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Abstract: With the intensification of global climate change, accurately estimating vegetation carbon stock has become 
one of the keys to achieving carbon neutrality. This study combines multi-source LiDAR data and empirical 
carbon stock formulas to propose a comprehensive and reliable technical framework for the fine estimation 
of urban vegetation carbon stock. This framework includes: LiDAR data preprocessing, shrub extraction and 
volume calculation, tree segmentation, and carbon stock calculation. In particular, the study compares various 
commonly used tree segmentation algorithms and uses the layer stacking algorithm for tree segmentation in 
the study area, ultimately obtaining the total carbon stock in the study area to be 2,677,442.666 kg. Overall, 
this technical framework can effectively improve the accuracy and efficiency of traditional urban vegetation 
carbon stock estimation, providing technical support and data foundation for achieving carbon neutrality. 

1 INTRODUCTION 

Research on the carbon cycle in urban ecosystems has 
become a focal point in climate change mitigation 
strategies. Urban carbon storage is primarily 
composed of trees and shrubs, both playing an 
irreplaceable role in improving the living 
environment, maintaining ecological security, and 
achieving sustainable urban development (Creutzig et 
al., 2016). Traditionally, estimation of urban carbon 
stocks relied on field measurements. However, this 
method is highly subjective and laborious (Zhang et 
al., 2015). Meanwhile, although high-resolution 
satellite remote sensing images have significant 
spectral characteristics and rich texture information, 
they failed to provide data below the canopy and 
neglected the vertical spatial structure differences of 
vegetation, resulting in a lower accuracy in carbon 
stock estimation. 

The rise of LiDAR (Light Detection and Ranging) 
technology has provided robust technical support for 
fine carbon stock estimation. LiDAR is characterized 
by its high resolution, strong penetrative ability, and 
high efficiency, allowing for the convenient 
acquisition of accurate three-dimensional structural 
information of urban vegetation. Additionally, 
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LiDAR operates effectively under various 
environmental conditions and offers high precision 
and high-density data collection capabilities. 

Since the majority of urban carbon storage comes 
from trees. Therefore, the accuracy of carbon stock 
estimation based on LiDAR largely depends on the 
precision of tree segmentation (Mei and Durrieu, 
2004). Current tree segmentation algorithms can be 
primarily divided into two categories: tree 
segmentation based on Canopy Height Model(CHM) 
or point clouds. 

For CHM-based tree segmentation, Hyyppä et al. 
(2001) were the first to apply the region-growing 
algorithm to the segmentation of LiDAR data in 
Nordic coniferous forests. Mei & Durrieu (2004) 
achieved a 90% accuracy using the watershed 
algorithm for tall and regularly spaced trees, but faced 
challenges of over-segmentation or under-
segmentation in complex and dense forests. Koch et 
al. (2006) employed the flooding algorithm to 
segment coniferous and deciduous forests in 
Germany, achieving an accuracy of 61.7%. Chen et 
al. (2006) proposed a marker-controlled watershed 
tree segmentation algorithm, tested with an accuracy 
of 64.1% in the savannas of California, USA. 
Khosravipour et al. (2014) enhanced upon Chen et 
al.'s algorithm by removing CHM pits through 
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overlapping point cloud subsets, achieving a 
segmentation accuracy of 74.2%. Besides, Kaartinen 
et al. (2012) introduced two new methods: multi-scale 
Gaussian Laplacian segmentation and CHM 
minimum curvature segmentation. Overall, CHM-
based tree segmentation runs fast, although the 
interpolation process and canopy cover of tall trees 
can affect the results. 

