
Automated Design of Routing Policies for the Dynamic Electric Vehicle
Routing Problem with Genetic Programming

Marko Ðurasević1 a and Francisco Javier Gil Gala2 b

1University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia
2University of Oviedo, Gijon, Spain

Keywords: Genetic Programming, Electric Vehicle Routing Problem, Hyper-Heuristics, Routing Policy.

Abstract: The dynamic electric vehicle routing problem (EVRP) with time windows (DEVRPTW) is an important com-
binatorial optimisation problem gaining on importance in today’s world due to environmental concern and the
requirement of dealing with dynamic and uncertain environments. This represents a problem when solving
such problems, as standard improvement based heuristics cannot be used to solve them, since not all infor-
mation about the problem is known beforehand. This provides a motivation for applying improvement based
heuristics, most notably routing policies (RPs), which determine only the next decision that needs to be per-
formed an execute it. Since these RPs do not construct the schedule in advance, they can easily react to any
changes in the problem. However, RPs are difficult to design, which motivated the use of genetic programming
(GP) in automatically designing such heuristics for various problems. Unfortunately, in the context of EVRP
only static problems were considered. This study investigates the application of GP to automatically design
new RPs for DEVRPTW under different levels of dynamism. The results demonstrate that GP performs well
for certain levels of dynamism, although as it increases it is more difficult to perform good decisions.

1 INTRODUCTION

The vehicle routing problem (VRP) represents an im-
portant combinatorial optimisation problem often en-
countered in the real world in various areas of logistic
and transportation (Erdelić and Carić, 2019). When
solving the VRP the main goal is to construct a set of
routes for a number of vehicles that need to visit and
serve a given number of customers, in a way that one
or more user defined criteria are optimised. Due to the
growing environmental concern and the desire to re-
duce the negative influence of humans on the environ-
ment, the research is shifted towards the green VRP
problem variants (Moghdani et al., 2021), most com-
monly the electric VRP (EVRP) (Qin et al., 2021).

VRP, and by extension EVRP, are both NP-hard
problems, which in most cases leads to the application
of various heuristic and metaheuristic based meth-
ods for solving such problems (Erdelić and Carić,
2019). Although these methods can solve various
EVRP problems efficiently, they are usually not ap-
propriate when solving dynamic, uncertain, or large

a https://orcid.org/0000-0001-8732-4769
b https://orcid.org/0000-0002-0606-7009

scale problem variants (Mardešić et al., 2023). The
reason for this is that they search the entire search
space for the best possible solution, however, the en-
tire information about the problem is either unavail-
able (as in dynamic problems) or certain information
is susceptible to change (such as in uncertain prob-
lems) (Mardešić et al., 2023). Therefore, the solutions
that these methods would construct would likely be-
come infeasible, and would have to be modified ac-
cording to the changing conditions in the problem.

Under such conditions, simple constructive based
heuristics, usually denoted as routing policies (RPs),
represent a viable alternative to standard improve-
ment based metaheuristics (Jacobsen-Grocott et al.,
2017). Instead of searching the space of all solutions,
RPs construct a solution in a step-wise manner using
a certain strategy. This means, each time that a certain
decision needs to be made, they determine the "best"
decision using some kind of a heuristic rule, for ex-
ample that the vehicle that becomes free should visit
the closest customer to it. By constructing the solu-
tion in such a way RPs can quickly react to changes
that occur in the system, such as the arrival of new
customers, or changes in their orders, since they do
not construct the entire solution until the end.

346
Durasevic, M. and Gil Gala, F.
Automated Design of Routing Policies for the Dynamic Electric Vehicle Routing Problem with Genetic Programming.
DOI: 10.5220/0013058900003837
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Joint Conference on Computational Intelligence (IJCCI 2024), pages 346-353
ISBN: 978-989-758-721-4; ISSN: 2184-3236
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



However, such methods also have certain limita-
tions, with one of the most important being that it is
difficult to manually design high quality RPs. Due to
this reason researchers have resorted to using various
hyper-heuristic methods (Burke et al., 2013), most
notably genetic programming (GP) (Poli et al., 2008)
to aid them in the design of new RPs for various VRP
problem variants that they were faced with. For exam-
ple, GP was used to design RPs for the VRP variant
with time windows for both static and dynamic en-
vironments (Jacobsen-Grocott et al., 2017; Jakobović
et al., 2023). Furthermore, GP was also successfully
used to generate RPs for VRP with zone based pric-
ing (Afsar et al., 2021), a variant in which not all cus-
tomers need to be served and in which it is also re-
quired to determine the prices for different customer
zones (Gil-Gala et al., 2023). Regarding the EVRP
variant, it was investigated in a short study where dif-
ferent scenarios were considered, although all were
static (Gil-Gala et al., 2022).

