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Abstract: Visual odometry based on point feature matching has been well-established. Notably, methods based on 
essential and fundamental as well as homography matrices have been widely used. It is known that the 
accuracy of visual odometry is affected by the choice of matched feature point pairs. However, no 
mathematically rigorous formula relating the choice of feature point pairs to the uncertainty involved in visual 
odometry is available. Instead, point selection heuristics based on feature point distribution combined with 
RANSAC-based refinement are mostly adopted to ensure accuracy. In this paper, we present “Uncertainty 
Hypervolume” as a rigorous mathematical formula that relates the selected feature point pairs to the 
uncertainty of visual odometry. The uncertainty hypervolume associated with selected feature point pairs 
provides a precise metric for evaluating the selected feature point pairs and the resulting visual odometry. 
This metric is useful in practice not only for selecting the best feature point pairs but also for selecting poor 
feature point pairs available for visual odometry. Furthermore, it accurately identifies the uncertainty in visual 
odometry, which helps better manage the performance of visual odometry applications. 

1 INTRODUCTION 

Visual odometry (Nistér et al., 2004) is a fundamental 
technique in computer vision and robotics that 
facilitates estimating camera movement by analyzing 
sequential images. The accuracy of pose estimation, 
a critical aspect of visual odometry, depends not only 
on the chosen pose estimation method but also 
significantly on the quality of the selected 
correspondence feature points. S. Poddar, R. Kottath, 
and V.Karar (Poddar et al., 2019) conducted a 
comprehensive review of feature selection strategies 
for visual odometry, outlining key steps including 
feature detection, description, inlier/outlier detection, 
feature distribution, and consideration of feature 
quality. This multi-step process emphasizes the 
intricate relationship between the accuracy of pose 
estimation and the characteristics of the selected 
feature points. 

In feature selection, the initial removal of outliers 
is paramount, as mismatched feature pairs can lead to 
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erroneous pose estimation. To solve this issue, 
pioneering work by Fischler (Fischler et al., 1981) 
introduced the random sample consensus (RANSAC) 
algorithm, which uses geometric constraints to 
remove outliers from the feature set effectively. 

However, the effort to improve accuracy in pose 
estimation extends beyond the methodological level. 
Researchers have recognized that the distribution and 
uniformity of corresponding feature points in space 
also play a critical role in determining visual 
odometry performance (Cvišić et al., 2015). As 
pointed out in Poddar's review, traditional feature 
selection methods often result in a non-uniform 
distribution of feature points across the image. As a 
result, clusters of closely spaced feature points can 
lead to suboptimal pose estimation results. 

To overcome this limitation and achieve 
improved accuracy, an innovative approach has 
emerged. This approach, known as the bucketing 
technique (Zhang et al., 1995, Kitt et al., 2010) 
attempts to achieve uniformity in the distribution of 
correspondence feature points. By partitioning the 
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image into a grid of M × M buckets and selecting only 
a small number of features from each bucket, the 
bucketing technique ensures a well-distributed 
selection of features. In particular, this uniform 
distribution of features has the potential to improve 
both the accuracy and computational efficiency of 
pose estimation. 

The previously mentioned approaches for feature 
selection aimed to select dependable features through 
the removal of outliers or consideration of feature 
point distribution. While these methods have proven 
effective in enhancing the accuracy of VO, they do 
not ensure optimality in terms of mathematical 
formalism, which guarantees the minimum 
uncertainty of VO. 

Recently, the concept of the Orthogonality Index 
(Nguyen and Lee, 2019) has been introduced to 
analytically derive optimal feature selection. This 
approach demonstrates optimal feature selection 
through a well-defined mathematical format instead 
of random selection. The process increases the 
orthogonal exponent of individual equations and 
applies constraints to computation to reduce 
uncertainty when estimating Essential, Fundamental, 
or Homography matrices associated with visual 
odometry. However, while the Orthogonality Index 
provides a mathematical method for optimal feature 
selection, they do not account for uncertainty in 
feature points due to measurement or other noise. 
This issue must be addressed as it significantly 
impacts VO estimation. Therefore, a method that 
reflects these factors is necessary to ensure optimal 
feature selection. 

To this end, our study capitalizes on insights 
gained from simulation experiments, which have 
shown that the measurement error variance and the 
spatial distribution of the extracted feature points 
significantly affect pose estimation. We propose a 
novel approach that incorporates both of these 
factors.  