Tree segmentation algorithms based on point 
clouds are more straightforward, avoiding potential 
errors that may arise during CHM generation. 
Nevertheless, these methods require substantial 
computational resources and high-performance 
hardware. Early studies such as Morsdof et al. (2004) 
were the first to apply k-means clustering for tree 
segmentation, demonstrating the feasibility of this 
approach. Li et al. (2012) introduced a region-
growing algorithm combined with threshold 
judgment, achieving an accuracy of 0.9 in California, 
USA, but the segmentation accuracy of this algorithm 
in deciduous forests was lower. Lu et al. (2014) 
introduced a bottom-up region-growing algorithm 
that marked trunk points and allocated distances 
topologically, achieving a recall rate of 0.84 and an 
accuracy of 0.97 in the deciduous forests of 
Pennsylvania, USA. Lin et al. (2017) used circle 
detection theory to extract individual tree locations, 
heights, and diameters at breast height, achieving an 
accuracy of over 90%. Aryey et al. (2017) developed 
layer stacking algorithm that clusters point clouds at 
1-meter intervals, performing better than traditional 
algorithms in deciduous or leafless conditions. Paris 
et al. (2016) explored a combined method using CHM 
and point cloud space, accurately segmenting 
dominant trees by analyzing horizontal and vertical 
profiles of the point cloud, achieving an accuracy 
exceeding 92%. 

This study utilizes multi-source LiDAR data to 
test and compare several commonly used tree 
segmentation algorithms, with the aim of proposing a 
comprehensive and reliable technical process for fine 
estimation of urban vegetation carbon stock. The 
results aim to serve as a guideline for future urban 
planning and sustainable development endeavors. 
This article is organized as follows: Section 2 will 
show the materials and methods in this research, 

Section 3 will display all the results and analysis, and 
Section 4 will provide the discussion and conclusions. 

2 MATERIALS AND METHODS 

2.1 Study Area 

Study area in this research is East China Normal 
University (Minhang Campus), which is located on 
No. 500 Dongchuan Rd., Minhang District, Shanghai, 
China(Figure 1). Due to the large size of the study 
area, the campus is divided into eight zones based on 
the road, river, and vegetation characteristics. The 
campus is rich in tree species, dominated by camphor, 
bellflower, ginkgo, and luan. Also, it contains a 
variety of deciduous small trees. In terms of shrubs, 
they mainly composed of buxus sinica and 
rhododendron. 

 
Figure 1: Study area (Picture credit: Original) 

2.2 Data Source 

This study contains three parts of LiDAR data, 
namely airborne, vehicle-mounted and backpack 
LiDAR. The detailed information of each data type is 
shown in Table 1 and data samples are shown in 
Figure 2. 

Table 1: Detailed information of different types of LiDAR data 

Data Type Acquisition 
Device 

Coordinate 
System 

Point 
Density 

File 
Format 

File 
Size(G) Range 

Airborne ECNU-ULS UTM Zone 51N Low las 3.1 Entire campus 
Vehicle-
mounted ECNU-MLS UTM Zone 51N High las 13.7 Main roads 

only 

Backpack LiBackpack C50 Relative 
coordinates High ply 19.8 Entire campus 
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(a)                     (b)                   (c) 

Figure 2: Sample LiDAR data: (a) Airborne LiDAR 
(entire campus area); (b) Vehicle- mounted 

LiDAR(main roads only); (c) Backpack LiDAR(part 
of Zone 5) (Picture credit: Original) 

2.3 Technical Framework 

The study harnesses multi-source LiDAR data and 
proposes a reliable technical framework for fine 
estimation of urban carbon stock. Four steps are 
involved in the technical framework (Figure 3), 
namely LiDAR data preprocessing, shrub extraction 
and volume calculation, tree segmentation methods 
and carbon stock calculation. 

 
Figure 3: Techinical framework of the research 

(Picture credit: Original) 

2.4 LiDAR Data Preprocessing 

The LiDAR data preprocessing includes: 1) Multi-
source data registration to UTM Zone 51N coordinate 
system, 2) Data merging and cropping, 3) LiDAR 
denoising, 4) Ground point filtering, 5) Kriging 
interpolation to generate DEM, DSM and CHM with 
the pixel size of 0.1m, 6)Point cloud normalization. 

In this study, traditional automatic registration 
methods(e.g. Iterative Closest Point) are less effective 
due to the disparity in point density between aerial 
LiDAR data and other two forms of data. Therefore, 
in this study, a stepwise minimum spanning tree 
matching algorithm based on quadrant search is 
utilized for point cloud registration. 