As we can see, the literature dealing with auto-
mated design of RPs with VRPs and especially on the
EVRP variant is still scarce, although the problem is
of practical relevance. Therefore, in this paper we in-
vestigate the ability of GP to generate RPs for the dy-
namic EVRP with time windows (DEVRPTW) prob-
lem variant in which the requests of the customers are
not known in advance, but rather become available
over time. We consider problems with several lev-
els of dynamism and different properties in order to
analyse how the RPs generated with GP perform un-
der different conditions. The obtained results demon-
strate that automatically generated RPs can perform
well also on dynamic problems, although on certain
problem types their performance significantly deteri-
orates as the level of dynamism increases.

2 DYNAMIC EVRP

The DEVRP problem is usually modelled as a fully
connected graph in which the nodes represent differ-
ent types of locations, with edges representing the
connections (for example roads) between those loca-
tions (Schneider et al., 2014; Lin et al., 2016). Each
node has 2 coordinates that denote its position in a
2-dimensional Euclidean space, whereas each edge
has a certain weight that denotes the Euclidean dis-
tance between those nodes. In DEVRP, these nodes
represent either a customer, charging station, or de-
pot. Each customer i has a certain demand demi that
needs to be served by a vehicle, the service time si that
specifies the time required to serve the customer, and
time window during which the service of the customer

needs to begin, which is defined with the release time
ri and deadline di of the customer. This variant of
the DEVRP is denoted as DEVRP with time windows
(EVRPTW) in the literature (Schneider et al., 2014).

In order to serve the demands of the customers, a
fleet of electric vehicles is available, all with a given
cargo capacity, battery level, and speed. At the start,
all vehicles are located at the depot and they leave the
depot with full cargo and battery capacity. In the con-
sidered problem it is presumed that there is only a sin-
gle depot. Each vehicle has a cargo capacity, which
is reduced by the demand of the customer once the
vehicle finishes servicing him. Furthermore, each ve-
hicle also has a battery level, which is reduced when
traversing an edge. The reduction of the battery level
depends linearly on the distance that is traversed by
the vehicle from the source to the destination. When
the vehicle does not have enough cargo capacity to
serve a customer, it returns to the depot and finishes
the route, since in the considered problem the cargo
cannot be reloaded. The energy level of the vehi-
cle can be recharged by visiting one of the available
charging stations. When a vehicle reaches a charg-
ing station its battery level is fully recharged, with the
recharging time depending on the amount of energy
being recharged. The charging station have no limit
on the number of vehicles or the capacity that can be
recharged. In the problem considered in this study it
is presumed that the fleet of vehicles is homogeneous,
meaning all vehicles have the same properties.

There are various objectives that can be consid-
ered when solving the DEVRPTW. However, the
most important objectives is the minimisation of the
number of vehicles used to service all the customers
(Lin et al., 2016). The reason why this objective is the
most important one is since it usually has the largest
influence on the cost (due to vehicle maintenance and
driver cost). Therefore, this objective is usually op-
timised as the primary one, after which a secondary
objective is optimised. Since in the considered prob-
lem it is required to service customers during their
time windows, the secondary objective will be de-
fined as the total lateness L, which determines the
total time that all vehicles were late when servicing
customers on their route. The total objective is finally
defined as a weighted sum of these two objectives:
Ob j(x) = c ∗V (x)+L(x), where Ob j(x) denotes the
total objective value for a solution x, V denotes the
total number of vehicles used in solution x, c denotes
a scaling constant, and L denotes the total lateness of
vehicles in solution x. In this study, c is set to 109 so
that the algorithm primarily focuses on the optimisa-
tion of the number of vehicles.

