionistic rough 

sets, rather than classical rough sets, further enhances 

this capability by addressing both uncertainty and 

vagueness through the inclusion of membership and 

non-membership functions. This dual aspect offers a 

more nuanced approximation, particularly useful in 

scenarios with incomplete or imprecise data, where 

classical rough sets may not fully capture the inherent 

uncertainty.       

      In this paper, we introduce a novel approach to 

missing data imputation, leveraging the combination 

of Intuitionistic Fuzzy (IF) rough sets and the nearest 

neighbour algorithm. By integrating IF rough sets 

with NN estimation, we aim to capitalize on the 

accuracy of NN methods while enhancing noise 

tolerance and robustness. Specifically, we propose IF 

rough-nearest neighbour imputation methods. The 

subsequent sections of this paper are organized as 

follows: Section 2 reviews relevant literature. Section 

3 provides essential preliminaries to understand the 

theoretical background. Section 4 introduces the 

proposed methodologies. Section 5 presents the 

implementation of these methods on benchmark 

datasets and evaluates their performance using non-

parametric statistical analysis. Finally, Section 6 

concludes our work and outlines future research 

directions.  

2 LITERATURE REVIEW 

Various domains such as meteorology, 

transportation, and others have witnessed the 

treatment of missing-valued data by researchers. 

Although several algorithms with different 

approaches have been proposed, they are not 

commonly employed for specific domains or datasets. 

Notable imputation techniques frequently used across 

fields include those based on Nearest Neighbours 

(NN), which predict missing values based on 

neighboring instances. While NN methods offer 

accuracy and simplicity, they come with drawbacks 

such as the need for specifying the number of 

neighbors, high time complexity, and local optima 

issues.  

      Troyanskaya et al. (2001) proposed two methods, 

KNN and SVD, for imputation in DNA microarrays. 

KNN computes a weighted average of values based 

on Euclidean distance from the K closest genes, while 

SVD employs an expectation maximization (EM) 

algorithm to approximate missing values. Comparing 

the two, KNN showed greater robustness, particularly 

with increasing percentages of missing values. Batista 

and Monard (2003) introduced the k-nearest neighbor 

imputation (KNNI) method, which replaces missing 

values with the mean value of specific attribute 

neighbors. Grzymala-Busse (2005) introduced global 

most common (GMC), global most common average 

(GMCA) methods for nominal and numeric 

attributes, respectively, where missing values are 

replaced by the most common or average attribute 

values. Kim et al. (2005) proposed the local least 

squares imputation (LLSI) method, which estimate 

missing attribute values as a linear combination of 

similar genes selected through k-nearest neighbors.  

      Schneider (2001) introduced an algorithm based 

on regularized Expectation-Maximization (EM) for 

missing value prediction, utilizing Gaussian 

distribution to parameterize data and iteratively 

maximizing likelihoods. Oba et al. (2003) proposed 

Bayesian PCA imputation (BPCAI), incorporating 

Bayesian estimation into the approximation stage. 

Honghai et al. (2005) presented SVM-based 

imputation methods, utilizing Support Vector 

Machines and Support Vector Regressors. 

Clustering-based methods, such as those by Li et al. 

(2004) and Liao et al. (2009), use techniques like K-

means and Fuzzy k- means for imputation, often 

incorporating sliding window mechanisms for data 

stream handling. Neural network-based methods, 

including Multi-Layer Perceptrons (MLP) (Sharpe 

and Sholly, 1995), Recurrent Neural Networks 

(RNN) (Bengio and Gingras, 1995), and Auto 

Associative Neural Networks (AANN) (Pyle, 1999), 

have been employed for imputation, each with its own 

approach and advantages. Amiri and Jensen (2016) 

introduced fuzzy rough set-based nearest neighbor 

algorithms for imputation, showing superior 

performance compared to traditional methods. In the 

paper (Pereira et al., 2020), the adaptability of 

Autoencoders in handling various types of missing 

data are discussed. 