Our approach can be summarized as follows: If 
the matched feature point pairs are well-matched with 
minimal measurement error and are uniformly 
distributed throughout the image, the estimated 
essential matrix is expected to be close to the ground 
truth essential matrix. However, due to the 
uncertainty of the matched feature point pairs used to 
estimate the essential matrix and the error of the 
equations generated using them, the estimated 
essential matrix forms a stochastically distributed 
distribution centered on the ground truth(GT). We 
experimentally demonstrate that the degree of 
dispersion depends on the magnitude of the 
uncertainty in estimating the essential matrix. We 

found that the spatial distribution they form should be 
taken into account when selecting matching feature 
point pairs, and present a novel "Uncertainty 
Hypervolume" approach that takes both into account.  
The estimated essential matrix is stochastically 
distributed around the reference ground truth 
essential matrix, and we quantify this with 
hypervolume. Through experiments, we show a 
significant correlation between hypervolume and the 
error of the pose derived from the essential matrix. 
Based on these results, we propose a mathematically 
well-structured Uncertainty Hypervolume based 
approach for feature point pair selection to obtain the 
optimal solution. 

In the following sections, we detail our 
methodology, experimental setup, and results, 
culminating in a comprehensive analysis of the 
interplay between feature selection, spatial 
distribution, and pose estimation accuracy. 

2 PROBLEM DEFINITION AND 
APPROACH 

2.1 Preliminary 

 
Figure 1: Epipolar Geometry, A 3D point 𝑃  is projected 
onto the normalized image plane of each camera at 𝑝 and 𝑞. 
The points 𝑒  and 𝑒′  where the line connecting the two 
camera origins and the image plane meet are called epipole, 
and the straight lines 𝑙  and  𝑙′  connecting the projection 
points and the epipole are called epiline (epipolar line). 

In epipolar geometry (Deriche et al., 1994), given a 
point 𝑃 in space, cameras 𝐶ଵ and 𝐶ଶ view the point 𝑃 
from two different perspectives. The point 𝑃 is then 
projected onto the normalized image plane of each 
camera 𝐶ଵ  and 𝐶ଶ  as 𝑝  and 𝑞 ( 𝑝  and 𝑞  are 
homogeneous normalized image coordinates). It is 
known that there is always a 3x3 essential matrix 
(Nistér, 2004), 𝑬 between the projected points 𝑝 and 𝑞 that satisfies the epipolar constraint 𝑝்𝐸 𝑞 = 0.  
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This essential matrix obeys the following 
constraints. 𝑑𝑒𝑡(𝐸 ) = 0                             (1)                     2𝐸 𝐸 ் 𝐸 − 𝑡𝑟(𝐸 𝐸 ் )𝐸 = 0                  (2) 

The second expression is a matrix constraint that 
gives nine equations for the elements of 𝑬. However, 
only two of them are algebraically independent. Thus, 
with the two essential matrix constraints mentioned 
above, we can determine the essential matrix with 
only five corresponding point pairs (Deriche et al., 
1994).  

Once 𝑬 is determined, the rotation matrix 𝑹 and 
the translation vector 𝒕 can be obtained by performing 
a Singular Value Decomposition (SVD).  

While 𝑹 has 3 degrees of freedom and 𝒕 has 3 
degrees of freedom, if we consider the essential 
matrix as a projection element, it has 5 degrees of 
freedom with the scale factor removed. Therefore, we 
can estimate 𝑬  with five pairs of corresponding 
feature points and the Essential Matrix constraint. 

The epipolar constraint 𝑝்𝐸 𝑞 = 0  can be 
expressed simply as follows. 𝑣 𝐸ො  = 0                              (3) 

where, 𝑣 = ሾ𝑝ଵ qଵ , 𝑝ଶ 𝑞ଵ , 𝑝ଷ 𝑞ଵ , 𝑝ଵ 𝑞ଶ , 𝑝ଶ𝑞ଶ, 𝑝ଷ 𝑞ଶ , 𝑝ଵ 𝑞ଷ , 𝑝ଶ 𝑞ଷ , 𝑝ଷ𝑞ଷሿ  (4)
 𝑎𝑛𝑑 𝐸෠ = ሾ𝐸ଵଵ , 𝐸ଵଶ, 𝐸ଵଷ , 𝐸ଶଵ , 𝐸ଶଶ, 𝐸ଶଷ , 𝐸ଷଵ , 𝐸ଷଶ, 𝐸ଷଷ ሿ் (5)𝑬 can be determined based on the five pairs of 
corresponding feature points, 𝑝 and 𝑞 that define the 
following 5x9 matrix equation:   𝐴 𝐸෡ = 0                               (6) 

where,  𝐴 = ሾ𝑣ଵ  𝑣ଶ   𝑣ଷ   𝑣ସ  𝑣ହ ሿ்                (7) 
Then, VO between the two camera frames can be 

derived from E obtained by (1), (2), and (6). 

