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Abstract: We present a simple approach for efficiently adapting pre-trained English language models to generate text
in lower-resource language, specifically Czech. We propose a vocabulary swap method that leverages paral-
lel corpora to map tokens between languages, allowing the model to retain much of its learned capabilities.
Experiments conducted on a Czech translation of the TinyStories dataset demonstrate that our approach sig-
nificantly outperforms baseline methods, especially when using small amounts of training data. With only
10% of the data, our method achieves a perplexity of 17.89, compared to 34.19 for the next best baseline. We
aim to contribute to work in the field of cross-lingual transfer in natural language processing and we propose
a simple to implement, computationally efficient method tested in a controlled environment.

1 INTRODUCTION

State-of-the-art large language models (LLMs)
demonstrate proficiency in English text generation
(OpenAI et al., 2024; Dubey et al., 2024; Jiang et al.,
2023; Anil et al., 2024), while exhibiting compara-
tively limited capabilities in lower-resource languages
(Jin et al., 2023; Wendler et al., 2024). This imbal-
ance can be attributed to a higher representation of
English in training corpora (mostly data scraped from
the Internet) relative to other languages.

Currently, there are two primary approaches that
exist for developing language-specific large language
models: training from scratch and fine-tuning exist-
ing models. However, the computational resources
required to train large language models capable of
generating high-quality text from scratch are pro-
hibitively expensive for most academic institutions,
research centers, or other subjects. Recent estimates
suggest that training costs for state-of-the-art LLMs
can range from tens to over a hundred million dollars,
primarily due to hardware requirements and energy
consumption.

This contribution proposes an approach that lever-
ages a pre-trained English language model to develop
an adapted model capable of generating coherent text
in Czech. Our aim is not to develop a Czech lan-

guage model that would be competitive with other
Czech models, but to explore the efficiency of differ-
ent methods on small sample regimes, where we can
conduct experiments quickly and with a small com-
putational budget. Specifically, to demonstrate the ef-
ficacy of the presented method, we adapt a GPT Neo
model, trained on an English corpus, to a parallel cor-
pus translated into Czech.

Our research focuses on various techniques for
model adaptation that avoid the need for training from
scratch or full fine-tuning. In doing so, we aim to sig-
nificantly reduce the computational costs associated
with developing language-specific models.

We show that if the target corpus is very small
compared to the original English corpus, the pre-
sented method leads to drastic improvements com-
pared to training from scratch and other baselines.

The text is structured as follows. Section 2 will
discuss the method for fine-tuning a language model
using vocabulary swap. The following Section 3 will
discuss how we obtained a parallel corpus by translat-
ing the original corpus and how having parallel cor-
pora is useful for training a language model. Section
4 discusses the specific models and data with which
we worked, along with the baselines against which we
tested, and we present experimental results by com-
paring the perplexity of trained models on a valida-
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tion set across models and data splits. In Section 5 we
discuss relevant work. Section 6 discusses limitations
to our approach, and we conclude in Section 7.

2 THE PROPOSED METHOD

In this section, we describe the method that produced
the best results in our experiments. We use the name
source model for the model trained on English texts
and target model for the model adapted to Czech lan-
guage.

2.1 Motivation

The motivation for the method is based on the fact that
if the two languages would be used to speak about the
same topics and would have the same grammar, then
the main obstacle for understanding the text in the
second language would be the different vocabulary.
If further the tokenizer would tokenize the sentences
to whole words and we would have a mapping from
English to Czech words, then we could just replace
the Czech words with their English counterparts and
use the source model to generate text in English, and
finally replace the English words in the generated text
with their Czech counterparts.

The assumption that texts in Czech and English
would be very similar in meaning is probably benign,
and therefore we conduct our experiments on Czech
translation of the English corpus on which the source
model was trained. Unfortunately, Czech and English
do not have the same grammar and word order, and
therefore the source model would need to be fine-
tuned for the new grammar. It could be expected that
during fine-tuning the model would just need to adapt
to a new grammar, and all its other capabilities (rea-
soning, world knowledge, etc.) would transfer from
the source model, and therefore not many training
samples would be needed for fine-tuning.

The final obstacle to overcome is the fact that the
tokenizer of the source model does not tokenize sen-
tences to whole words and often is also not suitable
for the tokenization of the target language (Czech in
our case). Therefore, in practice, we have two dif-
ferent tokenizers, which split words into subwords, in
each language in a different way. This makes remap-
ping tokens between the two languages nontrivial.