      While clustering-based algorithms often exhibit 

high computational complexity, those based on 

nearest neighbors are preferred for their 

computational efficiency. Intuitionistic Fuzzy (IF) set 

theory, known for effectively handling vagueness and 
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uncertainty, remains unexplored in missing value 

imputation. In this work, we propose a missing data 

imputation method based on IF rough-nearest 

neighbor approach.  

3 PRELIMINARIES 

In this section a basic overview on Intuitionistic fuzzy 

rough sets (IFRS) is given. 

Definition 3.1. (Huang, 2013): A quadruple IS = (U, 

AT, V, h) is called an Information System, where U 
= {u1,u2,...,un} is a non-empty finite set of objects, 

called the universe of discourse, AT = {a1, a2,…, am} 

is a non-empty finite set of attributes. 𝑉 = ⋃ 𝑉𝑎𝑎∈𝐴𝑇   

where Va is the set of attribute values associated with 

each attribute a∈AT and h:U×AT→V is an 

information function that assigns particular values to 

the objects against attribute set such that ∀a ∈ AT, ∀u 

∈ U and h(u, a) ∈ Va.  

      An information system IS = (U, AT, V, h) is said 

to be a Decision System if AT = C ∪ D where C is a 

non-empty finite set of conditional features/attributes 

and D is a non-empty collection of decision 

features/attributes with C ∩ D = ∅. Here V = VC ∪ VD 

VD with VC and VD as the set of conditional attribute 

values and decision attribute values, respectively.  

 

Definition 3.2. (Pawlak, 2012): Let IS = (U, AT, V, 

h) be a decision system. For P ⊂AT, a P-

indiscernibility relation is defined as:  

 

𝑅𝑃 = (𝑥, 𝑦) ∈ 𝑈 ∗ 𝑈|∀𝑝 ∈ 𝑃 ⇒ 𝑝(𝑥) = 𝑝(𝑦) 

 

where, RP is an equivalence relation and [x]RP 

divides the set U into equivalence classes defined by 

the attributes belongs to P. If A ⊆ U, then the lower 

and upper approximation of set A are given by:  

 

(𝑅𝑃)𝐴 = {𝑥 ∈ 𝑈|[𝑥]𝑅𝑃
⊆ 𝐴} 

(𝑅𝑃)𝐴 = {𝑥 ∈ 𝑈|[𝑥]𝑅𝑃
∩ 𝐴 ≠ ∅} 

 

All the data instances that contained in set (𝑅𝑃)𝐴 

must contained in set A while the instances that 

contained in (𝑅𝑃)𝐴 may be a member of A.  

Definition 3.3. (Atanassov, 1999): Given a non-

empty finite universe of discourse U. A set A on U 

having the form A = {⟨x, μA (x),νA (x)⟩|x ∈ U} is 

said to be an IF set, where μA : U → [0, 1] and νA : 

U → [0, 1] with the condition 0 ≤ μA (x) + νA (x) ≤ 

1,∀x ∈ U are known as membership degree and non-

membership degree of the element x in A, 

respectively. πA (x) = 1 − μA (x) − νA (x) is the 

degree of hesitancy of the element x in IF set A.  

      The cardinality of an IF set A is given by |𝐴| =

∑
1+𝜇𝐴(𝑋)−𝜗𝐴(𝑥)

2𝑥∈𝐴  where 1 in numerator is a 

translation factor that guarantees the positivity of |A| 

while 2 in denominator is a scaling factor which 

bounds the cardinality between 0 and 1.  

      An ordered pair ⟨μ, ν⟩ is called an IF value, where 

0≤μ+ν≤1 and 0 ≤μ ,ν≤1. An information system is 

said to be an IF information system if attribute values 

corresponding to objects are IF value.  