The algorithm primarily involves of three steps: 
extraction of tree locations, quadrant search-based 
minimum spanning tree matching, and registration. 
As the airborne and vehicle-mounted LiDAR data 
already had UTM coordinates, only the 
transformation matrix from backpack LiDAR data to 
UTM coordinates needs to be calculated. Firstly, the 

tree location points collected from the three LiDAR 
data are extracted, and then matched based on the 
topological similarity of the minimum spanning tree 
connected into a quadrant search, and matched by 
stepwise search, finally realizing the fusion of the 
LiDAR data collected by three different sensors. 

2.5 Shrub Extraction and Volume 
Calculation 

Shrubs constitute a crucial component of urban 
vegetation, playing an essential role in the calculation 
of urban carbon stock. The extraction of shrubs from 
the point cloud data was accomplished using the 
random forest algorithm, integrated within the 
LiDAR360 software. By manually selecting a small 
number of representative shrub point clouds to train 
the model and applying the model to the remaining 
data, all shrubs in the point cloud can be obtained. 
This approach substantially reduces the labor-
intensive and time-consuming nature of manual 
selection. 

The calculation of shrub volume uses the grid 
method, which is conceptually similar to calculus. 
Specifically, the process begins by projecting 3D 
point cloud data onto a 2D plane Then, the 2D plane 
is divided into small cells using a grid structure. The 
tallest point in each grid is recorded, multiplying by 
the grid cell size gives the volume of the shrub within 
that cell. The overall volume of shrub is calculated by 
adding the volumes of all the grid cells. 

Therefore, the choice of grid size largely 
determines the accuracy of the result volume. If the 
grid is too small, many grid cells might fall into gaps 
between point cloud data points, leading to an 
underestimated volume, and vice versa. Thus, the 
selection of grid size should primarily be based on 
point density. Since shrubs in LiDAR data are 
primarily detected by high-density backpack LiDAR 
and vehicle-mounted LiDAR, a grid size of 0.1m is 
chosen for this study. 

2.6 Tree Segmentation Methods 

This study evaluated and compared four common tree 
segmentation methods: two region-based 
segmentation methods using CHM and pit-free CHM, 
region-growing and threshold judgment algorithm 
(PCS), and Layer Stacking algorithm which both 
directly based on point cloud. 
1) CHM (Chen et al., 2006) 

The Watershed Algorithm is used for CHM based 
segmentation (Figure 4). It is mainly based on the 
concept of immersion simulation. It first takes the 

Precise Estimation of Urban Vegetation Carbon Stock Using Multi-Source LiDAR: A Case Study of East China Normal University

203



complement of the CHM, where each local minimum 
represents a tree height point, and its influence area is 
called a catchment basin (the extent of the tree crown). 
At the junction of catchment basins, a dam is 
constructed to form the watershed that segments the 
tree crowns, thereby isolating individual trees. 

 
Figure 4: Watershed Algorithm (Picture credit: 

Original) 
 

2) Pit-free CHM (Khosravipour et al., 2014) 
However, black holes can form in the CHM as a 

result of some laser pulses passing through the tree 
crowns and reflecting back from the ground due to 
LiDAR's great penetration into the canopy. This 
phenomenon leads to an incomplete canopy surface 
and is referred to as pits. 

Khosravipour et al. (2014) introduced a technique 
for generating pit-free CHM (Figure 5): First, an 
initial CHM (CHM00) is established. The normalized 
point cloud is then vertically stratified according to 
the ASPRS point cloud classification standards: low 
vegetation (0.5m < h ≤ 2.0m), medium vegetation 
(2.0m < h ≤ 5.0m), and high vegetation (h > 5.0m). 
For high vegetation, further stratification is done at 5-
meter intervals. This results in the construction of 
CHMs for each layer (CHM02, CHM05, CHM10, ...). 
Finally, the CHMs of all layers are stacked, with each 
pixel in the result taking the maximum value of the 
corresponding x, y pixel position from all the layers, 
thereby generating a pit-free CHM and using the 
Watershed Algorithm for tree segmentation. 