2.2 Problem Definition 

The accuracy of the estimated essential matrix 
determines the accuracy of the transformation 
relationship between the two cameras. This is 
equivalent to the performance of Visual Odometry. In 
VO, we use pairs of corresponding feature points that 
match in both image planes to compute the essential 
matrix. In other words, it is obvious that the accuracy 
of the estimated essential matrix will increase if the 
pairs of corresponding feature points with good 
quality and evenly distributed in the image plane are 
selected and computed. In this paper, we investigate 
how the accuracy of VO is affected by selecting well-
distributed and high-quality corresponding feature 

points when estimating the essential matrix. We 
propose a new approach to feature point selection 
using a canonicalization metric called "Uncertainty 
Hypervolume". 

2.3 Approach 

Corresponding pairs of feature points (𝑝௜, 𝑞௜)  have 
uncertainties due to measurement error, matching 
error, noise error, etc. In the epipolar constraint of (3), 
the solution of 𝐸 lies in the space perpendicular to 𝑣௜. 
The uncertainty of 𝑣௜  leads to the uncertainty of 𝐸, 
and the estimated 𝐸  is stochastically distributed 
around the GT due to the uncertainty of 𝑣௜ . The 
solution subspace formed around the GT changes in 
size as a function of the error associated with 𝑣௜, i.e., 
the larger the uncertainty of the corresponding pair of 
feature points, the more stochastically spread the 
solution subspace becomes. This is equivalent to 
saying that the volume size of the solution subspace 
represents the uncertainty. From now on, we will 
refer to the size of the solution subspace in higher 
dimensions as the "Hypervolume". Our goal is to 
choose (𝑝௜, 𝑞௜)   for 𝑣௜  such that the size of this 
hypervolume is minimized (i.e., we choose 𝑣௜  such 
that the uncertainty of the solution is small). To 
achieve our goal, we will explore how the uncertainty 
of a corresponding pair of feature points affects the 
uncertainty of the solution subspace, and more 
specifically, we will define and explain the concept of 
a hypervolume.  

Consider the simplest quadratic form of the 
problem (the solution of the Essential matrix we want 
to find is high-dimensional, with 9 dimensions. So, 
we extend the concepts from lower to higher 
dimensions).  ൤𝑎ଵ 𝑏ଵ𝑎ଶ 𝑏ଶ൨ ቂ𝑥ଵ𝑥ଶቃ =  ቂ𝑐ଵ𝑐ଶቃ                   (8) 

Let 𝐴 = ൤𝑎ଵ 𝑏ଵ𝑎ଶ 𝑏ଶ൨ , 𝑋 = ቂ𝑥ଵ𝑥ଶቃ , 𝑐 = ቂ𝑐ଵ𝑐ଶቃ   and the 
solution we want to find is 𝑋. Knowing 𝐴 and 𝑐, there 
is only one solution ( 𝑎ଵ ≠ 𝑎ଶ, 𝑏ଵ ≠ 𝑏ଶ, 𝐴 ≠ 0 ). 
However, if we consider the case where there is 
uncertainty due to the error of 𝐴, it is equivalent to 
(9). ൤𝑎ଵ ± ∆𝑎ଵ 𝑏ଵ ± ∆𝑏ଵ𝑎ଶ ± ∆𝑎ଶ 𝑏ଶ ± ∆𝑏ଶ൨ ቂ𝑥ଵ𝑥ଶቃ = ቂ𝑐ଵ𝑐ଶቃ          (9) 

𝐴′௜ = ൤𝑎ଵ ± ∆𝑎ଵ 𝑏ଵ ± ∆𝑏ଵ𝑎ଶ ± ∆𝑎ଶ 𝑏ଶ ± ∆𝑏ଶ൨               (10) 
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Figure 2: (Left) Graph plotted when the equation of two 
linear lines has a negative slope. The intercept is determined 
by ±∆𝑎ଵ, ±∆𝑏ଵ, ±∆𝑎ଶ, and ±∆𝑏ଶ, which is the variance due 
to uncertainty. (Right) When one linear equation has a 
positive slope and another has a negative slope. There are a 
total of four possible cases where 𝐴௜ᇱ  , (𝑖 = 1, ⋯ ,4)can be 
determined, but the equations of this line have four vertices, 
and the trapezoid is the hypervolume.  