Properties: For every two IF Sets A and B the 

following relations and operations hold:  

 
1. 𝐴 ⊆ 𝐵 iff μ𝐴(𝑥) ≤ μ𝐵(𝑥) and ν𝐴(𝑥) ≥ ν𝐵(𝑥), ∀𝑥 ∈ 𝑈  

2. 𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 

3. 𝑁(𝐴)  =  { (𝑥, ν𝐴(𝑥), μ𝐴(𝑥)) | 𝑥 ∈ 𝑈 } 

4. 𝐴 + 𝐵 =  { (𝑥, μ_𝐴(𝑥)  +  μ_𝐵(𝑥)  −  μ_𝐴(𝑥) ⋅
                       μ_𝐵(𝑥), ν_𝐴(𝑥)  ⋅ ν_𝐵(𝑥)) | 𝑥 ∈ 𝑈 } 

5.𝐴 − 𝐵 = {(
μ𝐴−μ𝐵

1−μ𝐵
,

ν𝐴

ν𝐵
) ,if μ𝐴(𝑥) ≥ μ𝐵(𝑥), ν𝐴(𝑥) ≤

ν𝐵(𝑥) > 0 and ν𝐴(𝑥)π𝐵(𝑥) ≤ π𝐴(𝑥)ν𝐵(𝑥)}, and  , <

0,1 > otherwise. 

6.  𝐴 ⋅ 𝐵 =  {(𝑥, μ𝐴(𝑥) ⋅ μ𝐵(𝑥), ν𝐴(𝑥) + ν𝐵(𝑥) −
ν𝐴(𝑥). ν𝐵(𝑥)) | 𝑥 ∈ 𝑈}  

7.  𝜆 ⋅ 𝐴 =  { (𝑥, 1 −  (1 −  𝜇𝐴(𝑥))𝜆, (𝜈𝐴(𝑥))𝜆) | 𝑥 ∈ 𝑈 } 
 

where, N is a negation operator.  

 

Definition 3.4. (Bustince and Burillo, 1996): An IF 

binary relation R(xi,xj) = ⟨μA(xi, xj), νA(xi, xj)⟩ 

between objects xi, xj ∈ U is said to be an IF 

tolerance relation if it is reflexive (i.e., μA (xi, xi) = 

1 and νA (xi, xi) = 0,∀xi ∈ X) and symmetric (i.e., 

μA (xi, xj) = μA (xj,, xi) and νA (xi, xj) = νA (xj, 

xi),∀xi, xj ∈ X).  

      Let U be a collection of finite objects and C ⊆A, 
an IF tolerance relation Rc(xi,xj) = 

⟨μRc(xi,xj),νRc(xi,xj)⟩, c ∈ C is defined as:  

    

     (1)
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Definition 3.5. (Cornelis et al., 2003): An IF 

triangular norm or IF t-norm T is a mapping from [0, 

1] × [0, 1] → [0, 1] which is increasing, associative 

and commutative and satisfies T(1,x) = x, ∀x ∈ [0,1].       

      An IF implicator I is a mapping [0, 1] × [0, 1] → 

[0, 1], which is decreasing in its first component and 

increasing in second component with condition I (0, 

0) = 1 and I (1, x) = x, ∀x ∈ [0, 1].  

Example 3.1: If x = ⟨x1,x2⟩ and y = ⟨y1,y2⟩ in [0, 1] 

are two IF values then an IF t-norm and IF implicator 

are given as:  

𝑇(𝑥, 𝑦) = [𝑚𝑎𝑥(0, 𝑥1 + 𝑦1 − 1), 𝑚𝑖𝑛(1, 𝑥2 + 1 − 𝑦1, 𝑦2 +

1 − 𝑥1)]                                                                                              (2) 

   𝐼(𝑥, 𝑦)  =  [𝑚𝑖𝑛(0, 𝑥2 +  𝑦1), 𝑚𝑎𝑥(0, 𝑥1 +  𝑦2 −
 1)]                                                                                         (3) 