 
Figure 5: Methods for generating Pit-free CHM 

Picture credit: Khosravipour et al., 20141 
3) PCS (Li et al., 2012) 

PCS algorithm makes the assumption that the tree 
apex is the local highest point in the LiDAR data. This 
point is used as a seed for region growing through 

iterative expansion. During each iteration, a threshold 
is used to determine whether a point belongs to an 
existing tree or represents a new tree apex. Points 
farther from the existing tree than the threshold are 
assigned to a new tree; points closer are categorized 
under the existing tree. 
4) Layer Stacking (Ayrey et al., 2017) 

Main steps of the Layer Stacking Algorithm are 
shown in Figure 6: (a) Vertically segment the point 
cloud starting from 0.5 meters with a certain interval 
(generally 1m) up to the highest point. (b) Applying 
K-means clustering algorithm to each layer. (c) 
Creating a 0.5m buffer polygon around each cluster. 
(d) Overlaying polygons of each layers. (e) 
Smoothing the overlap result using a window size of 
1.5m. (f) Detecting the local maxima, which represent 
the center of the tree. 

 
Figure 6: Main steps of Layer Stacking algorithm 

Picture credit: Ayrey et al., 20172 
There are three types of segmentation results 

(Figure 7): 1) True Positive (TP): The quantity of 
properly segmented trees. 2) False Positive (FP): The 
quantity of excessively segmented trees. 3) False 
Negative (FN): The quantity of unsegmented trees 
that are wrongly believed to be a component of other 
trees. To evaluate the accuracy of various tree 
segmentation methods on sample plots, the study 
used the following formulas to compute recall(r), 
precision(p), and F-score(F). 

 
Figure 7: Three different types of segmentation 

results: (a) TP, (b) FP, (c) FN 
Picture credit: Original 
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𝑟𝑟 = TP
TP+FN

  (1) 

𝑝𝑝 = TP
TP+FP

  (2) 

𝐹𝐹 = 2 × 𝑟𝑟×𝑝𝑝
𝑟𝑟+𝑝𝑝

  (3) 

2.7 Carbon Stock Calculation 

After the tree segmentation process is finished, 
LiDAR360 may use the segmentation data to 
automatically determine each tree's diameter at breast 
height (DBH), crown width, tree height, and crown 
volume. 

Carbon stock was calculated using the average 
biomass method of the sample plot inventory method, 
which is suitable for small to medium-scale plant 
biomass calculation in this study. Meanwhile, the 
anisotropic biomass growth equation is crucial for the 
measurement of carbon stock in trees. In order to 
guarantee the scientific validity of the carbon stock 
findings, the study selected common tree species in 
the campus, and constructed the biomass model of 
each tree species according to the local and adjacent 
areas of Shanghai. The carbon content coefficient was 
selected based on the average carbon content 
coefficient for forest trees, which is 0.5, as published 
by the IPCC. Finally, the following formulas were 
derived for calculating carbon stock in an individual 
tree (Zhong et al, 2019). 

Soft broadleaf trees: 
 𝑊𝑊 = 0.01901𝐷𝐷3.10510 

 

(4) 

Hard broadleaf trees: 
 𝑊𝑊 = 0.10387𝐷𝐷2.61147 

 

(5) 

Coniferous: 
 𝑊𝑊 = 0.01639𝐷𝐷2.01732𝐻𝐻−0.11744 +

0.06539𝐷𝐷2.01732𝐻𝐻0.49425 

(6) 

 

Carbon stock of trees: 𝐶𝐶 = 𝑊𝑊𝑊𝑊 (7) 

In the formula, C, W, D, H, α respectively 
represent the carbon stock of trees, biomass, DBH, 
tree height and carbon content coefficient (0.5).  

For the calculation of shrub carbon stock, 
considering that the distribution of shrubs on the 
campus is heterogeneous and difficult to distinguish, 
this study referenced the optimal models from 
previous research on the relationship between canopy 
volume and annual branch biomass of different 
shrubs in Shanghai. The study chose the common 
shrubs on the campus (Buxus sinica and 
Rhododendron) as the representative shrubs and 
averaged their carbon stock models to calculate the 
carbon stock of all shrubs on the campus (Fang, 2013). 

