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Abstract: This paper presents a controller-observer scheme for linear position tracking control of the load of an overhead 
crane in the 3-D space and also investigates the possibility of actuator health monitoring with minimal sensor 
requirement. This way, admissible position tracking accuracy and system transient behaviour both are 
achieved only using position sensors. Closed-loop stability of the plant-controller-linear velocity observer 
system is guaranteed using Lyapunov method. A trajectory planning method is proposed based on standard 
exponential functions that enables defining the distance to the destination, maximum linear velocities and 
accelerations in the parameters of the function itself. The methods proposed are validated using computer 
numerical simulations in the presence of model parameter uncertainties and external disturbances. We also 
investigate the potential of using observer outputs to improve the early detection of actuator faults.   

1 INTRODUCTION 

Owing to ever increasing operational, maintenance, 
and safety requirements of industrial multi-motor 
systems, predictive maintenance (PdM) has received 
increasing attention. PdM is a data-driven approach 
to identify operational anomalies and potential 
equipment defects, enabling timely repairs before 
failures occur. However, additional sensor and data 
communication requirements add up to cost and 
maintenance. To this end, much emphasis has been 
placed on automatic control and monitoring of 
systems using minimally required sensor devices 
(Suzuki and Fujii, 2006, Gowrienanthan et al., 2023, 
Gao et al., 2015, Kumarawadu et al., 2007).   

3-dimensional overhead cranes are widely used in 
industry for transportation of heavy loads. Accurate 
position tracking feedback control of the 3 degrees-
of-freedom requires three position sensors. Velocity 
feedback is required in order to ensure admissible 
transient performance. As a result, total number of 
sensor requirement for automatic position tracking 
control of a 3D overhead crane will be six. Finite 
difference estimation of the velocity has no 
theoretical grounds and is also vulnerable to position 
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measurement noise. Controller-observer schemes can 
be used to minimize the number of sensors required 
or to estimate unmeasurable variable for feedback 
control purposes. 

Many controller-observer schemes with 
guaranteed stability have been proposed for robotic 
systems (Kumarawadu et al., 2007, Ji et al., 2019) to 
estimate the robot joint angular velocities. In 
Kumarawadu and Lee, 2009, a velocity observer has 
been used to estimate the lateral velocity of self-
driving vehicles that is unmeasurable.     

In this paper, a controller-observer scheme is used 
for automatic tracking control with guaranteed 
closed-loop stability using minimally required sensor 
devices. This is achieved by a velocity observer that 
estimates the linear velocities of the moving 
components in the travel, traverse, and hoist motions. 
Closed-loop stability of the plant-controller-observer 
system is guaranteed using Lyapunov method. Our 
future research includes investigation into how to 
incorporate the estimated velocity profiles by the 
observer in identification and localization of 
anomalies in PdM applications of multiple motor 
systems. This way, automated health monitoring of 
engineering systems to be achieved exclusively using 

Kumarawadu, M. and Velmanickam, L.
Automatic Control and Health Monitoring of a 3-Dimentional Overhead Crane with Minimally Required Sensor Devices.
DOI: 10.5220/0013041200003822
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics (ICINCO 2024) - Volume 1, pages 453-461
ISBN: 978-989-758-717-7; ISSN: 2184-2809
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

453



the control sensor feedbacks and the estimated motion 
parameters only. 

We also present a trajectory planning method 
using a combination of exponential functions to 
ensure smooth tracking trajectories. This is important 
to ensure minimal swing of the load. In our approach, 
the desired linear velocity trajectories are planned 
based on the distance to the destination. Maximum 
velocity and acceleration are defined using standard 
exponential functions. As a result, the desired 
position trajectories can be obtained by simply 
integrating the smooth varying time function profiles 
of the desired velocities.  

Using frequency domain, correlation, and 
sensitivity analysis, we investigate the potential of 
using the position tracking error and the velocity 
observer output for actuator health monitoring.  

This paper is organized as follows: Section 2 
presents our feedback controller-linear velocity 
observer scheme and the trajectory planning 
approach. Closed-loop stability is established using 
Lyapunov method. Section 3 presents the simulation 
results. Actuator fault simulation and analysis is 
presented in Section 4. Section 5 concludes the paper. 