The magnitude of the error is denoted by ∆𝑎ଵ , ∆𝑏ଵ , ∆𝑎ଶ , and ∆𝑏ଶ  for the elements of 𝐴 . The 
meaning of ±  is the variance of the error, which 
corresponds to the uncertainty by having a value in 
the range. Fig. 2 shows the graph of (9). In the graph, 
the solid line is the equation of the original straight 
line before adding the error, and the equation of the 
straight line represented by the dashed line is the 
equation of 𝐴௜ᇱ (𝑖 = 1, ⋯ ,4) when the error variance 
is maximum. 𝐴ᇱଵ = ൤൅∆𝑎ଵ ൅∆𝑏ଵ൅∆𝑎ଶ ൅∆𝑏ଶ൨,   𝐴ᇱଶ = ൤൅∆𝑎ଵ ൅∆𝑏ଵ−∆𝑎ଶ −∆𝑏ଶ൨ 

(11)𝐴′ଷ = ൤−∆𝑎ଵ −∆𝑏ଵ൅∆𝑎ଶ ൅∆𝑏ଶ൨,   𝐴′ସ = ൤−∆𝑎ଵ −∆𝑏ଵ−∆𝑎ଶ −∆𝑏ଶ൨ 

The solution of the original system of equations 
without error is the intersection of the equations of the 
two straight lines represented by the solid lines and is 
determined to be one. However, the solution of the 
system of equations with the uncertainty given by the 
error will probabilistically lie within a trapezoid 
whose vertices are the intersections of the equations 
of the dotted lines shown in the graph. The larger the 
error, the greater the width of this trapezoid, i.e., the 
greater the uncertainty of the solution. The 
"Uncertainty hypervolume" defined in the previous 
section 2.3 corresponds to the area of the trapezoid in 
this problem. Thus, by calculating the size of the 
hypervolume, we can quantitatively represent the 
uncertainty. The hypervolume we are talking about 
forms an n-dimensional hypercube depending on the 
dimension of the problem to be solved, which is two-
dimensional in the case of equation (9), so it becomes 
a two-dimensional trapezoid, that is, the area of the 

shape. In this case, the number of vertices that form 
the boundary of the shape is 2୬ , where 𝑛  is the 
number of unknown variables. In the next higher 
dimension, three-dimensional, we can think of the 
hypervolume as a three-dimensional cube, which is a 
crumpled cube with eight vertices (one dimension: 
line, two dimensions face, three dimensions: cube, ⋯, 𝑛-dimensional: 𝑛-hypercube).  

 
Figure 3: 𝐸௘௦௧  is the essential matrix computed with five 
pairs of corresponding feature points. 𝐸ଵ, ⋯ 𝐸ଷଶ, obtained 
by (13), form the vertices of a hypercube, which is a 
clustering of groups that have the maximum variance and 
are probabilistically likely to be the solution subspace. Its 
hypervolume reflects the uncertainty, and the goal is to find 
the corresponding feature point set that minimizes it. 

Let's return to our original problem and extend the 
concept of hypervolume defined in a low-
dimensional space to a higher-dimensional domain. 
The essential matrix we want to find is a 3x3 matrix 
with 9 elements, as shown in (5). The solution of 𝐸 
exists somewhere in the 9-dimensional space and 
must be singularized. However, due to the uncertainty 
caused by the errors of 𝑣௜, the corresponding feature 
point pairs, the estimated solution of 𝐸  will be 
stochastically distributed around the ground truth 𝐸. 
In the case of the 5-point algorithm we use for VO 
estimation, the solution can be obtained using only 5 
pairs of corresponding feature points due to the 
additional constraints (1) and (2). Therefore, using 
equation (6) to express the error variance to represent 
the uncertainty in the manner of (9), 2ହ = 32 pairs of vᇱ௜, (𝑖 = 1, … ,32) are generated (13). If the Essential 
matrix is estimated using this as input to the 5-point 
algorithm, 𝐸௜(𝑖 = 1, … 32)  is generated. This means 
that the manifold formed by the two constraints 
projects the solution subspace that exists in the 9-
dimension to a lower dimension in the 5-dimension. 
Therefore, the 𝐸௜(𝑖 = 1, … 32) calculated using this 
method are stochastically distributed around the 
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ground truth 𝐸 and form the outermost vertices of the 
solution subspace. Fig. 3 shows the projection of 𝐸 in 
9-dimensional space into 3-dimensional space (not an 
exact projection, but an approximation for illustration 
purposes). The uncertainty due to multiple error 
factors is represented by a 5-dimensional hypercube 
with 32 vertices, and the solution probabilistically 
exists inside the hypercube. The volume of the 
hypercube is the hypervolume, and its size represents 
the degree of uncertainty. We try to minimize the 
uncertainty of VO estimation by selecting a set of 
feature points with the minimum hypervolume size. 