In this study we investigate the dynamic variant

Automated Design of Routing Policies for the Dynamic Electric Vehicle Routing Problem with Genetic Programming

347



of the aforementioned problem. This dynamic na-
ture of the problem is manifested in the way that
the information about the customers becomes avail-
able as the problem is being solved. Namely, not
all customer information is available from the start,
rather only a portion of the problem information is
available, which is defined as the look-ahead win-
dow. The look-ahead window is defined as an interval
[0,ct +(1− dl) ∗maxr], where ct represents the cur-
rent time of the system, maxr the maximum release
time of a customer, and dl the level of dynamism.
For all the customers whose release times fall into
this interval, their information is available to the rout-
ing algorithm and they can be considered for routing.
The information about all other customers will still
be unknown until their release time does not fall into
the look-ahead window. We see that as the current
time of the system advances, the upper interval will
be increasing, thus more customers will fall within
the look-ahead window and their information will be-
come known, until finally the information about all
the customers becomes known. The dynamic level pa-
rameter dl is used to determine the level of dynamism
in the system. If it is equal to 0, this means that the
look-ahead window will cover the entire horizon and
the information about all the jobs will be known from
the start, which amounts to the static variant of the
problem. On the other hand, if the parameter value
is equal to 0, only the customers with a release time
until the current moment in time will be known.

3 DESIGNING RPs WITH GP

Genetic programming (GP) is an evolutionary com-
putation method with a similar structure as genetic al-
gorithms (GAs) (Poli et al., 2008). This means that
the algorithm starts with a random set of solutions
which are iteratively improved using various genetic
operators such as selection, crossover, and mutation.
The main difference between GP and GAs is the solu-
tion representation, since in GP the solutions are rep-
resented as expression trees. This representation en-
ables GP to be used as hyper-heuristic, i.e., a method
to develop new heuristics for solving a combinatorial
optimisation problem (Burke et al., 2013). Until now,
GP has been successfully utilised as a hyper-heuristic
method for various combinatorial problems, such as
scheduling (Branke et al., 2016), container relocation
(Ðurasević et al., 2024), bin packing (Burke et al.,
2012), and travelling salesman (Duflo et al., 2019).
Although there are other methods that can be used
as hyper-heuristics, such as neural networks (Branke
et al., 2014) or methods similar to GP (Planinic et al.,

2022), GP still remained dominant.
The RPs designed with GP can be divided into two

components, the routing scheme (RS) and the priority
function (PF) (Gil-Gala et al., 2022). The RS defines
the outline of the RP, which determines when a rout-
ing decision needs to be performed and ensures that
the constructed solution is feasible. The RS used in
this study to construct the solution to the problem is
outlined in Algorithm 1. The RS starts with a set of
vehicles, and then it iteratively selects the first avail-
able vehicle (at the start all vehicles are available at
the same time) and determines the next location that
it should visit. This location is determined by the PF,
which is used to rank all the remaining available and
unserved customers. The best ranked customer is then
selected for service by the current vehicle. If the vehi-
cle does not have enough cargo capacity to serve the
demand of the selected customer, then it returns to the
depot. Otherwise, it visits the selected customer and
serves him. If the vehicle arrives before the release
time of customer, then it needs to wait until the cus-
tomer becomes available. If the vehicle arrives during
the time window of the customer, then the customer
can immediately be served. On the other hand, if the
vehicle arrives after the due date of the customer, the
customer can still be served, but a certain penalty in
the form of lateness is incurred. During the service of
customers it is possible that the vehicle does not have
enough energy to visit the selected customer. In this
case the vehicle will first visit one or more charging
stations in order to refill its energy. The charging sta-
tions it will visit will be selected so that the path be-
tween the source and destination is the shortest possi-
ble. This is possible since the number of charging sta-
tions is not large and therefore the best path between
the source and destination can be determined.

Algorithm 1: Outline of the routing scheme.
1: while not all customers are served do
2: v← first available vehicle.
3: for customer c j out of all the considered cus-

tomers C do
4: Calculate the priority π j
5: Determine the customer k with the smallest pri-

ority value πk
6: if Vehicle v has not enough capacity to serve

customer ck, or no customer k was selected
then

7: Return vehicle v to the depot.
8: else
9: Visit customer ck by vehicle v.