2 CONTROLLER-OBSERVER 
SCHEME 

2.1 System Equations of Motion 

In the 3D overhead crane, travel motion refers to the 
movement of the entire crane along a fixed runway 
beam. See Fig. 1. Traverse motion refers to the 
movement of the crane trolley allowing the crane to 
position itself horizontally perpendicular to the 
direction of travel. Hoist motion refers to the vertical 
movement of the crane's hook-block or lifting 
mechanism. With reference to an 𝑥-𝑦-𝑧 orthogonal 
set, travel, traverse, and hoist linear motions take 
place in the 𝑥 ≥ 0, 𝑦 ≥ 0  and 𝑧 ≤ 0  regions, 
respectively. See Fig. 2. 

The model-based controller-observer design 
approach is based on the linearized equations of 
motion that ignore the swing dynamics of the load. 
Let 𝑀௫, 𝑀௬, 𝑀௭  are the travelling, traversing, and 
hoisting down components of the crane mass. Load 
mass is 𝑚. By applying Newton’s 2nd law of motion 
to the 𝑥-direction, 𝑦-direction, and 𝑧-direction we get 𝐹௫, 𝐹௬, 𝐹௭  are the driving forces, 𝐷௫, 𝐷௬, 𝐷௭ are the 
viscous friction coefficients, and 𝑑௫, 𝑑௬, 𝑑௭  are the 
unknown bounded time-varying external disturbance 
forces for the motions in the 𝑥, 𝑦, 𝑧 directions. 

 
Figure 1: A 3-D overhead crane (Khatamianfar, 2015). 

 
Figure 2: Coordinate system of the 3-D overhead crane. 

 (𝑀௫ + 𝑚)𝑥ሷ(𝑡) + 𝐷௫𝑥ሶ (𝑡) + 𝑑௫(𝑡) = 𝐹௫(𝑡) (1)
 ൫𝑀௬ + 𝑚൯𝑦ሷ(𝑡) + 𝐷௬𝑦ሶ(𝑡) + 𝑑௬(𝑡) = 𝐹௬(𝑡) (2)
 (𝑀௭ + 𝑚)𝑧ሷ(𝑡) + 𝐷௭𝑧ሶ(𝑡) − 𝑚𝑔 + 𝑑௭(𝑡)      = 𝐹௭(𝑡) (3)

 

The disturbance force, 𝑑(𝑡) is a bounded quantity 
satisfying |𝑑(𝑡)| ≤ 𝑑ெ , where 𝑑ெ  is a constant 
denoting the upper bound. Such disturbance can be 
considered as energy bounded random noise, which 
widely exists in practical systems (Jin et al., 2022).   

2.2 The Controller-Observer Scheme 

Automatic controller tracks a planned trajectory to 
move the load attached to the hook-block of the 
overhead crane to the final destination in the 𝑥-𝑦-𝑧 
space and return to the original position. Controller-
observer scheme and the stability proof are presented 
for the 𝑧 (hoist) motion. Travel and traverse (𝑥 and 𝑦) 
that do not have a 𝑚𝑔 term in the dynamics may be 
considered as special cases.  
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In the sequel, (∙)෢ denotes the estimated value of (·)  and 𝑧̃ = 𝑧 − 𝑧̂ . It is assumed that the desired 
position, 𝑧ௗ , and its time derivatives, 𝑧ሶௗ , 𝑧ሷௗ  , are 
known. The control objective is to regulate the 
tracking error, 𝑒 = 𝑧 − 𝑧ௗ . Implicit in it are 
simultaneously keeping the observer estimation error 
small. Consider the following combined controller-
velocity observer system: 
 

Controller: ቊ 𝐹 = 𝑀𝜈 + 𝐷𝑧̂ሶ − 𝑚𝑔𝜈 = 𝑧ሷௗ − 𝑘ௗ൫𝑧̂ሶ − 𝑧ሶௗ൯ − 𝑘௣(𝑧 − 𝑧ௗ)       (4)

Observer: ቊ𝑧̂ሶ = 𝑟 + 𝐿ௗ(𝑧 − 𝑧̂)𝑟ሶ = 𝜈 + 𝐿௣(𝑧 − 𝑧̂)          (5)
 

Here, 𝑀 = 𝑀௭ + 𝑚 . The positive adjustable 
controller-observer gains, 𝑘ௗ, 𝑘௣, 𝐿ௗ, 𝐿௣ , are to be 
chosen by the designer. 𝑟ሶ  denotes a reference 
acceleration input, which is obtained by modifying 
the resolved acceleration with position estimation 
error. Integrating 𝑟ሶ  and further modifying it by 
position estimation error yield the estimated velocity. 
Consider the controller-observer system defined by 
(4) and (5) in a closed loop with the controlled system 
with the plant (3). The closed-loop system can be 
made to be UUB by suitably selecting the controller-
observer gains, 𝑘ௗ, 𝑘௣, 𝐿ௗ, 𝐿௣. 