2.4 Hypervolume Calculation Using 
Qhull Algorithm 

In the previous section, we detailed the procedure for 
acquiring 32 vertices 𝐸௜(𝑖 = 1, … , 32)  that constitute 
the hypervolume and its significance. Additionally, it 
was proposed that the size of the hypervolume 
corresponds to the level of uncertainty, which can be 
quantified through its acquisition. We utilized the 
MATLAB function convexhulln to obtain the 
hypervolume with the 32 vertices 𝐸௜ that comprise its 
outermost layer. The function is founded on the Qhull 
algorithm, which functions in the following manner. 

a. Point Sorting: First, use the technique of aligning 
data points appropriately. Because data points can 
be randomly distributed in higher-dimensional 
spaces, setting up the ordered order makes it more 
efficient in subsequent steps. Sorted data helps 
you calculate convex shells.  

b. Centrum Location: Calculates the center position 
of the data. This is used to clip points based on the 
center position and to quickly calculate the 
convex shell. The center position can be related to 
the mean or median of high-dimensional data. 

c. Create Point Clipping: Use the center position to 
clip data points and apply techniques to remove 
unnecessary points. This reduces unnecessary 
calculations and optimizes memory usage. In 
high-dimensional data, many points may not 
contribute to the formation of convex shells. 

d. Convex Hull of Clipped Points: Calculates the 
convex shell for clipped points. This forms most 
of the final convex shell. The process of 
calculating convex shells for clipped data is 
efficient. 

e. Return Results: Finally, the Qhull algorithm 
returns the calculated convex shell. This gives 
results as convex polygons or convex polygons 

surrounding a given data point in a high-
dimensional space. 

Through these various geometric and 
computational techniques, the Qhull algorithm 
effectively computes the convex shells of high-
dimensional data. And then, The optimal feature 
selection based on the proposed hypervolume method 
is described as follows: 

Algorithm 1: Hypervolume-based optimal feature selection.  

Data: 𝐿 correspondence feature point sets 
Result: five-point sets with the lowest hypervolume
Step 1. Random selection of five feature point sets, 
{ (𝑝௜, 𝑞௜),  𝑖 = 1, ⋯ ,5 } from the 𝐿  feature pairs 
detected from the images of two camera views 
subject to VO. It is worth noting that a bucketing 
approach can be incorporated into this step to 
improve the initial selection of five feature point 
sets. 
 
Step 2. Generate the corresponding coefficient 
vectors, { 𝑣௜, 𝑖 = 1, ⋯ ,5  }. Then, compute the 
essential matrix 𝐸௘௦௧ using the five points algorithm 
with {𝑣௜, 𝑖 = 1, ⋯ ,5 } as input. 
 
Step 3. Generate 32 pairs of 𝑣௜ᇱ =  ( 𝑝௜′ , 𝑞௜′ ), {𝑖 =1, ⋯ 32}  taking into account the error of the 
corresponding feature points to { 𝑣௜, 𝑖 = 1, ⋯ ,5  }. 
With this, the 32-vertex essential matrix is 
computed. And, compute the hypervolume of the 
hypercube composed of these 32 vertices using the 
Convex Hull algorithm. 
 
Step 4. Select feature sets with hypervolume values 
less than a threshold 𝐾. Estimate VO using the best 
set of selected feature points. 

 𝑝௜ᇱ = ቈ𝑝௫ଵ ± 𝑒௫ଵ𝑝௬ଵ ± 𝑒௬ଵ     𝑝௫ଶ ± 𝑒௫ଶ𝑝௬ଶ ± 𝑒௬ଶ     𝑝௫ଷ ± 𝑒௫ଷ𝑝௬ଷ ± 𝑒௬ଷ     𝑝௫ସ ± 𝑒௫ସ𝑝௬ସ ± 𝑒௬ସ     𝑝௫ହ ± 𝑒௫ହ𝑝௬ହ ± 𝑒௬ହ቉ 

𝑞௜ᇱ = ቈ𝑞௫ଵ ± 𝑒௫଺𝑞௬ଵ ± 𝑒௬଺     𝑞௫ଶ ± 𝑒௫଻𝑞௬ଶ ± 𝑒௬଻    𝑞௫ଷ ± 𝑒௫଼𝑞௬ଷ ± 𝑒௬଼    𝑞௫ସ ± 𝑒௫ଽ𝑞௬ସ ± 𝑒௬ଽ     𝑞௫ହ ± 𝑒௫ଵ଴𝑞௬ହ ± 𝑒௬ଵ଴቉ 𝑣௜ᇱ =  (𝑝௜′, 𝑞௜′), {𝑖 = 1, ⋯ 32}                 (12) 

In Step 1 of Algorithm 1, partitioning the image 
into grids using the bucketing technique and 
extracting feature points from each grid region 
resulted in improved performance regarding running 
time and estimation error. The use of the bucketing 
method proves to be more efficient in finding 
solutions over multiple iterations. This can be 
explained by the fact that, as shown in Section 2.3, we 
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empirically verified that the pose estimation error is 
minimized when a well-spread distribution of feature 
points is used as input. In the following, we showcase 
our proposed approach and evaluate its practical 
effectiveness. 