Shrubs: 𝑊𝑊 =
� 820.78×𝑉𝑉0.227+1046.8×𝑉𝑉0.4022

1000
� × 0.5 

 

(8) 

Carbon stock of shrubs: 𝐶𝐶 = 𝑊𝑊𝑊𝑊 (9) 

In the formula, C, W, V, α respectively represent 
the carbon stock of shrubs, biomass, shrub volume 
and carbon content coefficient (0.5). 

3 RESULTS 

3.1 Selecting the Best Tree 
Segmentation Method 

A total of six sample plots (four broadleaf and two 
coniferous) were selected in this research to evaluate 
the four segmentation methods’ accuracy, and the 
results are shown in Table 2. 

Table 2: Accuracy evaluation results of different segmentation algorithms (Picture credit: Original) 

Sample plot 
ID 

Segmentation 
algorithm 

Actual 
trees 

Segment 
Trees TP FN FP r p F 

1 
Broadleaf 

Layer stacking 

40 

42 33 7 9 .825 .788 .805 
PCS 50 27 13 23 .675 .540 .600 

CHM 52 22 18 30 .550 .423 .478 
Pit-free CHM 47 31 9 16 .775 .660 .713 

2 
Broadleaf 

Layer stacking 

58 

53 43 15 10 .741 .811 .775 
PCS 66 39 19 27 .672 .591 .629 

CHM 58 33 25 25 .569 .569 .569 
Pit-free CHM 51 39 19 12 .672 .765 .716 

3 
Broadleaf 

Layer stacking 

40 

40 32 8 9 .800 .780 .790 
PCS 34 20 20 14 .500 .588 .541 

CHM 43 25 15 18 .625 .581 .602 
Pit-free CHM 41 28 12 13 .700 .683 .691 

Precise Estimation of Urban Vegetation Carbon Stock Using Multi-Source LiDAR: A Case Study of East China Normal University

205



4 
Broadleaf 

Layer stacking 

61 

59 48 13 11 .787 .814 .800 
PCS 60 41 20 19 .672 .683 .678 

CHM 71 33 28 38 .541 .465 .500 
Pit-free CHM 64 38 23 26 .623 .594 .608 

5 
Coniferous 

Layer stacking 

100 

95 88 12 7 .880 .926 .903 
PCS 53 23 47 30 .329 .434 .374 

CHM 113 84 16 29 .840 .743 .789 
Pit-free CHM 101 91 9 10 .910 .901 .905 

6 
Coniferous 

Layer stacking 

72 

69 64 8 5 .889 .928 .908 
PCS 40 40 29 43 11 .403 .725 

CHM 85 85 62 10 23 .861 .729 
Pit-free CHM 74 74 67 5 7 .917 .892 

 
Sample plots 1-4 are broadleaf forest plots. Due 

to the uncertainty and complexity of the canopy 
morphology of broadleaf tree, the highest overall 
accuracy was only 80.5%. According to the F-score 
results from different segmentation methods, layer 
stacking can achieve around 80% accuracy even 
when facing the challenges of varied morphology, 
multiple branches, and numerous vertices of 
broadleaf tree species. This method provides the best 
overall segmentation performance, followed by pit-
free CHM, PCS, and CHM. 

Sample plots 5-6 are dense coniferous forest 
samples on the southeast side of the campus. 
Compared to broadleaf plots, the morphological 
differences in coniferous tree species are smaller, 
allowing for a maximum overall accuracy of up to 
90.8%. Based on the F-score results from different 
segmentation methods, both layer stacking and pit-
free CHM provided the best segmentation 
performance, each achieving over 90% accuracy. 
However, in the densely populated coniferous forest 
areas of the campus, the PCS algorithm performed the 
poorest with an accuracy of only 37.4%. This is 
because the distance threshold 𝑑𝑑=1.5𝑚𝑚, which is 
relatively more suitable for broadleaf plots, failed to 
segment the closely spaced coniferous trees, resulting 
in very poor segmentation results. 