Stability proof of the closed-loop system is given 
in the Appendix. 

2.3 Trajectory Planning  

The desired velocity trajectory for the forward motion 
is defined as 𝑥ሶௗ,௙௪ௗ(𝑡) = ൜ 𝑉(1 − 𝑒ି௔௧); 0 ≤ 𝑡 < 𝑇𝑉𝑒ି௔(௧ି்); 𝑇 ≤ 𝑡 ≤ 𝑇 + 7     (6)

 

For the return path, 𝑥ሶௗ,௥௘௧௨௥௡(𝑡) = −𝑥ሶௗ,௙௪ௗ(𝑡) . 
Here, 𝑉  is the maximum velocity and 𝑎𝑉  is the 
maximum acceleration. Time interval, 𝑇, is selected 
to match the distance between the starting point and 
the final destination. For example, the desired 
velocity trajectories for the roundtrip motion are 
given in Fig. 3. Here, 𝑉, 𝑎𝑉, 𝑇  are 0.5, 0.5, 20 for 
travel, 0.4, 0.4, 15 for traverse, and -0.2, -0.2, 5 for 
hoist motions. When the maximum acceleration and 
velocity are known, distance travelled can be 
obtained by time integrating (6) as a function of 𝑇. 
Hence, the distance travelled can be pre-set by setting 
the value 𝑇.   

 
Figure 3: Desired velocity: travel (dashed line), traverse 
(dotted line), and hoist (dash-dot). 

 
Figure 4: Desired acceleration: travel (dashed line), traverse 
(dotted line), and hoist (dash-dot). 

Desired acceleration trajectories given in Fig. 4 
can be obtained by time differentiating the desired 
velocities. Likewise, desired positions are obtained 
by time integrating the velocities. As a result, the 
desired position trajectories and their time derivatives 
that are required in the control method presented in 
Section 2.2 can be obtained completely analytically 
without needing numerical calculus. 

3 SIMULATION STUDY OF THE 
HEALTHY SYSTEM 

Crane workspace is 12 meters long, 8 meters wide, 
and 2 meters deep. Its maximum accelerations and 
velocities are 2 m/sଶ and 0.5 m/s for traveling, 1.5 m/sଶ and 0.3 m/s for traversing, and 1.5 m/sଶ and 
0.1 m/s for load hoisting, respectively. 

Dynamic model parameters are 𝑀௫ =1440 kg , 𝐷௫ = 400 kgsିଵ,  𝑀௬ = 110 kg , 𝐷௬ =40 kgsିଵ, 𝑀௭ = 20 kg, 𝐷௭ = 5 kgsିଵ. Load mass, 𝑚 = 150 kg. Acceleration due to gravity, 𝑔 =9.81 msିଶ. 
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The overhead crane system is disturbed by 
random external disturbance forces formulated by 𝑑௫(𝑡) =  20 × (2 × rand(1) − 1) N 𝑑௬(𝑡) = 𝑑௭(𝑡) =  2 × (2 × rand(1) − 1) N 
all the time. Here,  0 ≤ rand(1) ≤ 1  is a random 
number. 

The hook-block moves from (𝑥, 𝑦, 𝑧) = (0, 0, 0) 
position to (10, 6, −1)  meters with the load and 
returns to the original position with no load. 
Controller-observer gains are heuristically set as: 𝑘௣௫ = 10, 𝑘ௗ௫ = 10, 𝐿ௗ௫ = 10, 𝐿௣௫ = 0.1; 𝑘௣௬ =30, 𝑘ௗ௬ = 30, 𝐿ௗ௬ = 10, 𝐿௣௬ = 0.8; 𝑘௣௭ =35, 𝑘ௗ௭ = 35, 𝐿ௗ௭ = 6, 𝐿௣௭ = 0.6.           