𝑝௜ᇱ= 
ቈ𝑝௫ଵ ൅ 𝑒௫ଵ𝑝௬ଵ ൅ 𝑒௬ଵ     𝑝௫ଶ ൅ 𝑒௫ଶ𝑝௬ଶ ൅ 𝑒௬ଶ     𝑝௫ଷ ൅ 𝑒௫ଷ𝑝௬ଷ ൅ 𝑒௬ଷ     𝑝௫ସ ൅ 𝑒௫ସ𝑝௬ସ ൅ 𝑒௬ସ     𝑝௫ହ ൅ 𝑒௫ହ𝑝௬ହ ൅ 𝑒௬ହ቉ 

(13)

ቈ𝑝௫ଵ − 𝑒௫ଵ𝑝௬ଵ − 𝑒௬ଵ     𝑝௫ଶ ൅ 𝑒௫ଶ𝑝௬ଶ ൅ 𝑒௬ଶ     𝑝௫ଷ ൅ 𝑒௫ଷ𝑝௬ଷ ൅ 𝑒௬ଷ     𝑝௫ସ ൅ 𝑒௫ସ𝑝௬ସ ൅ 𝑒௬ସ     𝑝௫ହ ൅ 𝑒௫ହ𝑝௬ହ ൅ 𝑒௬ହ቉ 
ቈ𝑝௫ଵ − 𝑒௫ଵ𝑝௬ଵ − 𝑒௬ଵ     𝑝௫ଶ − 𝑒௫ଶ𝑝௬ଶ − 𝑒௬ଶ     𝑝௫ଷ − 𝑒௫ଷ𝑝௬ଷ − 𝑒௬ଷ     𝑝௫ସ − 𝑒௫ସ𝑝௬ସ − 𝑒௬ସ     𝑝௫ହ − 𝑒௫ହ𝑝௬ହ − 𝑒௬ହ቉ 

𝑞௜ᇱ= 
   ቈ𝑞௫ଵ ൅ 𝑒௫଺𝑞௬ଵ ൅ 𝑒௬଺     𝑞௫ଶ ൅ 𝑒௫଻𝑞௬ଶ ൅ 𝑒௬଻     𝑞௫ଷ ൅ 𝑒௫଼𝑞௬ଷ ൅ 𝑒௬଼     𝑞௫ସ ൅ 𝑒௫ଽ𝑞௬ସ ൅ 𝑒௬ଽ     𝑞௫ହ ൅ 𝑒௫ଵ଴𝑞௬ହ ൅ 𝑒௬ଵ଴቉
ቈ𝑞௫ଵ − 𝑒௫଺𝑞௬ଵ − 𝑒௬଺     𝑞௫ଶ ൅ 𝑒௫଻𝑞௬ଶ ൅ 𝑒௬଻     𝑞௫ଷ ൅ 𝑒௫଼𝑞௬ଷ ൅ 𝑒௬଼     𝑞௫ସ ൅ 𝑒௫ଽ𝑞௬ସ ൅ 𝑒௬ଽ     𝑞௫ହ ൅ 𝑒௫ଵ଴𝑞௬ହ ൅ 𝑒௬ଵ଴቉ 
  ቈ𝑞௫ଵ − 𝑒௫଺𝑞௬ଵ − 𝑒௬଺     𝑞௫ଶ − 𝑒௫଻𝑞௬ଶ − 𝑒௬଻     𝑞௫ଷ − 𝑒௫଼𝑞௬ଷ − 𝑒௬଼     𝑞௫ସ − 𝑒௫ଽ𝑞௬ସ − 𝑒௬ଽ     𝑞௫ହ − 𝑒௫ଵ଴𝑞௬ହ − 𝑒௬ଵ଴቉

3 EXPERIMENTS 

In this section, we assess the effectiveness of our 
suggested methodology using real data. The 
subsequent text provides an overview of the 
experimental setting. We conducted all experiments 
utilizing parallel computation on a computer 
equipped with an Intel Core i5-9400F CPU operating 
at 2.9 GHz in MATLAB. The experimental data was 
evaluated using the public RGB-D TUM datasets 
freiburg1_desk. In this evaluation, we evaluate the 
relationship of the estimation accuracy of the 
Essential matrix with the hypervolume using real 
data. The input points used in this evaluation were 
extracted as ORB feature points (Rublee et al., 2011) 
using the detectORBFeatures function of the 
Computer Vision Toolbox, and the matching feature 
points used to estimate the essential matrix were 
obtained using the matchFeatures function.  

3.1 Real Data 

To evaluate our proposed approach to real-world 
images, we used the TUM-RGBD dataset. This data 
provides the RGB and depth image data and the 
ground truth trajectory data for evaluating the Visual 
Odometry and Visual SLAM systems. All data is at a 
full frame rate of 30Hz and the camera sensor, a 
Microsoft Kinect sensor, has a resolution of 640x480. 
Next section we demonstrate the effectiveness of our 
proposed optimal feature selection using the 
hypervolume in the following experiments. 