Definition 3.6. (Cornelis et al., 2003): Given an IF set 

X ⊆ U and R(xi,xj) is an IF similarity/tolerance 

relation from U×U → [0,1] which assigns degree of 

similarity to each distinct pair of objects. The lower 

and upper approximation of X by R can be computed 

in many ways. A general definition is given as:  

(𝑅𝐼)𝑋(𝑥𝑖) = inf
𝑥𝑗∈𝑈

{𝐼 (𝑅(𝑥𝑖 , 𝑥𝑗), 𝑋(𝑥𝑗)) , ∀𝑥𝑖 ∈ 𝑈}           (4)                                                    

(𝑅𝐼)𝑋(𝑥𝑖) = sup
𝑥𝑗∈𝑈

{𝐼 (𝑅(𝑥𝑖 , 𝑥𝑗), 𝑋(𝑥𝑗)) , ∀𝑥𝑖 ∈ 𝑈}          (5)                                                           

Here, I is an IF implicator and T is an IF t-norm and 

X(xj) = 1, for xj ∈ X, otherwise X(xj) = 0. The pair 

⟨(𝑅𝐼)𝑋(𝑥𝑖), (𝑅𝐼)𝑋(𝑥𝑖) ⟩ is called as IF rough set. 

4 PROPOSED METHODOLOGY 

Jensen and Cornelis introduced the model based on 

KNN algorithm using fuzzy-rough lower ap- 

proximation and upper approximation in which 

discrete or continuous decision attribute values of 

datasets are predicted (Jensen and Cornelis, 2011). 

Based on this methodology Amiri and Jensen 

extended the FRNN model to predict the missing 

values presented in the dataset (Amiri and Jensen, 

2016). We have further extended this KNN based 

algorithm for IF information system to impute the 

missing values in IF information system using IF 

rough sets approach.  

      In this subsection, IF rough approximation 

operators are defined to achieve the target of missing 

value imputation. This algorithm proposes that for 

each instance/object of the dataset consisting at least 

one missing value, that instance will be treated as 

decision attribute and based on that attribute 

prediction is made. We address this algorithm as IF 

rough nearest neighbour imputation (IFRNNI).  

 4.1 If Rough Approximation Operators 

Definition 4.1: The IF distance matrix d(y, z) for the 

difference between instances y ∈ U and z ∈ U in order 

to calculate the distance between the instances y = 

⟨μ1,ν1⟩ and z = ⟨μn,νn⟩ is defined as (Szmidt and 

Kacprzyk, 2001):  

𝑑(𝑦, 𝑧) =

√(𝜇1 − 𝜇𝑛)2 + (𝜗1 − 𝜗𝑛)2 + (𝜋1 − 𝜋𝑛)2 + 𝑒𝑞𝑢𝑎𝑙(𝑑(𝐼0), 𝑑(𝐼𝑛))2                                                                                                                           

(6) 

where 𝑒𝑞𝑢𝑎𝑙(𝑑(𝐼0), 𝑑(𝐼𝑛))2 = {
0,   𝑑(𝑦) == 𝑑(𝑧)

1,               𝑒𝑙𝑠𝑒
 

Definition 4.2: IF similarity values for R(y, z), Ra(y, 

z), Rc(y, z)  and Rd(y, z) with attribute a, conditional 

attributes c’s and decision attribute d are defined as:  

R(y, z) = min Ra(y, z) = min (Rc(y, z), Rd(y, z))      (7)                                                                                      

where 𝑅𝑑(𝑦, 𝑧) = {
< 1,0 > ,   𝑑(𝑦) == 𝑑(𝑧)

< 0,1 > ,                 𝑒𝑙𝑠𝑒
 

Definition 4.3: The lower approximation and upper 

approximation of instance y with respect to z are 

defined as in the following equations:  

        R ↓ Rdz(y) = inf
𝑝∈𝑁

  I(R(y, p), Rc(p, z))             (8)                                                                                      

        R ↑ Rdz(y) =  sup
𝑝∈𝑁

 T(R(y, p), Rc(p, z))          (9)                                                                             

where, N is the k-nearest neighbour of instance y. Rdz 

is an IF tolerance relation which determines the 

similarities of two objects for the decision attribute. 