Model parameter uncertainties of 15% is assumed 
to be in the control law except for the mass of the 
load, which is known accurately. Following logic is 
used to reset the model parameter, load mass (𝑚), in 
the control law, (4), for the return motion.  

 𝑚 = ൜𝑚; 𝑥ሶௗ(𝑡) ≥ 00;  Otherwise           (7)
 

Desired and actual positions are shown in Fig. 5. 
Fig. 6 presents the position tracking control errors. 
These figures show small position tracking errors and 
admissible transient performance. Driving forces are 
given in Fig. 7. 

Actual and observer estimated velocities are 
compared in Fig. 8. Velocity estimation errors are 
given in Fig. 9. These figures show very good 
velocity estimation accuracy and admissible transient 
performance of the velocity observer.  

Fig. 10 shows the position tracking error without 
load mass parameter resetting as described in (7) in 
the control law. As it can be seen, hoist position 
tracking error increases significantly during the return 
motion without load mass parameter resetting in the 
control law. Percentage changes in the total mass 
parameter in the motion dynamics, from the forward 
motion (𝑚 = 150 kg) to the return motion (𝑚 = 0) 
are 9.4%, 27.3%, 57.7%, for the travel, traverse, and 
hoist motions, respectively. The result in Fig. 9 
signifies the importance of load parameter resetting. 
However, many published work on 3D overhead 
cranes do not consider the no-load dynamics during 
the return motion (Lee, 1998).  

 

 
Figure 5: Desired and actual positions: desired (dotted line) 
and actual (solid line). 

 
Figure 6: Position tracking error: travel (solid line), traverse 
(dotted line), and hoist (dash-dot). 

 
Figure 7: Driving forces: travel (solid line), traverse (dotted 
line), and hoist (dash-dot). 
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Figure 8: Actual (dotted lines) and observer estimated (solid 
lines) velocities. 

 
Figure 9: Velocity estimation error: travel (𝑥෤ሶ , solid line), 
traverse (𝑦෤ሶ , dotted line), and hoist (𝑧̃ሶ, dash-dot). 

 
Figure 10: Position tracking error: travel (solid line), 
traverse (dotted line), and hoist (dash-dot). 

4 ACTUATOR FAULT 
SIMULATION AND FAULT 
ANALYSIS 

4.1 Actuator Fault Model 

Unknown, time-varying actuator fault is described 
by 𝐹ி(𝑡) = 𝛽(𝑡)𝐹(𝑡) + 𝑏(𝑡); 𝑡 ≥ 0 (7)

where 𝐹ி(𝑡) is the actuator output force and 𝐹(𝑡) is 
the control command. The unknown time-varying 
fault parameters, 𝛽(𝑡)  and 𝑏(𝑡), are actuator 
efficiency factor and the actuator bias fault, 
respectively. If 𝛽(𝑡) = 1 and 𝑏(𝑡) = 0 for all 𝑡 ≥ 0, 
it implies that the actuator always works normally. In 
practice, actuators have finite actuation effectiveness 
and bias faults are bounded (Wang et al., 2021). If 𝑏(𝑡) ≠ 0 and 0 < 𝛽(𝑡) < 1, it represents an actuator 
with a bias fault and actuator partial loss-of-control-
effectiveness. Actuator fault model in (7) is in 
compliance with the models used in (Li et al., 2023, 
Wang et al., 2021, Jin et al., 2022).  

In this study, we consider bridge drive motor 
actuator faults that is directly related to the travel 
motion in the 𝑥 -direction. Actuator loss of control 
effectiveness, 1 − 𝛽, that corresponds to the different 
stages of the unknown actuator fault development 
from the healthy stage to the final stage are given in 
Table 1. 

Table 1: Stages of actuator fault development. 

    Stage Healthy      Early Progressive
1 

(1 − 𝛽)%   0   5  10 
    Stage Progressive

2 
Progressive

3 
     Final (1 − 𝛽)%  15  20  25 

4.2 Health Monitoring and Frequency 
Domain Analysis 

In this paper, we propose overhead crane automatic 
control and health monitoring with minimally 
required sensor devices. No sensors are used 
specifically for health monitoring. Only sensors in the 
system are the position sensors essential for the 
feedback control of the 3 degrees-of-freedom of the 
crane.  

