
Word Stand or Hit: Simulation of Blackjack by Programming

Yiqi Huang
School of Natural Sciences, University of Manchester, Manchester, M13 9PL, U.K.

Keywords: Blackjack, Game Theory, Optimal Strategy.

Abstract: Blackjack is a global gambling game with great influence and popularity where players aim to have a hand
total closer to 21 than the dealer’s hand without exceeding it. It is a game played against the dealer or the
casino. In Blackjack, the player's subjective decision almost determines the outcome of the game, while the
dealer follows a fixed rule resulting in less subjective impact on the game. As a result, players strive to find
the optimal strategy to gain profit. This paper designs a computer program to discuss whether choosing to
continue or stop drawing cards is statistically wiser for different initial cards. The paper also emphasises how
probability principles can be applied to Blackjack, providing guidance for practical decision-making in
casinos. The optimal player actions for each combination of initial dealer and player hand types calculated by
the program are summarised in a table to provide players with effective references.

1. INTRODUCTION

Blackjack, also known as 21, is one of the most
popular gambling games nowadays. The player is
aiming to have a hand total that is closer than the
dealer’s hand but without going over 21. Each player
is dealt two cards initially and can choose to take
more cards or stop at the current total, which is called
“hit” or “stand” respectively. Face cards such as
Kings, Queens, and Jacks are counted as 10 points,
Aces can be counted as either 1 or 11 points, while
all other cards are worth their face value. The name
“Blackjack” of the game comes from the best
possible hand, which is an Ace and a 10-point card.
If the player's hand exceeds 21 points, they
automatically lose regardless of the dealer's hand,
which is called “bust”. On the contrary, if the dealer
busts cards, then all players who did not bust their
cards are considered winners.

Blackjack is ancient and simple. The game could
be traced to the 15th century when Gutenberg's
printing press was invented (Snyder, 2013). It
requires very few props: only chips and playing
cards, and the rules are simple and uniform. As a
result, the game has a unique charm that attracts
people all over the world and can be found in almost
any casino. According to statistics, as the second
most profitable gambling game in America, 31% of
table game action is made up by Blackjack (Lindner,
2023). Another important reason why this casino

game is popular among players is that using
reasonable strategies can effectively increase the
winning rate. In general, the games operated in the
casino are games with negative player expectations,
because the casino needs to make a profit. However,
the disadvantages of blackjack are smaller than other
popular casino games, such as American Roulette
(Baldwin et al., 1956). With the development of
game theory and the standardization of the game,
more and more Blackjack optimal strategies have
been proposed. The concept of the Game Theory
Optimal (GTO) strategy, which is central to game
theory, was first developed by John von Neumann
(Neumann and Morgenstern, 2007). Culbertson
proposed a strategy in 1952 that brought the player's
expectations to -0.036 (Culbertson, 1952). This
makes blackjack almost a fair game and even means
there is a chance of making money from the casino.
Manson proposed a strategy for four decks used in
1975 (Manson, Barr and Goodnight, 1975). In
addition to the analysis of decisions for action, there
is also a lot of analysis of decisions for betting based
on card counting, which was first proposed by Thorp
(Thorp, 2016). Later in 1963, Dubner proposed the
Hi-Lo system at a conference in Las Vegas, which is
a simplification of the complex strategies that had
been previously developed by Thorp, which made
card counting more accessible to the general public
(Snyder, 2013). The Hi-Lo card counting method is
widely recognized and its practical application has

Huang, Y.
Word Stand or Hit: Simulation of Blackjack by Programming.
DOI: 10.5220/0013055800004601
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Innovations in Applied Mathematics, Physics and Astronomy (IAMPA 2024), pages 253-257
ISBN: 978-989-758-722-1
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

253

been extensively studied (Wong, 1994). Generally,
Game theory gives ideal frameworks that can be used
to provide guidance on the allocation of limited
resources and can be applicable such as solving
transportation problems (Hughes and Chen, 2021). It
can also be used to develop pricing models aimed at
balancing loads in the grid (Ghosh et al, 2004).
Therefore, game theory and optimal strategy
research are considered broadly applicable and
meaningful.

This paper will introduce a method of using an
open-source programming language and software
environment: R language to solve the Blackjack
strategy problem. That is, R language will be used to
give expectations for selecting hit or stand under
different player versus dealer cards situations to give
players a reference for decision-making.