Rd(p,z) is also an IF tolerance relation which 

measures the similarity of objects z and p with respect 

to decision attribute d. In general, Raz(p) signifies the 

similarity of objects z and p with respect to attribute 

a. Here, all IF tolerance relations are computed by Eq. 

(1).  

      One of the problems that are worth considering is 

in the process of computing the distance between two 

objects consisting of some missing attributes. Here, 

we simply avoid missing attributes while computing 

distances. Hence, the distance is only calculated 

between those instances having non- missing attribute 

values.  

4.2 Prediction of Missing Values 

Definition 4.6. With the help of lower and upper 

approximation operators, 𝜏1̃ and 𝜏2̃ are defined as 
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follows:                    

       (10) 

Definition 4.7. The predicted missing value, namely 

𝜏̃, obtained with the help of 𝜏1̃ and 𝜏2̃  is defined as:  

                (11) 

It is quite possible sometimes, that either 𝜇𝜏2̃
 or 𝜗𝜏1̃

. 

In such case, 𝜏1̃/𝜏2̃ cannot be estimated. To handle 

this situation, the mean value of the attribute for the 

neighbours is employed.  

4.3 Algorithm and Illustrative Example 

 

Algorithm 1: Missing Data Imputation using IFRNNI. 

The above algorithm work as follows: In a dataset 

domain, for every instance y, comprising at least one 

missing data value for attribute a, the algorithm 

obtains its k nearest neighbours and places them in 

the set N. Partial similarities between units are 

computed by considering the subset of all attributes 

not missed for the two considered units. For instance, 

in Example 4.1, the similarity between 𝑈0 and 𝑈1 is 

determined using attributes 𝑎2 and  𝑑; between 𝑈0 

and 𝑈3, the attributes  𝑎0, 𝑎2, and 𝑑 are used; and 

between 𝑈0 and  𝑈7, only the decision attribute 𝑑 is 

used due to missing values in other attributes. This 

approach ensures that the similarity measure is as 

comprehensive as possible based on the available 

data. Thereafter, the missing value are approximated 

utilizing y's nearest neighbours. Next step is to 

compute the lower approximation and upper 

approximation of y with respect to the instance z, 

utilizing the average of these, obtain the final 

membership 𝜇𝑀 and non-membership 𝜐𝑀 of the 

predicted value. The process is conducted for all the 

instances which belong to N, and depending upon 

these calculations over all the neighbours, the 

algorithm returns a value.  

Example 4.1: Two datasets are shown in Table 1. The 

right side of the Table represents the original data 

with no missing values while the left side represents 

the same data with some missing attribute values 

inserted. Missing values are epitomized by “?”. The 

method of evaluating missing values by IF nearest 

neighbour algorithm is as follows. 

Table 1: Incomplete intuitionistic fuzzy value dataset. 

 

In this IF decision system instance U0 has two 

missing values a0 and a1, respectively. First, we 

choose attribute value a0(U0) for imputation.  

      We calculate Euclidean distance between U0 and 

other instances given by Eq. (6). Since attribute value 

a1(U0) is also missing, so we ignore this attribute at 

the time of calculating distances and we get the 

distance between U0 and U1 as;  

 

y = U0 is the instance having missing attribute value 

c0(U0) and z, p ∈ N(y). We first take z = U3. On 

putting third variable p = z in the formulae of 

approximation operators, we get no new information. 

So, we ignore this state and choose value of p other 

than z, either U1 or U4. We calculate the IF tolerance 

relations by Eq. (1) and all the missing attribute 

values are ignored in the calculation 
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Now, putting the above values in the lower and 

upper approximation given by Eq.(10), we get
  

 

 

 

Table 2 illustrates the computation of lower and 

upper approximations using IF T-norm and IF 

Implication across various attribute pairs. 