As previously outlined, the PF is used to deter-
mine the customer that will be scheduled next. The PF

ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications

348



represents a mathematical expression in which vari-
ables represent different information about the current
state of the problem. Since the PF is just a mathemat-
ical expression that can easily be represented as an
expression tree, this makes GP suitable for develop-
ing new PFs. However, in order to be able to do so, it
is required to define the building blocks used by GP to
construct such a PF. These building blocks represent
the functions and variables that will be used in the
PF. The functions used by GP are the addition, sub-
traction, multiplication, protected division (returns 1
in case division by 0 occurs), maximum, and mini-
mum operators, all of which are binary. The variables,
also denoted as terminal nodes since they represent
the leafs of the expression tree, used to construct the
PFs are outlined in Table 1. These terminals represent
various kind of information about the system, ranging
from basic system information, such as the demand of
the customer, or the remaining cargo capacity of the
vehicle. However, this set also includes certain nodes
that represent some extended information about the
problem, such as the average distance of a customer
to other customers, or the remaining time until the ve-
hicle would become late for serving a customer.

With the given set of function and terminal nodes,
GP can construct the PF required to solve the problem
under consideration. It should be stressed out that the
generation process of a new RP is a computationally
expensive task. The reason for this is that the PFs
need to be evaluated on a set of problem instances
to ensure that GP has obtained a PF that performs
well across different problems, and not just on a sin-
gle problem. However, once the PF has been evolved,
it can be used in conjuncture with the RS as a RP that
construct schedules for new and unseen DEVRPTW
problems in time that is negligible compared to im-
provement based heuristics. This characteristic of the
generated routing policies represents an important ad-
vantage over improvement based methods.

4 EXPERIMENTAL ANALYSIS

4.1 Experimental Setup

To generate the PFs that will be used by RPs we use
a steady state tournament GP algorithm. This algo-
rithm starts with a randomly initialised population of
200 individuals, where each individual is initialised
using the ramped half-and-half method. The size of
the individuals is limited to a maximum depth of 5.
In each iteration of the algorithm, the 3-tournament
selection procedure is performed, meaning that 3 in-
dividuals are randomly selected from the population,

Table 1: The set of terminal nodes used by GP to construct
PFs.

Parameter Description

d j Distance from the vehicle’s current
location to customer j

ri Ready time of customer j
dd j Due date of customer j
dem j Demand of customer j
t Current time
s j Slack (time remaining until being

late) of vehicle for customer j
ddc Distance of customer j to the depot
dc Distance of customer j to the near-

est charging station
du Distance of customer i to the near-

est unserved customer
vc Remaining vehicle cargo capacity
bc Remaining vehicle battery capacity
davg Average distance of customer j to

all other locations
dcavg Average distance to 10 closest des-

tinations.
nn Number of locations within a given

radius (10% of the maximum dis-
tance between any customers)

with the better two being used in crossover to generate
a new individual. The new individual is then mutated
with a probability of 0.3 and inserted into the popu-
lation by replacing the worst individual in the tourna-
ment. For crossover, the uniform, size fair, context
preserving, subtree and one point operators are used,
whereas for mutation the hoist, subtree, permutation,
node complement, node replacement, and shrink mu-
tation operators (Poli et al., 2008). Since several op-
erators are defined for crossover and mutation one of
them is randomly selected each time either crossover
or mutation need to be performed. The algorithm ter-
minates when 50 000 iterations were executed. All
the parameter values were selected based on a prelim-
inary experimental analysis.

To evaluate the fitness of each individual, or rather
PF, it is coupled with the RS outlined in Algorithm
1 and used to solve a set of predefined problem in-
stances. The problem instances that are used for
this purpose are those proposed in (Schneider et al.,
2014). This dataset consists of 56 instances that con-
tain 100 customers that need to be served, 21 charg-
ing stations, and a single depot. However, regarding
the way in which they were generated, the instances
can be divided into several types. Regarding the way
in which the customers are distributed, the instances
can be divided into random (R), cluster (C), or ran-

Automated Design of Routing Policies for the Dynamic Electric Vehicle Routing Problem with Genetic Programming