The naive solution would be to let the source
model adapt to a new vocabulary together with the
new grammar. We could hope that the model would
still transfer many capabilities from the source lan-
guage. This would mean that the subcircuits which
are not dealing with grammar and word meaning

would be left intact and the model would just adapt
the low-level circuits dealing with word embeddings
and grammar (this is of course a simplified rationale,
as sometimes high-level reasoning is needed to cor-
rectly parse a sentence and understand the meaning
of a given word). Nevertheless, it is possible that the
model would be too “confused” with the new vocab-
ulary and grammar and would start to reorganize all
its subcircuits during fine-tuning, and therefore would
need a lot of training data to rediscover the capabili-
ties such as reasoning, etc. It is even possible that
such fine-tuning would work even worse than training
the model from scratch (as can be seen in our experi-
ments).

We therefore want to keep as much of the form
of the original English sentences as possible so that
the model does not start to fully reorganize itself and
the old subcircuits useful for the new task are kept in-
tact. We attempt to achieve this by identifying Czech
words which are tokenized to one token using the
Czech tokenizer and whose translation to English is
also tokenized to one token using the English tok-
enizer. Such words could be swapped, and if there
is enough such words, the model could have an easier
time to “reorient” itself to the new language.

2.2 High-Level Summary

On the high-level, the presented method is straightfor-
ward. We assume that we have a well-trained model
for English language and a tokenizer optimized for
the Czech training corpus. Our goal is to fine-tune the
original model with the new tokenizer, but we also
want to make the transition to the new language as
smooth as possible. Therefore, we try to remap the
tokens in the Czech language to the tokens in the En-
glish language as closely as possible and then fine-
tune the original model without any additional tricks.

The efficiency of this method will depend on the
semantic overlap of the content in the training data for
the source and target model. If the training data for
the source model contain texts about biology and the
training data for the target model contain texts about
mathematics, there is probably not much space for the
transfer of knowledge and capabilities. In order to
avoid uncertainties about the semantic similarity of
texts in Czech and English training data, we conduct
our experiments on a Czech corpus which is obtained
by translating the original English training corpus into
a Czech language. We also leverage the fact that we
have such parallel corpus in order to find the mapping
between Czech and English tokens which we describe
in the next subsection.
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Figure 1: High-level diagram of the proposed method. The diagram shows the process of the application of the proposed
method, where we begin with a pre-trained model trained on English, and a tokenizer trained on Czech. It shows the process
of remapping the source language tokens to the target counterparts and the replacement of the source embedding layer with
a target embedding layer, where the indices of Czech tokens correspond to the semantically equivalent tokens of the source
language. Finally, we fine-tune the model with now a new Czech embedding layer after we apply these steps.

2.3 Vocabulary Swap

In this section, we use the term embedding matrix for
the layer that maps the indices of the tokens to their
corresponding token embeddings (columns of the ma-
trix). This matrix is reused in the final layer, where
its transpose multiplies the final token embeddings to
obtain the logits for individual tokens that should be
predicted in the next step. We use the term model
body for all other layers.

As mentioned, our aim is to find a partial map-
ping, which will map tokens of the Czech tokenizer to
tokens of the English tokenizer. Once we have such
mapping, we can initialize the columns of the embed-
ding matrix for the Czech tokens with the correspond-
ing columns of the embedding matrix for the English
tokens. This is depicted in Figure 1. If we manage
to remap a large portion of the whole vocabulary, we
can expect that the inputs to the model body will be
very similar for both languages and therefore the sub-
circuits for the high-level capabilities and knowledge
would be retained during fine-tuning.

Mapping Between Czech and English Tokens.
The mapping between Czech and English tokens can
be obtained in multiple ways. The most basic ap-
proach would be to translate the Czech tokens which
correspond to whole words to English and if the trans-
lation of the Czech token corresponds to a token from
the English tokenizer, then this pair would be added
to the mapping. This naive approach could miss a lot
of pairs due to the ambiguity in translation.