 

Thus, we get the final predicted value of a0(U0) = 

⟨0.954, 0⟩.  

Table 2: a0(U0) imputation with IFRNNI. 

 

5 EXPERIMENTAL ANALYSIS 

In this section, some experiments are performed on 

real valued dataset implementing the proposed 

models and comparison is made with other existing 

imputation techniques. The impact on the proposed 

models with variation of parameter k for its different 

values is investigated. A non- parametric statistical 

test is also performed for the validation of the results. 

5.1 Experimental Setup 

This subsection describes the datasets used, the other 

imputation methods used for comparison and also the 

criteria employed for the comparison. An effective 

way of estimating imputation methods is that first 

values are artificially removed from the datasets and 

then comparison is made between the imputed values 

produced by the proposed method and the original 

data values. For this purpose, we have employed 21 

datasets from the KEEL dataset repository (Derrac et 

al., 2015). Table 3 presents the short details of the 

datasets utilized in the experimentation section. Since 

none of the datasets include the missing data values, 

we insert random missing values into them.  

      Table 3: Description of dataset.  

 

Here, MCAR method is used for insertion of 

missing values in the datasets. For the investigation 

of the execution of the algorithms under various 

conditions, we eliminate 5%, 10%, 20% and 30% of 

the values in the datasets. Perhaps, anything above 30 

percent could be too damaging to the data to obtain 

useful results. A measure is required to compare the 

results obtained from the imputation algorithms. A 

commonly used measure to get the difference 

between the values predicted by a model and the 

values actually observed in the environment at which 

experiment is performed, is the Root Mean Square 

Error (RMSE) (also referred to as root mean square 

deviation, RMSD). The RMSE of a model being used 

for prediction with respect to the estimated variable 

zmodel is defined as:  
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where, zobs is the observed value and zmodel is the 

imputed value. RMSE measure is used here to 

compare the yields of the imputation algorithms. 

Since this measure generates values in different 

ranges depending upon the ranges of attributes of 

datasets, we have normalized the employed data with 

the min-max normalization procedure (Shalabi et al., 

2006) so that the comparisons of RMSE values are 

more practical.  

5.2 Effect of Parameter K 

 

Figure 1: Average RMSE acquired by the algorithm with 

5% missing values. 

 

Figure 2: Average RMSE acquired by the algorithm with 

5% missing values. 

 

Figure 3: Average RMSE acquired by the algorithm with 

5% missing values. 

 

Figure 4: Average RMSE acquired by the algorithm with 

5% missing values. 

We first begin the experimentation in search 

algorithms. These parameters are the distance 

measures, similarity measures, IF t-norms, IF 

implicators, IF quantifiers, OWA operators and 

number of neighbours in which most of the best 

values have been ascertained by other researchers. All 

these parameters have previously been suggested in 

section 4. For all other methods the parameters are 

chosen based on suggestions in (Amiri and Jensen, 

2016). The only parameter that needs to be laid down 

is the number of neighbours, k. To observe the effect 

of this parameter, we use 21 datasets together with 

5%, 10%, 20% and 30% missing values injected into 

the dataset. The tested values of the parameter k are 

taken in the range 3 to 15. For the overall 

convenience, only the average results are given here 

which are shown in Figures 1-4. 

 5.3 Comparison with Other Missing 
Data Imputation Methods  

In this subsection, a comparison is made between the 

proposed methods and the other imputation methods. 

We have compared the proposed methods on 21 

datasets with 14 missing value imputation methods 

using different approaches that are described in 

introduction section; namely, BPCAI, CMCI, FKMI, 

KMI, KNNI, LLSI, MCI, SVDI, SVMI and WKNNI, 

EMI, FRNNI, VQNNI and OWA-FRNNI (Amiri and 

Jensen, 2016). The average RMSE results of all 

methods are shown in Figure 5. It can be observed 

from the figures that for all 5%, 10%, 20% and 30% 

missing values that the proposed IFRNNI method, 

have minimum average RMSE values as compared to 

other imputation methods. 