We investigate the possibility of using the 
position tracking error waveform, 𝑒௫ = 𝑥 − 𝑥ௗ , or 
the difference between the position sensor feedback 
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and the desired position to identify and classify the 
faults. Furthermore, the velocity error waveform or 
the rate-of-change of error is recommended to better 
capture the transients related features. However, no 
velocity sensors are used. Hence, we instead  analyse 
the difference between the observer estimated 
velocity and the desired velocity (𝑥෤ሶ = 𝑥ොሶ − 𝑥ሶௗ ). To 
that end, by considering both the waveforms, we 
intend to combine both the steady-state and transient 
analysis in the fault diagnosis process. 

4.3 Features, Correlation, and 
Sensitivity 

If the crane performs repetitive motions between the 
same loading and unloading stations, its position and 
velocity profiles may be considered stationary 
waveforms. As a result, the position and velocity 
error waveform are also stationary. Fast Fourier 
transform (FFT) is a powerful technique to analyse 
the stationary waveforms. Frequency spectra of the 
position error waveforms for the healthy actuator and 
progressive3 stages are given in Fig. 11 and of the 
velocity error for the same stages are given in Fig. 12. 
Spectra for the early and final stages are not shown 
for brevity.  

Difference in magnitude of the FFT components 
between the faulty stage and healthy stage may be 
used to good effect as the features or inputs to a health 
monitoring model. Because the values are small, 
before taking the difference, all FFT component 
magnitudes are multiplied by a scaling factor of 10ଷ 
for better readability and round-off error. In the 
sequel, 𝑑ℎ௣೔ denotes the difference in magnitude of 
the 𝑖୲୦ FFT component between the faulty stage and 
healthy stage of 𝑒௫ = 𝑥 − 𝑥ௗ and 𝑑ℎ௩೔denotes that of 𝑥෤ሶ = 𝑥ොሶ − 𝑥ሶௗ. For instance, 𝑖 = 0, 1, 2, 3 represent the 
DC component, fundamental, 2nd harmonic, and 3rd 
harmonic, respectively.  

For the purpose of health monitoring, actuator % 
loss of control effectiveness is taken as the output. 
When the actuator fault develops slowly over the 
time, 𝑒௫  and 𝑥෤ሶ  waveforms vary in their features yet 
preserving the stationarity. In this study, we consider 
the first 100 FFT components of each waveform at all 
different stages of the actuator fault outlined in Table 
1. We first perform Spearman and Kendall Tau 
correlation analyses to identify the 𝑑ℎ௣೔ and 𝑑ℎ௩೔ 
variables with the strongest correlation with the 
output. The identified 𝑑ℎ௣೔ and 𝑑ℎ௩೔  variables are 
then ranked according to the range.  

 
 

 
(a) 

 
(b) 

Figure 11: Position error frequency spectra: (a) Healthy 
stage (b) Progressive3 stage. 

 
(a) 

 
(b) 

Figure 12: Velocity error frequency spectra: (a) Healthy 
stage (b) Progressive3 stage. 

Fig. 12 shows the variation of the 𝑑ℎ௣೔and 𝑑ℎ௩೔ 
variables that have the highest range. They all have 
correlation index of either 1 or -1. Here, 1 indicates a 
perfect positive relationship, -1 indicates a perfect 
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negative relationship, and 0 indicates no relationship. 
As it can be seen in Fig. 13, the 𝑑ℎ௣೔ and 𝑑ℎ௩೔ 
variables with the higher range have higher 
sensitivity. Furthermore, their monotonic and non-
linear nature justifies our choice of the type of the 
correlation, namely, Spearman and Kendall Tau. 

 
Figure 13: Variation of 𝑑ℎ௣೔and 𝑑ℎ௩೔  with the development 
of the fault.  

Table 2 shows the 𝑑ℎ௣೔ and 𝑑ℎ௩೔ variables in the 
ascending order in terms of the range and sensitivity 
with the output. 

Table 2: The 𝑑ℎ௣೔and 𝑑ℎ௩೔  variables in the ascending order 
in terms of the range and sensitivity with the output. 

