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Abstract: In machine learning, feature selection is an important step in building an inference model with good general-
ization capacity when the number of variables is large. It can be supervised when the goal is to select features
with respect to one or several target variables or unsupervised where no target variable is considered and the
goal is to reduce the number of variables by removing redundant variables or noise. In this paper, we propose
an unsupervised feature selection approach based on a model that uses a neural network with a single hidden
layer in which a regularization term is incorporated to deal with nonlinear feature selection for multi-target
regression problems. Experiments on synthetic and real-world data and comparisons with some methods in
the literature show the effectiveness of this approach in the unsupervised framework.

1 INTRODUCTION

Nowadays with technological advances (storage and
capturing systems), data can be collected in different
ways in which variables can be numerous and of dif-
ferent types (continuous or categorical). These vari-
ables can be used to infer some results or explain cer-
tain relationships or trends. However, some of them
can be not informative or redundant and must be re-
moved to reduce the cost of data storage or create less
complex and interpretable models. Variable selection
is a machine learning technique that determines a sub-
set of relevant variables from an original set. The se-
lection can be supervised or unsupervised. The su-
pervised framework allows the selection of relevant
variables with respect to one or several target vari-
ables. The unsupervised framework that concerns our
work allows to perform the selection without target
variables; the aim is to reduce the redundancy within
the variables or to select them while preserving the
geometric structure of the data. Many methods have
been proposed for variable selection in the unsuper-
vised setting and can be categorized into 3 classes
(Solorio-Fernández et al., 2020).

• Filter methods use statistical measures between
variables to select important variables based on
intrinsic properties of the data such as (He et al.,
2005) where the Laplacian score is used as a sta-
tistical measure to determine important variables.

• Wrapper methods are methods based on the per-
formance of a learning algorithm. Many of these
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methods in the unsupervised setting are based on
clustering algorithms and the relevance of the se-
lected variables depends on their contribution to
the results of the clustering . In (Cai et al., 2010),
authors propose Multi-Cluster Feature Selection
(MCFS) which performs firstly spectral clustering
to get cluster labels and then makes the supervised
feature selection with respect to the determined
cluster labels.

• Embedded methods include a regularization term
to the unsupervised learning problem. In (Wang
et al., 2015) authors propose an embedded fea-
ture selection framework that incorporates sparse
learning in the clustering problem to select fea-
tures with respect to the cluster labels.

Recently, new unsupervised variable selection meth-
ods have emerged, allowing to reduce redundancy
in data without label information. These methods
are based on the principle of self-representation (Zhu
et al., 2015), artificial neural networks (Han et al.,
2018), . . .
In this work, we are interested in problems of un-
supervised nonlinear variable selection problems for
continuous variables. Using our former work FS-
ELM (Kanouté et al., 2023) based on neural networks
and proposed to deal with nonlinear feature selection
for multi-target regression problems, our contribution
is to propose an extension of this approach to the case
of unsupervised feature selection problem. Applica-
tions to remove noise and redundant variables from
the original set of variables on both synthetic and real-
world datasets will be introduced to analyze the per-
formances of this new method.
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The core part of the paper is organized as fol-
lows: in section 2, notations are introduced and re-
lated works are detailed. In section 3, the method
extended in the unsupervised framework is exposed.
Experimental results are given and discussed in sec-
tion 4. Finally, in section 5, conclusions are drawn.

2 NOTATIONS AND RELATED
WORKS

2.1 Notations

Considering the problem of unsupervised feature se-
lection, the following notations are used:

• S is the set of variables.

• X is the matrix of n observations whose variables
are in S . It is supposed that X is normalized, that
is to say, that for each variable of X , the mean is 0
and the variance is 1.

• For any matrix M, the vectors Mi and M j are the
ith row and jth column of M respectively.

• For any matrix M ∈Rn×d (matrix of n rows and d
columns), the Frobenius norm (Noble and Daniel,
1997) is defined as follows:

||M||F =
√

tr(MT M) =
√

∑
1≤i≤n

∑
1≤ j≤d

M2
i j (1)

• For any matrix M ∈ Rn×d , the l2,1 norm (Ding
et al., 2006) is defined as follows:

||M||2,1 =
n

∑
i=1

√√√√ d

∑
j=1

M2
i j (2)

The ||.||2,1 norm first applies the l2 norm to each
row of the matrix and then applies the l1 norm to
the computed norm. This norm, therefore, makes
it possible to impose sparsity on the rows.