K-value 
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Figure 5: Average RMSE obtained from Missing Data 

Imputation Algorithms. 

Table 4 depicts the obtained results for IFRNNI 

vs other imputation methods, and it shows that when 

5%,10% and 20% values are missing from the 

datasets, IFRNNI method has outperformed than 

most of the imputation methods except FRNNI, 

VQNNI, OWA-FRNNI, KNNI, BPCAI. The reason 

is that obtained asymptotic p-values are less than the 

0.05 level of significance. For 30% missing data 

values, IFRNNI has outperformed all other 

imputation methods.  

Table 4: Comparison of the imputation algorithms with 

IFRNNI in terms of RMSE. 

 

6 CONCLUSION 

Our study introduces novel methods for missing data 

imputation by integrating IF rough set theory to 

nearest neighbour approach. This fusion of 

frameworks offers a comprehensive approach to 

addressing missing values, leveraging Rough Set 

Theory’s ability to handle uncertainty and IF set 

theory’s representation of vagueness. Through 

empirical evaluations on benchmark datasets, our 

proposed methods demonstrate superior accuracy and 

robustness compared to traditional techniques. 

Notably, our methods offer simplicity and ease of 

implementation, enhancing their practicality for real-

world applications. Overall, this research contributes 

to advancing missing data imputation methodologies 

and opens new avenues for leveraging theoretical 

foundations to improve data analysis techniques 

across various domains. 

      In future work, we will compare the 

computational efficiency, ease of implementation, 

interpretability, and generalization capabilities of 

IFR-NNI with neural network-based imputation 

methods, focusing on their performance across 

diverse datasets. 

REFERENCES 

Li, Y., Parker, L. E. (2014). Nearest neighbor imputation 

using spatial–temporal correlations in wireless sensor 

networks. Information Fusion, 15, 64-79. 

Sun, Y., Braga-Neto, U., Dougherty, E. R. (2010). Impact 

of missing value imputation on classification for DNA 

microarray gene expression data—a model-based 

study. EURASIP Journal on Bioinformatics and 

Systems Biology, 1-17. 

Aydilek, I. B., Arslan, A. (2012). A novel hybrid approach 

to estimating missing values in databases using k-

nearest neighbors and neural networks. International 

Journal of Innovative Computing, Information and 

Control, 7(8), 4705-4717. 

Nelwamondo, F. V., Golding, D., Marwala, T. (2013). A 

dynamic programming approach to missing data 

estimation using neural networks. Information 

Sciences, 237, 49-58. 

Little, R. J., Rubin, D. B. (2019). Statistical analysis with 

missing data (Vol. 793). John Wiley & Sons. 

García-Laencina, P. J., Sancho-Gómez, J. L., Figueiras-

Vidal, A. R. (2010). Pattern classification with missing 

data: a review. Neural Computing and 

Applications, 19, 263-282. 

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., 

Hastie, T., Tibshirani, R., ..., Altman, R. B. (2001). 

Missing value estimation methods for DNA 

microarrays. Bioinformatics, 17(6), 520-525. 

Batista, G. E., Monard, M. C. (2003). An analysis of four 

missing data treatment methods for supervised 

learning. Applied artificial intelligence, 17(5-6), 519-

533. 

Grzymala-Busse, J. W., Grzymala-Busse, W. J. (2005). 

Handling Missing Attribute Values. Data Mining and 

Knowledge Discovery Handbook, 37. 

Kim, H., Golub, G. H., Park, H. (2005). Missing value 

estimation for DNA microarray gene expression data: 

local least squares imputation. Bioinformatics, 21(2), 

187-198. 