2. METHODOLOGY

2.1. Game Description

Specifically, the process of the Blackjack is as
follows: the dealer first deals two cards to each
player, and then deals one card to himself. These
cards are all shown publicly, which means that
players also have the information of the two cards of
other players. After that, players make decisions in
order from right to left. The player can choose to
“stand”, for which the sum of the two cards in hand
will become the final points; or choose to “hit”, for
which the dealer will deal one more card to the player
to increase the sum, and players are allowed to hit
multiple times. Mentionable, players aim to not
exceed 21 points, or they will be eliminated
immediately. The dealer will take action after all
players have ended their action round. Unlike the
players, the dealer's actions do not depend on
subjective will, but on a fixed rule: the dealer must
hit if the dealer’s card sum is less than or equal to 16
points and must stand if greater than or equal to 17
points. At this moment, all surviving players will
compare their points with the dealer and whose
points are not as high as the dealer's will lose all bets.
With a bigger card sum, the player will win the game,
and the payout varies according to the odds specified
by the table and casino. If the dealer's hand exceeds
21, then all players who survived, which means those

who did not lose at the player action, win. If the
points are equal, it is a tie, with no profit or loss for
the players.

There will be different rules according to
different casino regulations. For example, if the
player believes that his two initial cards are very
favourable compared to the dealer's one initial card,
then the player can choose to double in his round,
that is, double his original bet. In this case, the dealer
gives the player one card only, which means there are
no multiple hits. Therefore, players need to consider
whether their winning odds are worth doubling down
on, as either gains or losses are doubled. Some
casinos allow betting on flushes, straights, or triple
7s. Although the probability might be extremely low,
the payment could be very impressive, with some
odds can reach 1: 500.

2.2. Simulate Process and Convert to
Code

In summary, it is crucial for players to correctly
analyse both sides' initial cards and take action. This
article will use R to produce an answer of whether
the player should choose to hit or stand in terms of
probability by various player points and dealer points
in the situation of one deck of cards and one player
playing. First, an environment with one deck of cards
is needed to be created. The code shown in Table 1
will create a vector: numbers from 2 to 10 represent
the number cards, three 10s represent the face cards,
and an 11 represents the ace card. This vector is then
repeated 4 times to form an environment of 52
standard playing cards. The user could simply
change the variable in the repeat code to a multiple
of 4 in simulation of multiple decks of cards. In
theory, using multiple decks will slightly increase the
dealer's winning rate, which is tiny enough to be
ignorable.

Table 1. R code Function call for one standard deck.

Algorithm 1
Step 1 Import the dplyr library
Step 2 Create an array 'deck'

 - Initialize 'deck' with card values:
2,3,4,5,6,7,8,9,10,10,10,10,11.

Step 3 Create an array 'full_deck' by
replicating 'deck' four times.

Next, the simulation for the dealer’s hand is
created as shown in Table 2 by setting a parameter to
initialise it and using an infinite loop to simulate the
dealer continuously drawing cards until they meet
the standing condition or bust. After updating points,

a check action is needed to be proposed for the ace
card because of that it can be either 1 or 11.
Logically, the ace card could be considered that it
only represents 1 point after busting. This allows the
R language to subtract 10 points from the hand card

IAMPA 2024 - International Conference on Innovations in Applied Mathematics, Physics and Astronomy

254

satisfying two conditions: busted cards and ace cards
included, to achieve changing the aces from
representing 11 points to representing 1 point.
Finally, the code checks if the card is busted and
returns the outcomes. The initialization of the
player's hand is the same as the dealer's, but the
player's actions need to be defined further.

Table 2. R code Function call for dealer and player
simulation.

Algorithm 2
Step 1 Define a function that takes the

dealer’s initial card value input by
user.

Step 2 Start an infinite loop
 - If dealer’s hand is less or equal to
16, draw a new card from the deck
and update dealer’s hand by adding
the value of the card drawn.
 - If dealer’s hand is greater or equal
to 17 with an Ace, minus dealer’s
hand by 10.
- If dealer’s hand is greater or equal
to 17, exit the loop.

Step 3 Return the final value of dealer’s
hand once the loop is exited (the
dealer either stands or busts).

Step 4 Define a function that stores the
dealer’s initial card value input by
user.

Step 5 Initialize a data frame named
outcomes
 - Create an empty data frame called
outcomes with three columns:
 - Strategy: to store different
playing strategies the player might
use, expected as character data.
 - Result: to store numerical results
related to the strategies, expected as
double-precision numbers.
 - Win: to store the win or loss
outcome for each strategy, also
expected as double-precision
numbers.

In this next step, the algorithm shown in Table 3
simulates the outcome of choosing to stand or hit by
the given initial card which is input by the users. If
the dealer busts or the player's hand is higher, the
player wins and is recorded as (1). If the player's
hand is smaller, the player loses (-1). If the hands are
equal, the result is a draw (0). Finally, to record to
result a vector is created. The programming for a hit
will be significantly more complicated. Firstly, an
order is given to randomly draw a card from the deck
set before, then add its points to the player's initial
hand, with the same special design of the aces. If the
player does not bust, repeat the previous recording

method. If the player busts the card, it will be directly
recorded as (-1). Similarly, the results are recorded
in the result vector as well.