 

 
Figure 4: (Top) Graph showing rotation error and 
correlation when hypervolume is small. (Bottom) 
Distribution of selected 5 pairs of corresponding feature 
points with small rotation error among cases with small 
hypervolume. 

3.2 The Effect of Hypervolume Based 
Optimal Feature Selection 

After completing Step 4 of Algorithm 1, the rotation 
matrix calculated from the hypervolume and essential 
matrix was evaluated by analyzing the correlation 
using the error with the ground truth. The data was 
accumulated and analyzed through 100 iterations. Fig.  
4(Top) is a graph showing the relationship between 
rotation error and hypervolume. For the rotation error, 
the essential matrix estimated by the five-point 
algorithm and the rotation matrix between the two 
images were obtained from the ground truth trajectory 
provided by the TUM RGB-D dataset. The x-axis of 
the graph is represented by an index based on the size 
of the hypervolume, and the y-axis is the rotation 
error. The general trend is that the larger the 
hypervolume, the larger the rotation error. First, let's 
look at the 10 data with the smallest hypervolume. 
Among them, No. 1 and No. 2 are the cases with the 

Uncertainty Hypervolume in Point Feature-Based Visual Odometry

295



smallest rotation error, and the selected matching 
feature point set is shown in Fig. 4(Bottom). 

 

 
Figure 5: (Top) Graph showing rotation error and 
correlation when hypervolume is large. (Bottom) 
Distribution of selected 5 pairs of corresponding feature 
points in the case with large rotation error among the cases 
with large hypervolume. 

We can see that the five pairs of corresponding 
feature points are evenly distributed among each 
other. This is the same result we found experimentally 
in Section 3. The second case is when the 
hypervolume is large and the rotation error is the 
largest. As shown in Fig. 5, the five pairs of 
corresponding feature points have a clustered 
distribution. This confirms the correlation of different 
rotation errors with hypervolume size and proves the 
validity of our proposed approach. 

3.3 Threshold for Hypervolume 
Selection 

When estimating the essential matrix using our 
proposed method, we used multiple iterations to 
select a set of 5 pairs of corresponding feature points 
when the hypervolume is less than a threshold 𝐾 

value. The criterion for selecting 𝐾 depends on the 
number of matching points, which we found through 
experimentation. In our case, if the number of 
matching points is 150 or less, we selected a set of 5 
pairs of corresponding feature points when the value 
of logscale applied to the hypervolume is less than -
32, and if the number of matching points is more than 
150, we set 𝐾 ൐ −36. 

3.4 Comparison with RANSAC 
Algorithm Using KITTI Odometry 
Benchmark Dataset 

The following evaluates the performance of the 
proposed method by comparing the Absolute Pose 
Error (APE) with the commonly used RANSAC 
algorithm using the KITTI Odometry Benchmark 
dataset (Geiger et al., 2012). In the previous section, 
it is the same as the environment that evaluates the 
correlation between Uncertainty Hypervolume and 
pose estimation using the TUM dataset. The 
algorithm for calculating VO used mono_vo, and the 
feature point extraction method used the FAST 
algorithm. The feature point matching method was 
performed using a KLT tracker and a 5-point 
Algorithm for motion estimation. The Scale Factor 
was extracted and used from the Ground Truth 
provided by the KITTI dataset. The method of 
selecting the optimal feature point set with the 
proposed Uncertainty Hypervolume method is the 
same as Algorithm 2.  

The difference from Algorithm 1 is that posture 
estimation cannot be performed because the optimal 
set of feature points cannot be selected depending on 
the threshold value during the VO process. Therefore, 
in the process of selecting the optimal set of feature 
points, as in Algorithm 2, the Uncertainty 
Hypervolume measurement index value calculated by 
several extracts is sorted, and then VO is used as input 
data for estimation by selecting the lower 10% set 
with a small value. In addition, in this dataset 
experiment, the Uncertainty Hypervolume 
measurement index using the Rotation Matrix 
obtained using it as Roll, Pitch, Yaw, and its size as 
an indicator performed better than the Uncertainty 
Hypervolume measurement index using Algorithm 1. 
The following are the results of evaluating the KITTI 
Odometry Benchmark 00, 02, 03, 04, and 05 
sequences.  