• For two matrices M ∈ Rn×d and M̂ ∈ Rn×d , the
Mean Squared Error (MSE) is defined as follows:

MSE(M,M̂) = 1
nd ∑

d
j=1 ∑

n
i=1(Mi j − M̂i j)

2 = 1
nd ||M− M̂||2F

(3)

2.2 Related Works

In this section, some unsupervised feature selection
methods related to this work are described. In (Zhu
et al., 2015) the authors propose a regularized self-
representation (RSR) model for unsupervised fea-
ture selection. It is based on the principle of self-
representation (where each feature can be represented

as the linear combination of its relevant features) and
l2,1-norm regularization. RSR makes it possible to re-
move redundancy in S by selecting important features
that participate in the representation of most of the
other features. The representation coefficients matrix
noted W (1) is determined by minimizing the follow-
ing expression:

LC(W ) = ||X −XW (1)||2,1 +C||W (1)||2,1, (4)

C is the regularization parameter for sparsity. The
larger is C the sparser is W (1). This parameter tunes
the trade-off between the reconstruction loss and the
number of selected variables. Once C∗ the opti-
mal value has been determined according to a crite-
rion, the importance of each variable is determined
by calculating the Euclidean norm of its correspond-
ing row in W (1), and variables with low weight can
be removed. Only the linear relationships between
the variables are exploited by this approach. In
(Han et al., 2018), the authors propose AutoEncoder-
inspired unsupervised Feature Selection (AEFS), a
nonlinear approach based on a single hidden layer
auto-encoder and a l2,1-norm regularization term on
the weight matrix of the hidden layer to select rele-
vant features while reconstructing the network inputs.
The expression to be optimized is:

LC(Θ) =
1
2n

||X − X̂ ||2F +C||W (1)||2,1 +
λ

2
∑

2
i=1 ||W (i)||2F

(5)
where

• n is the number of observations for training.

• Θ = {W (1),W (2)} is the set of neural network pa-
rameters to be optimized, where W (1) and W (2)

are respectively the weight matrices of the hidden
layer and the output layer.

• X̂ = σ(XW (1))W (2) where σ is an activation func-
tion.

• C is a regularization parameter for sparsity (as de-
fined in Equation 4).

• λ is a regularization parameter allowing stability
and promoting convergence.

Once the optimal couple (C∗,λ∗) has been deter-
mined according to a criterion, the importance of each
variable i is determined by calculating the Euclidean
norm of its corresponding row in W (1) i.e. ||W (1)

i ||2.
Although AEFS exploits nonlinear relationships un-
like RSR, one of its limitations is due to the simplic-
ity of the model. Indeed, AEFS is composed of a sin-
gle hidden layer with a number of neurons smaller
than the number of input variables, which could not
capture the complex nonlinear relationships between
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features. In (Mirzaei et al., 2020) the authors pro-
pose Unsupervised Teacher-Student Feature Selection
(U-TSFS) an approach based on knowledge distil-
lation. Two models called teacher and student net-
works are considered. The teacher model is a complex
nonlinear method such as deep auto-encoder or man-
ifold learning techniques (PCA (Hotelling, 1933),
TSNE (Van der Maaten and Hinton, 2008), ISOMAP
(Tenenbaum et al., 2000)) which tries to obtain the
best low dimensional representation of the data de-
noted L ∈ Rn×l with l << d defined as follows:

L = F(X) (6)

where F is the complex nonlinear function model
such as a deep autoencoder or manifold learning
techniques.
The student model is a simple single-layer neural
network in which a l2,1-norm regularization term is
added to the weight matrix of the hidden layer to
select relevant features while trying to mimic the
low dimensional L. Hence the feature selection is
done with a simple hidden layer so that the error can
be easily back-propagated and the relevant features
selected efficiently. For better training in the student
model, the low representation L has been normalized

between 0 and 1 as follows (Lsc)i j =
Li j−min(L j)

max(L j)−min(L j)

for 1 ≤ i ≤ n and 1 ≤ j ≤ l. The expression to be
minimized in the student network is:

1
2n

||Lsc − L̂sc||2F +C||W (1)||2,1 (7)

where L̂sc = Relu(XW (1)+b(1))W (2)+b(2).
The importance of each variable i is determined by
calculating the Euclidean norm of its corresponding
row in W (1) i.e. ||W (1)

i ||2.

RSR, NFSN, and U-TSFS are methods that allow
unsupervised variable selection. RSR exploits only
linear relationships between variables while AEFS
and U-TSFS exploit nonlinear relationships between
variables. In these approaches, the importance of vari-
ables is determined by taking the Euclidean norm over
the rows of a weight matrix and ranking the variables
according to these calculated norms.

3 PROPOSED APPROACH

In this part, the formulation of FS-ELM method pro-
posed to deal with multi-target feature selection prob-
lems is introduced first and its extension to the un-
supervised case is then developed. In section 4, the
proposed extension is assessed.