Table 3. R code Function call for hit or stand simulation.

Algorithm 3

Step 1 Store the result of dealer’s hand after
simulation.

Step 2

For player choosing to stand, define
an if-else function.
 - If dealer’s hand exceeds 21,
output (1).
 -Otherwise:

- If player’s hand is greater
than dealer’s hand, output (1).
 - If player’s hand is less than
dealer’s hand, output (-1).

 - If player’s hand is equal to
dealer’s hand, output (0).

Step 3
For player choosing to hit, draw a
new card from the deck and update
player’s hand by adding the value of
the card drawn.

Step 4

Define an if-else function to check
Ace card.
 - If player’s hand exceeds 21 with
Ace card, minus 10 and output.
 -Otherwise, output directly.

Step 5

Define a function for comparison.
- If player’s hand exceeds 21,

output (-1).
 - If player’s hand is less than 21:
 - If dealer’s hand exceeds 21,
output (1).

- Otherwise:
- If player’s hand is greater

than dealer’s hand, output (1).
 - If player’s hand is less than
dealer’s hand, output (-1).
 - If player’s hand is equal to
dealer’s hand, output (0).

Step 6 Return outcomes for both stand or
hit.

It is not enough to so far since the aim is to design
code that can output probability which could be
achieved by simply simulating a large number of
times and calculating expectations. In Table 4, the
program is ordered to simulate 10000 times with the
input player's card is 15 points and the input dealer's
card is 7 points. These three parameters can be input
freely by users to meet the needs of real-time
simulation. The output gives two probabilities as a
reference, which are the expectations of selecting hit
and stand for action in the situation of the input.
Players should choose the action with the larger
output to ensure a higher winning rate.

Word Stand or Hit: Simulation of Blackjack by Programming

255

Table 4. R code Function call for expectation.

Algorithm 4
Step 1 Use the replicate function to run the

hit and stand simulation function
10,000 times with initial player hand
and dealer card input by user.
Combine all individual simulation
results into a single data frame

Step 2 Combine all individual simulation
results into a single data frame.

Step 3 Group and summarize the data by
strategy
 - Group results by the 'Strategy'
column.
 - Calculate the mean of the 'Win'
column for each strategy group.

Step 4 Print the summary data frame

3. RESULTS AND DISCUSSION

3.1. Example of player 15 versus dealer 9

Suppose in a game, the player gets a King and a 5,
and the dealer gets a 9. This brings the player's points
to 15 and the dealer's points to 9. The question
interested in is whether a hit or a stand has a
statistically higher chance of winning in this case
(Table 5).

Table 5. An example of running the algorithms.

Input Out put
Replicate (10000,
simulate_player_actions (15,
9), simplify = FALSE)

 Strategy
AverageWin
 <chr> <dbl>
1 Hit Once -0.480
2 Stand -0.547

According to the results, the winning rate of hit is

-0.480, and the winning rate of stand is -0.547. This

demonstrates that this is a favourable situation for the
dealer because both actions have negative
expectations for the player, which means that in the
long run, the player expects to lose. However, the
player should choose to hit in this situation as it is
less likely to lose by comparison. According to the
rules, a player can hit multiple times. Therefore, if
there is no bust after a hit, the player can use the
updated points as input to calculate the expectation
again to decide whether a second hit is needed.

3.2. Solution on other simulations

Similarly, it is reasonable to list every possible hand
situation and the corresponding winning rates of hit
and stand. This is summarised in Table 6, with the
dealer’s hand in the row and the player’s hand in the
column.

The coloured options are the actions that are more
likely to win. It is worth noting that most of the
optimal choices are still negative. Only in very lucky
cases, one can get a large positive expectation close
to 1 with a clear advantage. This proves that
blackjack is a game that favours the dealer, even if it
is not obvious. Situations where the player's hand is
equal to or less than 10 are not recorded. While
expectations can be calculated in these situations,
they are meaningless. Assuming the player's hand is
equal to or less than 10, then a hit will increase the
points without any possibility of resulting in a bust.
Therefore, when the player encounters these
situations, they should choose to hit the card no
matter what the expectation is.

The code in this article gives the optimal solution
considering only hit and stand. In most casinos,
double or split is allowed to improve the player's
winning rate, which is not considered in the
probability calculation.

Table 6. Expected value in various situations.