349



dom cluster (RC). In the random instances the posi-
tion of customers are generated completely randomly
within a given interval. On the other hand, in the clus-
ter instances the position of customers are generated
randomly around certain clusters, meaning that cus-
tomers are organised in certain groups. Finally, the
random cluster instances represent a combination of
both previous types. The second distinction between
the problem instances comes from the way in which
the time windows of customers were generated. In
this case the problem instances can be grouped into
instances with tight (T) time windows or loose time
windows (L). In instances with tight time windows
the size of the time window will be small, meaning
it will be more difficult for vehicles to arrive in a
timely manner at the customer. On the other hand,
in problem instances with loose time windows there
is more time available to serve each customer, thus
making it easier to timely serve more customers. The
original dataset defined in (Schneider et al., 2014) is
used as the test set, meaning it will be used to evalu-
ate the generalisation ability of the generated PFs af-
ter they have been evolved by GP. However, GP also
requires a dataset that is used to evaluate the quality
of solutions during the evolution process. Therefore,
another dataset has been generated based on the de-
scription from (Schneider et al., 2014) and used as a
training set, i.e., a set used by GP during the gener-
ation process of PFs. This set can be obtained from
https://github.com/nfridFER/EVRP-data.

The aforementioned instances were designed with
static scheduling conditions in mind. However, they
can easily be considered as dynamic instances in a
way described in Section 2. This means that a dy-
namic level is defined that specifies how many cus-
tomers in the future are known at the current moment
in time. To test the performance of the algorithm in
different situations, scenarios with different levels of
dynamism were used, which include levels of 0, 0.1,
0.3, 0.5, and 0.7, where 0 represents the static case.

Finally, to obtain an objective measure of the per-
formance of the algorithm on the different scenarios,
each experiment was repeated 30 times, and the best
individual on the training set from the final population
was stored. This resulted in 30 PFs being obtained for
each scenario, out of which the average value was cal-
culated and is outlined in the results table.

4.2 Experimental Results

Table 2 outlines the results obtained by the automati-
cally designed RPs. They are evolved by GP for dif-
ferent dynamic levels and problem sets, with the best
result for each dynamic level being outlined in bold.

As expected, the best results are obtained in scenarios
with the lowest levels of dynamism. For two prob-
lem types we can see that the best result was obtained
in the case of 0.1. Although surprising, it seems that
in these scenarios the knowledge about the customers
that are available at the end does not influence the al-
gorithm much. The worst results are obtained when
the level of dynamism reaches the largest levels, since
in those cases the least amount of information is avail-
able.

The results are also illustrated in Figures 1, 2 and
3 as box plots, to gain a better notion on the distribu-
tion of the results across the 30 executions of the al-
gorithm. Figure 1 represents the results for problems
in which the customers are randomly distributed. It
it interesting to note how for the tight due dates for
the dynamism levels of 0.5 and 0.7 the results greatly
deteriorate. And although sometimes the algorithm
can find a good rule, in most cases the evolved rules
achieve a poor result. The situation is better for the
case with loose time windows, although for level of
0.5 the algorithm again performed poorly. However,
this might simply be a unlucky case, as for a larger
level of dynamism this behaviour is not observed.

The results for the case when the customers are
distributed randomly are shown in Figure 2. Here we
can observe a completely different situation, in which
for the instances with tight time windows we have
similar results for all levels of dynamic levels, except
for the static case. Therefore, it seems that here not
knowing the complete problem from the start can be
quite penalising for the algorithm. On the other hand,
in the case of loose time windows, we see that there
are almost no difference between the rules that were
generated for the different levels of dynamism.

Results for random clustered instances are out-
lined in Figure 3. In this case the tight time windows
the algorithm are more sensitive to the level of dy-
namism, although the case for 0.1 could again indi-
cate a special case, as for larger levels we see that the
algorithm performs again better. For the case of loose
time windows there is very little difference between
the RPs generated for different level of dynamism.

Based on the previously described results, we can
draw certain conclusions on the performance of GP
when generating RPs for dynamic DEVRPTW prob-
lems. Regarding the level of dynamism, we see that
almost consistently the generated RPs perform well
for smaller levels of dynamism, like 0.1 and 0.3, with
no difference between these results and those ob-
tained by the RPs that were generated for the static
case. This suggests that knowing the information
about customers that have their time windows far in
the future does not play a vital role in most of the

ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications

350



Table 2: Results obtained by automatically designed routing rules for different dynamic levels and problem types.

0.0 0.1 0.3 0.5 0.7

Cluster 1 4474 3139 8278 206258 183120
Cluster 2 99865 105233 107392 235837 105710
Random 1 93246 337253 286211 360598 272148
Random 2 875653 745569 793060 844117 760951
Random cluster 1 107385 169637 109494 370116 188407
Random cluster 2 863325 868767 870696 852218 876266

0.0 0.1 0.3 0.5 0.7
Level of dynamism

0

100000

200000

300000

400000

500000

600000

La
te
ne
ss

(a) Results for instances with tight time windows.