To have a high-quality mapping, we leverage the
fact that we have a parallel corpus in which we have a
corresponding English sentence for each Czech sen-
tence. To create the mapping, we iterate over all
pairs of corresponding sentences and update the pair
counter, which counts how many times a given Czech
token was mapped to a given English token. Con-
cretely, this is achieved with the following steps:

1. Obtain word embeddings for each Czech token in

the Czech sentence1.

2. Obtain word embeddings for each English token
in the English sentence.

3. For each Czech token, find the best matching En-
glish token by using the cosine similarity between
the corresponding embeddings.

4. For each mapped pair update the pair counter.

Once we iterate over all pairs of sentences, we se-
lect the pairs for which the count exceeded a given
threshold (20). We choose this threshold arbitrarily,
and the reason we introduce the threshold is to limit
noise. Finally, we use each selected pair to initialize
the Czech embedding matrix, i.e., if there is a pair
with Czech token with ID 5 and English token with
ID 9, then we copy the ninth column of the English
embedding matrix to the fifth column of the Czech
embedding matrix. Using this procedure, we man-
aged to map 14,272 tokens, which is approximately
47.57% of the Czech vocabulary.

3 CREATION OF THE PARALLEL
CORPUS

To translate the English TinyStories (Eldan and Li,
2023) dataset into Czech, we used the advanced ca-
pabilities of the WMT 21 En-X (Tran et al., 2021)2.
This model, part of the WMT 21 En-X suite, is a
state-of-the-art multilingual encoder-decoder (seq-to-
seq) model with 4.7 billion parameters, trained to per-
form one-to-many multilingual translation, including
Czech.

To manage the size of the TinyStories dataset and

1We first translate the Czech tokens to English and than
use the word embeddings for English words in both sen-
tences. Word embeddings are obtained using the FastText
library.

2facebook/wmt21-dense-24-wide-en-x Hugging Face
model
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address memory limitations of GPU 3 we employed,
we utilized the sentence tokenizer from the spaCy li-
brary4 (Honnibal et al., 2020) to split the dataset into
individual sentences. Each sentence was then trans-
lated separately using the WMT 21 En-X model. This
sentence-level approach not only mitigated memory
constraints but also allowed for efficient parallel pro-
cessing of the dataset.

Once translated, the sentences were meticulously
recombined to recreate complete records that mir-
rored the original dataset structure and narrative co-
herence. This method ensured that each translated
story retained its narrative flow and logical consis-
tency, making the Czech dataset structurally equiva-
lent to the original English version.

4 EXPERIMENTS

We will be using the TinyStories (Eldan and Li, 2023)
dataset along with a pre-trained TinyStories GPT Neo
33 million parameter model for fine-tuning. For train-
ing from scratch, we will use the same model archi-
tecture without any pre-training. Since we are using
a custom tokenizer, we change the vocabulary size of
the model to 30,000 tokens, which corresponds to the
number of tokens our tokenizer learned.

4.1 Data

The TinyStories dataset contains simple stories writ-
ten in simple English. The authors describe the avail-
able vocabulary from which these stories are gener-
ated as containing words that a 3–4-year-old child
would typically understand or use; therefore, the vo-
cabulary only contains 1500 unique, simple words.
These data were generated using GPT 3.5 or GPT 4
and there are approximately 2.1 million samples in
the dataset. It is important to mention that the authors
have also published other models of various sizes, so
for our initial experiments, we used the smallest, 1
million parameter model to not waste unnecessary re-
sources.

As discussed in Section 3, we translated the orig-
inal TinyStories corpus to obtain a parallel corpus in
Czech. We trained or fine-tuned all models on data
splits, the same for each model. We evaluated the
models on a fixed test set, which is the same for each
model.

We tested the three baselines on five different par-
titions of data: 10%, 25%, 50%, 75%, and 100%. Our

3NVIDIA Tesla V100 GPU accelerators with 16 GB
4en_core_web_sm model

goal is to show the viability of the proposed method
when we use a small amount of data, obtaining signif-
icantly better results than those produced by the base-
lines.

4.2 Baselines

TinyStories models use the GPT Neo architecture,
which utilizes a decoder-only transformer structure.

The training process then proceeds as follows: We
utilize the default GPT Neo hyperparameters, we set
the batch size to 8 samples, and the gradient accu-
mulation to 128 steps. We then train for 1 epoch on
the target corpus on a single A100 GPU. We used
the same hyperparameters for each baseline and data
split, as well as for the proposed method. We also
experimented with training the models for multiple
epochs; see Figure 4.