Variable Range Order of 
sensitivity 

Correlation 𝑑ℎ௣ଵ  2.51855504 1 +1𝑑ℎ௣଻ -1.62332400 2 -1𝑑ℎ௣ଽ -1.17462186 3 -1𝑑ℎ௩ଶଷ  0.98634920 4 +1𝑑ℎ௣ହ -0.88233157 5 -1𝑑ℎ௩ଵହ  0.84783237 6 +1 𝑑ℎ௩ଷଵ  0.84783237 7 +1𝑑ℎ௩଻  0.84769452 8 +1𝑑ℎ௩ଵ଻  0.76450033 9 +1𝑑ℎ௩ଶହ  0.73262167 10 +1
 

Sensitivity analysis helps determine how sensitive the 
output is to the variations of different inputs. This 
helps identify which input variable the most critical 
in the input-output relationship. As seen in Table 2, 
the highest ranked input variables in terms of 
sensitivity is a mixture of 𝑑ℎ௣೔  and 𝑑ℎ௩೔  variables. 
Furthermore, in Fig. 13, it can be seen that the 
sensitivity of 𝑑ℎ௣భ , which has the largest range, is 
small in the early stages of the actuator fault. To this 
end, we conclude that consideration of the error 
waveform, 𝑥෤ሶ = 𝑥ොሶ − 𝑥ሶௗ , enhances the chances of 
early detection of the actuator fault. 
 
 
 
 

5 CONCLUSIONS 

This paper presented a controller-observer scheme for 
linear position tracking control of the hook-block of 
an overhead crane in the 3-D space. Closed-loop 
stability of the plant-controller-linear velocity 
observer system has been guaranteed using Lyapunov 
method. 

The simple trajectory planning method proposed 
here has enabled defining the times and distance to 
the destination, maximum linear velocities and 
accelerations in the parameters of the function itself 
as well as ensuring smooth tracking trajectories. This 
simplifies the meeting of operational and safety 
requirements and meeting the actuator constraints. 
Computer numerical simulations in the presence of 
15% model parameter uncertainties and random 
external disturbances have produced small position 
tracking and velocity estimation errors as well as 
admissible transient performance. 

Using frequency domain, correlation, and 
sensitivity analysis, we have also shown that position 
tracking error, 𝑒௫ = 𝑥 − 𝑥ௗ , and velocity error, 𝑥෤ሶ =𝑥ොሶ − 𝑥ሶௗ , waveforms may be used successfully for 
actuator health monitoring. As a result, only the 
position measurements are required for the entire 
purpose of automatic control and health monitoring in 
PdM applications of multi-motor systems. 

Future work involves investigation of wavelet 
transforms, wavelet NNs architectures, and ensemble 
techniques to address the health monitoring problem 
when the motion trajectories are non-repetitive. 
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APPENDIX 

Consider the Lyapunov function candidate 
 𝐿 = 12 𝑧̃ሶଶ + 𝜆𝑧̃ሶ𝑧̃ + 12 ൫𝐿௣ + 𝜆𝐿ௗ൯𝑧̃ଶ 

(A1)+ 12 𝑒ሶ ଶ + 𝜆𝑒ሶ𝑒 + 12 ൫𝑘௣ + 𝜆𝑘ௗ൯𝑒ଶ 

which is positive definite for 𝜆  sufficiently small. 
With (4), (5), and dynamics equation, (3), we get 
 𝑀൫𝑧̃ሷ + 𝐿ௗ𝑧̃ሶ + 𝐿௣𝑧̃൯ = −𝐷𝑧̃ሶ − 𝑑 (A2)𝑀൫𝑒ሷ + 𝑘ௗ𝑒ሶ + 𝑘௣𝑒 − 𝑘ௗ𝑧̃ሶ൯ = −𝐷𝑧̃ሶ − 𝑑 (A3)

Time differentiating (A1) and using the results 
(A2), (A3) yield  𝐿ሶ = − ൬𝐿ௗ + 𝐷𝑀 − 𝜆൰ 𝑧̃ሶଶ − 𝜆𝐿௣𝑧̃ଶ −(𝑘ௗ − 𝜆)𝑒ሶ ଶ − 𝜆𝑘௣𝑒ଶ − 𝐷𝑀 (𝜆𝑧̃ + 𝑒ሶ + 𝜆𝑒)𝑧̃ሶ − 𝑑𝑀 ൫𝑧̃ሶ + 𝜆𝑧̃ + 𝑒ሶ + 𝜆𝑒൯ 

(A4)