0.0 0.1 0.3 0.5 0.7
Level of dynamism

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e6

La
te
ne
ss

(b) Results for instances with loose time windows.

Figure 1: Results for the problem instances with clustered customer distribution.

tested scenarios and that the RPs can perform as well
as in the case then all customer information is avail-
able from the start. However, for the larger levels of
dynamism we see that the behaviour of the generated
RPs depends on the problem instances that are consid-
ered. In the case of problem instances with loose due
dates the increase in the level of dynamism does not
lead to a significant deterioration of the performance
of the generated RPs. On the other hand, in the cases
where the due dates are tight we observe that the per-
formance of the automatically generated PRs deterio-
rates significantly as the level of dynamism increases
to 0.5 and 0.7. The reason for this is that in the case of
problem instances with loose time windows the vehi-
cles have a lot of more flexibility to serve a customer.
For example, even if the vehicle is quite far away it
would be possible to reach the customer in time, as
the time windows are wide. On the other hand, when
customers have tight time windows they can be served
only during a very limited time, thus if all the vehicles
are far away it can be difficult to serve the customer

timely. In this case it is important to plan the route
while considering future requests, however, not all are
available, and therefore the RP has a myopic view on
the problem and cannot follow a long term strategy.

The approach proposed in this study has certain
limitations. Although it is applicable in dynamic envi-
ronments, it suffers from the problem that without the
information about future requests the solutions will be
of poor quality as it cannot develop a long term strat-
egy. The reason for this is the way in which the dy-
namic nature of the problem was modelled, since no
information about future customers is available. Such
a model can be considered pessimistic, as it provides
the least possible information about the problem. By
relaxing this model it would be possible to obtain bet-
ter solutions, as more information could be integrated
into terminal nodes, and used by GP. For example, the
positions of the customers could be known, only their
demands and time windows could be modelled with
uncertainty.

Automated Design of Routing Policies for the Dynamic Electric Vehicle Routing Problem with Genetic Programming

351



0.0 0.1 0.3 0.5 0.7
Level of dynamism

100000

200000

300000

400000

500000

600000

La
te
ne
ss

(a) Results for instances with tight time windows.

0.0 0.1 0.3 0.5 0.7
Level of dynamism

0.8

0.9

1.0

1.1

1.2

1e6

La
te
ne
ss

(b) Results for instances with loose time windows.

Figure 2: Results for the problem instances with random customer distribution.

0.0 0.1 0.3 0.5 0.7
Lateness

100000

200000

300000

400000

500000

C
on

ta
in

er
 re

lo
ca

tio
ns

(a) Results for instances with tight time windows.

0.0 0.1 0.3 0.5 0.7
Level of dynamism

0.75

0.80

0.85

0.90

0.95

1.00 1e6

La
te
ne
ss

(b) Results for instances with loose time windows.

Figure 3: Results for the problem instances with random clustered customer distribution.

5 CONCLUSION

This study investigated the application of GP to au-
tomatically generate RPs for DEVRPTW. The goal
was to analyse how GP performs for various levels
of dynamism. The algorithm was examined on sev-

eral scenarios and results demonstrate that GP can
generate efficient RPs for lower values of dynamism.
As the level of dynamism increases to larger levels,
GP struggles to generate RPs that perform well. This
shows the limitation of the approach as the RPs do not
have enough information to perform good decisions

ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications

352



and motivates the investigation of problems in which
at least some information about customers is known.

This study dealt only with one form of dynamic
behaviour, but other forms of dynamic changes like
the weights of the edges, or various uncertainties
about the travel times or customer demands, could
also be considered. Furthermore, in this paper we
considered what we could call a pessimistic variant
of the problem, in which nothing was known about
future customers. However, it is very likely that
some information is known and could be used by the
heuristics to better perform their decisions. Such in-
formation could be modelled through various termi-
nal nodes that would be used by GP when designing
new RPs. Finally, subsequent studies should focus
on problems that model more real world characteris-
tics, such as nonlinear recharging functions or partial
recharging.

ACKNOWLEDGEMENTS

This research has been supported by the Euro-
pean Union - NextGenerationEU under the grant
NPOO.C3.2.R2-I1.06.0110. and the Spanish Gov-
ernment under projects MCINN-23-PID2022 and
TED2021-131938B-I00.