We have evaluated a model trained using the pro-
posed method of Vocabulary Swap against three
baselines: a model trained from scratch, a model
trained using naive fine-tuning, and a model trained
using fine-tuning with embedding reset.

Training from Scratch. For this baseline, we train
a 33 million parameter GPT Neo model from ran-
domly initialized weights. As mentioned above, we
use the same hyperparameters for all training regimes.

Naive Fine-Tuning. Here, we begin with the 33
million parameter GPT Neo source model pre-trained
on the source language. We use the aforementioned
tokenizer and target corpus. One could observe that
this naive approach has a big flaw; token IDs of the
target tokenizer will not correspond to the token IDs
of the source tokenizer, and therefore a word “pes”
(dog in English) could start with an embedding of a
completely different word (e.g. “sun”) and this could
cause that the model body will start change in order to
adapt to the new embeddings and therefore can lose a
lot of abilities that it previously learned on the source
language.

Fine-Tuning with Embedding Reset. With this ap-
proach, we apply the same procedure as with Naive
Fine-tuning, with the only difference that we reset the
embeddings of tokens by sampling them from a Gaus-
sian distribution with the mean and standard devia-
tion calculated from the original embeddings for the
source language.
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4.3 Results

We use perplexity (PPL) as our evaluation metric, as
it is a common metric to measure the quality of gen-
erative models. We evaluated the trained models on a
test set and calculated the PPL for each sentence using
the following Formula 1.

PPL(X) = exp

{
−1

t

t

∑
i

log pθ(xi|x<i)

}
(1)

Where log pθ(xi|x<i) is the log-likelihood of the i-
th token conditioned on the preceding tokens x<i ac-
cording to our model.

Formula 1 corresponds to an exponentiated nega-
tive log-likelihood of a sequence.

We can compute the perplexity for the entire test
set as the mean of the perplexities for all individual
sentences, using Formula 2. The test set should have
a high probability according to the evaluated model.

PPL =
1
N

N

∑
i=1

PPL(Xi) (2)

Where PPL is the average perplexity of the entire
test set and N is the total number of sentences.

Figure 2 shows the perplexity of each baseline,
as well as the models trained using the proposed
method. Each model was trained on four data splits
that were sampled once, as well as on all data. We
can see that using only 10% of the data, the proposed
method shows a significant improvement compared to
the baselines; we show the evaluation results in Table
1.
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Figure 2: Perplexity comparison for different training ap-
proaches across various data splits. This serves as a visu-
alization of Table 1, where each bar represents the mean
perplexity of a given set of models. Lower is better.

Influence of the Number of Swapped Tokens. We
also run an experiment to observe what happens if we

only use part of the translated tokens to swap. The
vocabulary size is 30 000 tokens. The full vocabulary
swap method can map around half (47.57%, or 14,272
tokens out of the total of 30 000 tokens). We wanted
to see whether using fewer tokens still yields a rea-
sonable improvement. Figure 3 shows the perplexity
vs. the percentage of swapped tokens. Keep in mind
that not using any vocabulary swap is equivalent to
the embedding reset method, while using all tokens is
equivalent to full vocabulary swap, meaning that we
swap 47.57% of tokens w.r.t. to the vocabulary size,
which is all the tokens that we successfully mapped.
As shown in Figure 3, we can see that the proportion
of swapped tokens clearly impacts the quality of the
model, although it seems that the model quality stops
to improve if more than 19,03% tokens w.r.t. vocabu-
lary size are swapped.
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Figure 3: The figure shows perplexity values for different
percentages of swapped tokens. The x-axis shows the per-
centages w.r.t. the total number of tokens (30,000). Lower
is better.

Figure 4 then shows what happens if we train
for more than one epoch. We trained the 4 types
of models on 10%, 25%, and 50% splits for three
epochs with otherwise the same hyperparameters as
previously described. Although the proposed method
is still showing the best results, with the increased
amount of training, the gap between other methods
is getting smaller. It is important to mention that even
a marginal difference in perplexity is significant.

5 RELATED WORK

Several contributions have discussed transfer learn-
ing in natural language processing. (Hedderich et al.,
2020) investigated the application of transfer learning
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Table 1: Perplexity values for different training approaches using various data splits. We used the mean value of the perplex-
ities evaluated from 5 independently trained models on 10% and 25% splits. For perplexity results on 50%, 75%, and 100%
of data, we trained only 3 models for each split to save computational resources. Lower is better.