+𝑘ௗ(𝑒ሶ + 𝜆𝑒)𝑧̃ሶ 
 

Following inequalities can be written for the terms 
of (A4) − ൬𝐿ௗ + 𝐷𝑀 − 𝜆൰ 𝑧̃ሶଶ − 𝜆𝐿௣𝑧̃ଶ − (A5)(𝑘ௗ − 𝜆)𝑒ሶ ଶ − 𝜆𝑘௣𝑒ଶ ≤ 0 
 − 𝐷𝑀 (𝜆𝑧̃ + 𝑒ሶ + 𝜆𝑒)𝑧̃ሶ ≤ 𝐷𝑀 (𝜆|𝑧̃| + |𝑒ሶ| + 𝜆|𝑒|)ห𝑧̃ሶห (A6)≤ 𝐷2𝑀 ൫𝑒ሶ ଶ + 𝜆𝑒ଶ + 3𝑧̃ሶଶ + 𝜆ଶ𝑧̃ଶ൯ 

− 𝑑𝑀 ൫𝑧̃ሶ + 𝜆𝑧̃ + 𝑒ሶ + 𝜆𝑒൯ ≤ 𝑑ெ𝑀 ൫|𝑧̃ሶ| + 𝜆|𝑧̃| + |𝑒ሶ| + 𝜆|𝑒|൯ (A7)≤ 𝑑ெ2𝑀 ൫𝑧̃ሶଶ + 𝜆ଶ𝑧̃ଶ + 𝑒ሶ ଶ + 𝜆ଶ𝑒ଶ + 4൯ 
 

       In (A6) and (A7), the fact that for any real scalars 𝑎 and 𝑏, 𝑎𝑏 ≤ (𝑎ଶ + 𝑏ଶ)/2 is used. 
 𝑘ௗ(𝑒ሶ + 𝜆𝑒)𝑧̃ሶ ≤ 𝑘ௗ(|𝑒ሶ| + 𝜆|𝑒|)ห𝑧̃ሶห 

(A8)≤ 𝑘ௗ2 ൫2𝑧̃ሶଶ + 𝑒ሶ ଶ + 𝜆ଶ𝑒ଶ൯ 
Because of the inequalities (A5) through (A8), 

there results  𝐿ሶ ≤ − ൬𝑘ௗ2 − 𝜆 − 12 𝐷𝑀 − 12 𝑑ெ𝑀 ൰ 𝑒ሶ ଶ − ቆ𝜆𝑘௣ − 𝜆ଶ2 𝑘ௗ − 𝜆ଶ2 𝐷𝑀 − 𝜆ଶ2 𝑑ெ𝑀 ቇ 𝑒ଶ − ൬𝐿ௗ − 𝑘ௗ − 𝜆 − 12 𝐷𝑀 − 12 𝑑ெ𝑀 ൰ 𝑧̃ሶଶ − ቆ𝜆𝐿௣ + 𝜆ଶ2 𝐷𝑀 − 𝜆ଶ2 𝑑ெ𝑀 ቇ 𝑧̃ଶ + 2 𝑑ெ𝑀  
 

According to 𝛽-ball lemma (Wen and Bayard, 1988), 
it follows that 𝐿ሶ ≤ −𝜅ଵ𝑒ሶ ଶ − 𝜅ଶ𝑒ଶ − 𝜅ଷ𝑧̃ሶଶ − 𝜅ସ𝑧̃ଶ + 2 𝑑ெ𝑀  
where 𝜅௜ > 0; 𝑖 = 1, 2, 3, 4 for a 𝜆 sufficiently small 
and suitably chosen set of controller-observer gains, 𝑘ௗ, 𝑘௣, 𝐿ௗ, 𝐿௣ > 0. This allows us to write 
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−𝐿ሶ ൫𝑒ሶ , 𝑒, 𝑧̃ሶ, 𝑧̃൯ ≤ −𝜅𝐿൫𝑒ሶ , 𝑒, 𝑧̃ሶ, 𝑧̃൯ + 𝛾 
for some 𝜅 > 0. Here, 𝛾 = 2 ௗಾெ  . 

Therefore, the Lyapunov function, 𝐿(𝑒ሶ , 𝑒, 𝑧̃ሶ, 𝑧̃), is 
positive definite outside a compact set of 𝒪(𝛾) and 
the closed-loop plant-controller-observer system, (3), 
(4), (5), is uniformly ultimately bounded (UUB). 
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