Expected value table

2 3 4 5 6
Hit Stand Hit Stand Hit Stand Hit Stand Hit Stand

12 -0.22 -0.26 -0.22 -0.22 -0.19 -0.18 -0.17 -0.11 -0.17 -0.15
13 -0.28 -0.24 -0.27 -0.21 -0.27 -0.17 -0.24 -0.13 -0.21 -0.15
14 -0.34 -0.24 -0.34 -0.22 -0.31 -0.17 -0.30 -0.12 -0.30 -0.16
15 -0.41 -0.25 -0.39 -0.19 -0.39 -0.19 -0.37 -0.11 -0.37 -0.16
16 -0.47 -0.25 -0.46 -0.20 -0.45 -0.15 -0.44 -0.12 -0.44 -0.16
17 -0.53 -0.11 -0.53 -0.08 -0.51 -0.05 -0.52 -0.01 -0.52 0.01
18 -0.61 0.14 -0.61 0.19 -0.73 0.44 -0.62 0.23 -0.62 0.27

IAMPA 2024 - International Conference on Innovations in Applied Mathematics, Physics and Astronomy

256

19 -0.71 0.41 -0.73 0.43 -0.63 0.20 -0.73 0.45 -0.73 0.49
20 -0.85 0.65 -0.86 0.65 -0.86 0.68 -0.85 0.69 -0.86 0.70
21 -1.00 0.88 -1.00 0.89 -1.00 0.90 -1.00 0.90 -1.00 0.90

7 8 9 10 Ace
Hit Stand Hit Stand Hit Stand Hit Stand Hit Stand

12 -0.24 -0.47 -0.30 -0.51 -0.37 -0.54 -0.43 -0.58 -0.48 -0.57
13 -0.27 -0.47 -0.33 -0.51 -0.40 -0.53 -0.47 -0.59 -0.49 -0.57
14 -0.34 -0.48 -0.37 -0.52 -0.44 -0.55 -0.51 -0.59 -0.55 -0.58
15 -0.37 -0.50 -0.43 -0.51 -0.48 -0.55 -0.55 -0.57 -0.58 -0.58
16 -0.42 -0.48 -0.48 -0.52 -0.51 -0.56 -0.55 -0.57 -0.61 -0.57
17 -0.48 -0.11 -0.50 -0.38 -0.57 -0.41 -0.61 -0.46 -0.64 -0.47
18 -0.59 0.40 -0.59 0.12 -0.62 -0.18 -0.67 -0.25 -0.71 -0.24
19 -0.72 0.61 -0.71 0.59 -0.72 0.28 -0.74 -0.02 -0.78 -0.02
20 -0.87 0.79 -0.85 0.80 -0.85 0.77 -0.86 0.42 -0.87 0.21
21 -1.00 0.93 -1.00 0.93 -1.00 0.94 -1.00 0.89 -1.00 0.65

4. CONCLUSION

Due to its high subjectivity, people always want to
improve their odds in Blackjack through personal
decisions. However, in some seemingly even
situations such as 16 versus 10, decisions are often
hard to make. But from a probabilistic perspective,
each hand will have an optimal decision that gives
the player a higher odds of winning. In other words,
there is a set of optimal strategies that will make the
player win the most or lose the least if the player
follows it for a long term. This paper proposed a
probability analysis of strategies used in Blackjack.
Although some minor part of the rule is not
considered, the simulation is still close to real-life
games. By using the R program, every situation a
player would encounter was simulated and the
optimal strategy was given. This provides an
important reference for real casino decision-
making. At the same time, it proves the minor bias
of the game. Without considering additional
strategies, it is difficult for 21 points to become a
profitable game for players.

REFERENCES

Snyder A 2013 Big Book of Blackjack. Cardoza
Publishing.

Lindner J 2023 Must-know blackjack statistics. GITNUX.
Baldwin R R, Cantey W E, Maisel H and McDermott J P

1956 The optimum strategy in Blackjack. Journal of
the American Statistical Association, 51(275) 429.

Neumann J V and Morgenstern O 2007 Theory of games
and Economic Behavior. Princeton University Press.

Culbertson E 1952 Culbertson’s card games, complete,
with Official Rules. Greystone Press.

Manson A R, Barr A J and Goodnight J H 1975 Optimum
zero-memory strategy and exact probabilities for 4-
deck blackjack. The American Statistician, 29(2) 84-
88.

Thorp E O 2016 Beat the dealer: A winning strategy for
the game of twenty-one. Vintage.

Wong S 1994 Professional blackjack. Pi Yee Press.
Hughes J and Chen J 2021 Resilient and distributed

discrete optimal transport with deceptive adversary:
A game-theoretic approach. IEEE Control Systems
Letters, 6 1166-1171.

Ghosh P, et al. 2004 A game theory based pricing strategy
for job allocation in mobile grids. In 18th
International Parallel and Distributed Processing
Symposium, 2004. Proceedings.

Word Stand or Hit: Simulation of Blackjack by Programming

257