Schneider, T. (2001). Analysis of incomplete climate data: 

Estimation of mean values and covariance matrices and 

imputation of missing values. Journal of climate, 14(5), 

853-871. 

Oba, S., Sato, M. A., Takemasa, I., Monden, M., 

Matsubara, K. I., Ishii, S. (2003). A Bayesian missing 

value estimation method for gene expression profile 

data. Bioinformatics, 19(16), 2088-2096. 

FCTA 2024 - 16th International Conference on Fuzzy Computation Theory and Applications

406



 

 

Honghai, F., Guoshun, C., Cheng, Y., Bingru, Y., Yumei, 

C. (2005). A SVM regression-based approach to filling 

in missing values. In International Conference on 

Knowledge-Based and Intelligent Information and 

Engineering Systems (pp. 581-587). Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

Li, D., Deogun, J., Spaulding, W., Shuart, B. (2004). 

Towards missing data imputation: a study of fuzzy k-

means clustering method. In Rough Sets and Current 

Trends in Computing: 4th International Conference, 

RSCTC 2004, Uppsala, Sweden, June 1-5, 2004. 

Proceedings 4 (pp. 573-579). Springer Berlin 

Heidelberg. 

Liao, Z., Lu, X., Yang, T., Wang, H. (2009). Missing data 

imputation: a fuzzy K-means clustering algorithm over 

sliding window. In 2009 Sixth International 

Conference on Fuzzy Systems and Knowledge 

Discovery (Vol. 3, pp. 133-137). IEEE. 

Sharpe, P. K., Solly, R. J. (1995). Dealing with missing 

values in neural network-based diagnostic systems. 

Neural Computing & Applications, 3, 73-77. 

Bengio, Y., Gingras, F. (1995). Recurrent neural networks 

for missing or asynchronous data. Advances in neural 

information processing systems, 8. 

Pyle, D. (1999). Data preparation for data mining. Morgan 

Kaufmann. 

Amiri, M., Jensen, R. (2016). Missing data imputation 

using fuzzy-rough methods. Neurocomputing, 205, 

152-164. 

Pereira, R. C., Santos, M. S., Rodrigues, P. P., Abreu, P. H. 

(2020). Reviewing autoencoders for missing data 

imputation: Technical trends, applications and 

outcomes. Journal of Artificial Intelligence 

Research, 69, 1255-1285. 

Huang, S. Y. (Ed.). (2013). Intelligent decision support: 

handbook of applications and advances of the rough 

sets theory. 

Pawlak, Z. (2012). Rough sets: Theoretical aspects of 

reasoning about data (Vol. 9). Springer Science & 

Business Media. 

Atanassov, K. T. (1999). Intuitionistic fuzzy sets (pp. 1-

137). Physica-Verlag HD. 

Bustince, H., Burillo, P. (1996). Vague sets are 

intuitionistic fuzzy sets. Fuzzy sets and systems, 79(3), 

403-405. 

Cornelis, C., De Cock, M., Kerre, E. E. (2003). 

Intuitionistic fuzzy rough sets: at the crossroads of 

imperfect knowledge. Expert systems, 20(5), 260-270. 

Jensen, R., & Cornelis, C. (2011). Fuzzy-rough nearest 

neighbour classification. In Transactions on rough sets 

XIII(pp. 56-72). Springer Berlin Heidelberg. 

Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic 

fuzzy sets. Fuzzy sets and systems, 118(3), 467-477. 

Derrac, J., Garcia, S., Sanchez, L., Herrera, F. (2015). Keel 

data-mining software tool: Data set repository, 

integration of algorithms and experimental analysis 

framework. J. Mult. Valued Logic Soft Comput, 17, 

255-287. 

Al Shalabi, L., Shaaban, Z., Kasasbeh, B. (2006). Data 

mining: A preprocessing engine. Journal of Computer 

Science, 2(9), 735-739. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enhanced Missing Data Imputation Using Intuitionistic Fuzzy Rough-Nearest Neighbor Approach

407