Method
Data Splits

10% 25% 50% 75% 100%
Naive Fine-Tuning 66.02 ± 0.00 17.50 ± 0.00 10.69 ± 0.00 9.13 ± 0.00 8.13 ± 0.00

Training From Scratch 52.27 ± 1.10 18.18 ± 0.22 11.01 ± 0.10 9.25 ± 0.18 8.18 ± 0.02

Embedding Reset 34.19 ± 0.40 13.19 ± 0.19 9.41 ± 0.02 8.15 ± 0.01 7.61 ± 0.03

Vocabulary Swap 17.89 ± 0.54 9.60 ± 0.03 7.74 ± 0.04 7.10 ± 0.03 6.76 ± 0.01
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Figure 4: Perplexity across epochs for different data splits and approaches.

and distant supervision techniques to fine-tune multi-
lingual transformer models based on BERT for low-
resource African languages.

(Lauscher et al., 2020) shows empirically that lin-
guistic distance in the source and target language
plays a role in language transfer, obtaining better eval-
uation results on downstream tasks when the tested
languages are linguistically close. The work shows
that, while multilingual models can capture some uni-
versal linguistic properties, they are affected by fac-
tors such as language similarity, corpus size, and spe-
cific model design choices.

(Csaki et al., 2023) proposed novel methods for
efficiently adapting pre-trained language models to
new languages. A key contribution was their tech-
nique for improving tokenizer efficiency by selec-
tively replacing infrequently used tokens from the
original vocabulary with tokens from the target lan-
guage. Importantly, they concluded that adapting an
existing pre-trained model was more effective and
resource-efficient than training a new model from
scratch for low-resource languages.

(Li et al., 2024), demonstrates the advantages of
using a parallel corpus, where they employ transfer
learning to adapt a Llama 2 model from English to
Chinese. Their approach yields superior results on
downstream tasks when compared to source models
evaluated on standard English and Chinese bench-
marks. A significant finding was that their approach
of leveraging both corpora showed impressive effi-

ciency, since the previous state-of-the-art model used
more than twice the amount of data.

6 LIMITATIONS

There are several limitations known to us, as we de-
veloped this method with some favorable conditions
that are not usually present in real-world data.

Controlled Environment. TinyStories is a syn-
thetic dataset which contains simple language. Lan-
guage in the real world is much more complex, and
different fields vary in the use of terminology, there-
fore one could say that one word can have many dif-
ferent semantic meanings. Since we know how the
data was created and what it contains, it is much sim-
pler for us to devise functional experiments with sim-
ple evaluation on the testing set.

Having a Parallel Corpus. Since the data are syn-
thetic and have a simple language, we could have eas-
ily obtained a high-quality translation, thus obtaining
a parallel corpus. In the real world, we would not
have this benefit. Our method of mapping tokens is
directly tied to the availability of a parallel corpus.

Evaluation Metric. Since we use the same tok-
enizer for each of our models, we can compare the
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perplexity between models. Comparing different
models along with different tokenizers is non-trivial
since we would not be able to use the perplexity met-
ric as is. For us, this essentially invalidated any way
to compare the proposed method with a method that
would use a different tokenizer.

Amount of Training. With increased amount of
training, baselines close the gap between each other
and the proposed method. Our method works best
with a limited amount of training. Training for multi-
ple epochs shows diminishing returns for all baselines
considered, as well as the proposed method.

7 CONCLUSION

In this study, we have demonstrated the potential of
leveraging pre-trained English language models to ef-
fectively adapt and generate coherent text in Czech,
a lower-resource language. Our approach, which uti-
lizes a method of vocabulary swap, significantly re-
duces the computational costs associated with train-
ing language-specific models from scratch. Through
our experiments, we have shown that even with a
small parallel corpus, the adapted model can outper-
form traditional training methods, highlighting the ef-
ficiency of transfer learning in natural language pro-
cessing. Our method is trivial to implement. It only
requires to find a partial mapping between the Czech
and English tokenizer and then to initialize the em-
beddings of Czech tokens to the corresponding em-
beddings of English tokens. Future experiments will
test this method on more realistic datasets.
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