The results of the 00 sequence are shown in Fig. 
6. Although both results have large errors due to drift 
and estimation errors by scale factor, it can be seen 
that APE's RMSE and Mean are relatively less  
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(a) Sequence 00 

(b) Sequence 02 

(c) Sequence 03 

(d) Sequence 04 

(e) Sequence 05 
Figure 6: The KITTI Odometry Benchmark dataset (00, 02, 03, 04, 05) APE Results.  Each sequence includes a graph of the 
translation part APE, RMSE, Median, Mean, and Std, and a graph of the Error Mapped ontology. The left is when the proposed 
Uncertified Hypervolume method is applied, and the right is the RANSAC method. It can be seen that the overall proposed 
method has a smaller error than the case of RANSAC. Performance comparisons are summarized in Table 1. 
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in the proposed method compared to RANSAC using 
all feature points. In VO, the sensitivity to rotation is 
high, so when calculating the Uncertainty 
Hypervolume, it is better to use it to convert it to 
Rotation Matrix, convert it to Roll, Pitch, and Yaw, 
and then use the difference from the reference 
Rotation Matrix as Uncertainty Hypervolume. In the 
simplified part of the Uncertainty Hypervolume 
calculation mentioned above, the measurement 
indicators obtained using the Rotation Matrix instead 
of the Essential Matrix are used. On the 02 sequence, 
the same method as the 00 sequence shows slightly 
better results. Next, for the 03 sequence, the proposed 
method for RMSE shows better results, but for Mean, 
RANSAC has a slight advantage. Next, it can be seen 
from the graph that the results of the proposed method 
for both the 04 and 05 sequences clearly show good 
performance. 

Table 1: Comparison of the Uncertainty Hypervolume 
Method with the RANSAC Method. 

 
Uncertainty 

Hypervolume Method 
APE (m)

RANSAC 
Method APE (m) 

Sequence RMSE Mean RMSE Mean
00 100.66 89.07 126.85 102.07
02 133.74 109.84 220.29 194.16
03 19.73 18.35 19.98 18.27
04 3.54 3.31 8.19 7.81
05 68.93 55.66 91.53 74.92

4 CONCLUSIONS 

This study proposes the selection of optimal feature 
points based on Uncertainty Hypervolume, a new 
approach for estimating the Essential Matrix for 
visual odometry. Through the pioneers' previous 
research and simulation experiments, it was found 
that uncertainty due to various errors in the selected 
corresponding feature point pair affects posture 
estimation, and that better performance can be 
obtained in VO if a set of feature point pairs well 
distributed in space is selected without clumping or 
forming lines. Based on this, the uncertainty in VO 
estimation is quantified by Uncertainty Hypervolume, 
a new measurement index that considers the error of 
the selected corresponding feature point pair and the 
distribution they form. Using actual data, it was 
confirmed that selecting a feature point set with a 
small measurement index had a smaller error with the 
Ground Truth value. The proposed method can work 

effectively even though there are many features 
extracted with large errors due to low visibility or bad 
weather conditions. It can provide robustness in VO 
because only features with high quality are collected 
and used for VO estimation. The future work includes 
the optimization of algorithms to improve the 
computational efficiency while maintaining the 
performance advantage of the proposed approach 
over other conventional methods that rely on inlier 
feature points and RANSAC. 

Algorithm 2: Uncertainty hypervolume-based optimal 
feature selection for visual odometry. 

Data: 𝐿 correspondence feature point sets 
Result: A set of five-feature point pairs from the 
bottom 10% with low Uncertainty Hypervolume  
Step 1. Randomly select K sets of five-feature point 
sets, {(𝑝௜, 𝑞௜),  𝑖 = 1, ⋯ ,5} from the feature pairs 
detected from the images of two camera views 
subject to VO. Incorporating a bucketing approach 
into this step to improve the initial selection of the 
five feature sets provides a way to select well-
distributed feature sets with few attempts. 
 

Step 2. Generate the corresponding coefficient 
vectors, { 𝑣௜, 𝑖 = 1, ⋯ ,5  } . Then, compute the 
essential matrix using the five-point algorithm with 
{𝑣௜, 𝑖 = 1, ⋯ ,5 } as input. 
 

Step 3. Generate 32 pairs of 𝑣௜ᇱ =  (𝑝௜′, 𝑞௜′), {𝑖 = 1, ⋯ 32}  taking into account the error of the 
corresponding feature points to {𝑣௜, 𝑖 = 1, ⋯ ,5 }. 
With this, the 32-vertices Essential matrix is 
computed. And, the rotation matrix is estimated 
using the essential matrix that constitutes the 
vertex. The matrix is then converted to Roll, Pitch, 
and Yaw. The difference between this and the 
reference rotation, obtained with the reference 
essential matrix, is taken as the uncertainty 
hypervolume. 
 

Step 4. Select a set of five feature point pairs from 
the bottom 10% with low Uncertainty 
Hypervolume. The VO is estimated using the best 
set of five selected feature point pairs. 
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