Therefore, in the tree segmentation task for urban 
trees, the layer stacking algorithm should be 
prioritized in areas with diverse and unstable tree 
morphology, such as broadleaf areas or mixed 
broadleaf-coniferous areas. In areas with stable tree 
morphologies, such as coniferous areas, the faster pit-
free CHM segmentation method should be preferred. 

3.2 Number of Trees Segmented and 
Shrub Volume in Each Zone 

Since the campus is dominated by broadleaf trees, 
layer stacking method was chosen for tree 
segmentation. The results of the number of trees and 

shrub volume obtained in each area of the campus are 
shown in Table 3. 

Table 3: Number of tree segmented and shrub 
volume in each zone (Picture credit: Original) 

Zone ID Segment Trees Shrub Volume(m3) 

1 741 2861.840 

2 1921 2866.460 

3 1283 6910.606 

4 1092 6602.009 

5 1336 6539.478 

6 711 4881.820 

7 748 4355.723 

8 600 2953.506 

3.3 Carbon Stock Calculation and 
Analysis 

After substituting the shrub volume and the 
morphological parameters of each tree into the carbon 
stock equation, the carbon stock results for each area 
can be calculated and shown in Table 4. 

Table 4: Summary of carbon stock (Picture credit: 
Original) 

Zone 
ID 

Total carbon 
stock(kg) 

Tree carbon 
stock(kg) 

Shrub 
carbon 
t k(k ) 

1 256138.422 256130.744 7.678 

2 83378.314 83370.632 7.682 

3 446909.511 446893.057 16.454 

4 377898.048 377877.747 20.301 

5 735757.340 735746.870 10.470 
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6 239094.774 239085.395 9.379 

7 259546.127 259537.141 8.986 

8 278720.130 278712.361 7.769 

Total 2677442.666 2677353.950 88.719 

To analyze the spatial distribution of carbon stock 
within the campus, the study drew a carbon stock map 
under the 50m×50m grid (Figure 8(a)) and the map of 
carbon stock density in different zones (Figure 8(b)). 
There are significant differences in the size and 
density of carbon storage across various campus areas. 
Generally, the carbon stock is smaller in areas with 
dense buildings and open areas (e.g. playgrounds), 
and the larger carbon stock is mainly in areas where 
trees are concentrated (e.g. both sides of the main 
road and the green spaces). 

 
Figure 8: (a) Carbon stock map under 50m×50m 
Grid, (b) Carbon stock density in different zones 

Picture credit: Original 

4 CONCLUSION 

This study establishes a comprehensive and reliable 
technical framework for the fine estimation of urban 
vegetation carbon stock by utilizing multi-source 
LiDAR data. This framework includes following 
steps: This framework includes: LiDAR data 
preprocessing, shrub extraction and volume 
calculation, tree segmentation, and carbon stock 
calculation. Specifically, after data preprocessing, the 
study first uses a random forest model to extract 
shrubs from the point cloud and employs a grid 
method to calculate their volume. Subsequently, by 
comparing four different tree segmentation 
algorithms across six sample plots, the layer stacking 
algorithm, which demonstrates superior accuracy and 
stability in both coniferous and broad-leaved forests, 
is selected for tree segmentation in the study region. 
After obtaining the morphological parameters of 
individual trees, the study builds biomass models 
suitable for the vegetation in the study area using the 

average biomass method, and calculates the final 
carbon storage to be 2,677,442.666 kg. 

The technical framework proposed in this study is 
universally applicable to the accurate estimation of 
urban vegetation carbon stock. Additionally, due to 
the rich semantic information contained in LiDAR 
data, the research data (such as the morphological 
parameters of individual trees) can be widely applied 
to other forestry applications. This provides technical 
and data support for helping achieve dual carbon 
goals and formulate related policies. 

However, this study also has certain limitations. 
The formulae used to calculate carbon stocks for 
different species of trees may vary, and the study's 
lack of species differentiation may have contributed 
to some degree of error in the carbon stock conclusion. 
Future research could consider incorporating street 
view images or high-resolution remote sensing 
images for tree species identification, thus building 
biomass models for different species and further 
refining the precision of carbon stock calculations. 
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