REFERENCES

Afsar, H. M., Afsar, S., and Palacios, J. J. (2021). Vehi-
cle routing problem with zone-based pricing. Trans-
portation Research Part E: Logistics and Transporta-
tion Review, 152:102383.

Branke, J., Hildebrandt, T., and Scholz-Reiter, B. (2014).
Hyper-heuristic evolution of dispatching rules: A
comparison of rule representations. Evolutionary
computation, 23.

Branke, J., Nguyen, S., Pickardt, C. W., and Zhang, M.
(2016). Automated design of production scheduling
heuristics: A review. IEEE Transactions on Evolu-
tionary Computation, 20(1):110–124.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa,
G., Özcan, E., and Qu, R. (2013). Hyper-heuristics:
a survey of the state of the art. Journal of the Opera-
tional Research Society, 64(12):1695–1724.

Burke, E. K., Hyde, M. R., Kendall, G., and Woodward, J.
(2012). Automating the packing heuristic design pro-
cess with genetic programming. Evolutionary Com-
putation, 20(1):63–89.

Ðurasević, M., Ðumić, M., Corić, R., and Gil-Gala, F. J.
(2024). Automated design of relocation rules for
minimising energy consumption in the container re-
location problem. Expert Systems with Applications,
237:121624.

Duflo, G., Kieffer, E., Brust, M. R., Danoy, G., and Bouvry,
P. (2019). A gp hyper-heuristic approach for generat-
ing tsp heuristics. In 2019 IEEE International Paral-
lel and Distributed Processing Symposium Workshops
(IPDPSW), pages 521–529.

Erdelić, T. and Carić, T. (2019). A survey on the elec-
tric vehicle routing problem: Variants and solution
approaches. Journal of Advanced Transportation,
2019:1–48.

Gil-Gala, F. J., Afsar, S., Durasevic, M., Palacios, J. J., and
Afsar, M. (2023). Genetic programming for the vehi-
cle routing problem with zone-based pricing. In Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO ’23, page 1118–1126, New
York, NY, USA. Association for Computing Machin-
ery.

Gil-Gala, F. J., Durasević, M., and Jakobović, D. (2022).
Genetic programming for electric vehicle routing
problem with soft time windows. In Proceedings of
the ’22 Genetic and Evolutionary Computation Con-
ference, GECCO’22.

Jacobsen-Grocott, J., Mei, Y., Chen, G., and Zhang, M.
(2017). Evolving heuristics for dynamic vehicle rout-
ing with time windows using genetic programming.
In 2017 IEEE Congress on Evolutionary Computation
(CEC), pages 1948–1955.

Jakobović, D., Ðurasević, M., Brkić, K., Fosin, J., Carić,
T., and Davidović, D. (2023). Evolving dispatching
rules for dynamic vehicle routing with genetic pro-
gramming. Algorithms, 16(6).

Lin, J., Zhou, W., and Wolfson, O. (2016). Electric vehicle
routing problem. Transportation Research Procedia,
12:508–521.

Mardešić, N., Erdelić, T., Carić, T., and Ðurasević, M.
(2023). Review of stochastic dynamic vehicle routing
in the evolving urban logistics environment. Mathe-
matics, 12(1):28.

Moghdani, R., Salimifard, K., Demir, E., and Benyettou, A.
(2021). The green vehicle routing problem: A system-
atic literature review. Journal of Cleaner Production,
279:123691.

Planinic, L., Backovic, H., Durasevic, M., and Jakobovic,
D. (2022). A comparative study of dispatching rule
representations in evolutionary algorithms for the dy-
namic unrelated machines environment. IEEE Access,
10:22886–22901.

Poli, R., Langdon, W., and Mcphee, N. (2008). A Field
Guide to Genetic Programming.

Qin, H., Su, X., Ren, T., and Luo, Z. (2021). A review
on the electric vehicle routing problems: Variants and
algorithms. Frontiers of Engineering Management,
8(3):370–389.

Schneider, M., Stenger, A., and Goeke, D. (2014). The elec-
tric vehicle-routing problem with time windows and
recharging stations. Transportation Science, 48:500–
520.

Automated Design of Routing Policies for the Dynamic Electric Vehicle Routing Problem with Genetic Programming

353