3.1 Feature Selection Using Extreme
Learning Machine (FS-ELM)

Feature Selection Using Extreme Learning Machine
(FS-ELM) (Kanouté et al., 2023) is an approach
that determines relevant features based on nonlinear
multi-output regression. The feature selection is done
by training a regression model using Extreme Learn-
ing Machine (ELM) (Schmidt et al., 1992) which is
a type of neural network with one hidden layer with
randomly generated weights W (1), and an output layer
in which the weights W (2) are updated. The feature
selection idea consists of associating to each feature
i a weight αi ∈ [0,1] to be tuned during the training
of ELM. This model has been proposed first in (Chal-
lita et al., 2016) for a two-class classification problem.
Figure 1 illustrates the architecture of this model.
Let n be the sample size and p the number of vari-
ables.
Let Nneur be the number of neurons in the hidden
layer.
Let X = [a1, · · · ,ap] ∈ RN×p where ai ∈ RN is the re-
alisation of feature i for all observations and Y ∈RN×c

a matrix containing the target variables (c > 1).
The selection of features is done by minimizing with
respect to Θ, the following expression:

Lλ,C(Θ) = ||Y −YΘ||2F +λ||W (2)||2F +C
p

∑
i=1

αi (8)

where

• Θ = (W (2), α = (α1, . . . ,αp)) are the parameters
to be optimized.

• YΘ = SαW (2) ∈ RN×c is the network output.

– W (2) ∈RNneur×c is the weight matrix of the net-
work output also including a bias.

– Sα = σ[XαW (1)] where

* σ is an activation function.
* W (1) ∈ R(p+1)×Nneur is the weight matrix of

the hidden layer that includes a bias coeffi-
cient. It is a random matrix.

* Xα = X
′
Dα is a N × (p+1) matrix where

· X
′

=
(

XT

1T
N

)T

is N × (p+ 1) matrix with 1N

a vector of RN containing only 1.
· Dα ∈ R(p+1)×(p+1) is a diagonal matrix con-

taining the weight associated to each vari-
able such that (Dα)i,i = αi with αi ∈ [0,1]
the weight associated to each variable i for
i = 1, · · · , p and αp+1 is the weight associ-
ated to the fixed input (bias) arbitrarily set to
1 i.e. αp+1 = 1.
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Figure 1: Architecture of the used approach.

• C is the regularization parameter for sparsity that
allows setting some αi to 0.

• λ is the regularization parameter allowing im-
provement of stability and promoting conver-
gence.

3.2 Determination of Parameters

To select features for estimating the target variables,
the optimal values of Θ = (W (2),α) are determined
using an optimization strategy that consists of updat-
ing them alternately and iteratively. That is, W (2) is
updated with fixed Dα and vice versa.
For a given value α, W (2) is updated by calculating the
derivative of Equation 8 with respect to W (2), which
leads to the simple closed form solution:

W (2) = (SαST
α +λI)−1ST

αY (9)

For fixed W (2), α = (α1, . . . ,αp) is updated such that
αi ∈ [0,1]. In our former work, the partial derivative
of Equation 8 with respect to αi is approximated using
numerical methods. The optimization problem can be
reformulated as:

minimize
αi

Lλ,C(Θ)

subject to αi ∈ [0,1] for i = 1, . . . , p. (10)

3.3 Unsupervised Feature Selection
Using Extreme Learning Machine
(U-FS-ELM)

The effectiveness of FS-ELM for multi-target vari-
able selection has been shown on synthetic and real
data. The proposed approach called U-FS-ELM
meaning Unsupervised Feature Selection Using Ex-
treme Learning Machine is an extension of our for-
mer work in the unsupervised case by taking Y = X .

Unsupervised feature selection in U-FS-ELM is per-
formed by minimizing with respect to Θ the following
expression:

Lλ,C(Θ) = ||X −XΘ||2F +λ||W (2)||2F +C
p

∑
i=1

αi (11)

Unlike the nonlinear approaches mentioned above
(AEFS, U-TSFS) which determine the important fea-
tures from a low-dimensional representation, this ap-
proach has the advantage of being feedforward in
addition to associating weights between 0 and 1 to
each feature according to their importance in the
data (linear or non-linear relationship with other vari-
ables). Thus by choosing a very large number of neu-
rons Nneur, the input variables can be correctly esti-
mated as stated in the universal approximation theo-
rem (Hornik, 1991) and the addition of sparsity regu-
larisation allows variable selection.

4 EXPERIMENTS

In this part, the original set S of the features is as-
sumed to be defined. The determination of a subset
of relevant variables S ′ ⊂ S by U-FS-ELM for the re-
construction of the variables of S is assessed.
The subsections 4.1 and 4.2 concern respectively the
evaluation of U-FS-ELM on synthetic data and real-
world data. U-FS-ELM with Nneur = 400 is com-
pared with the following approaches:

• RSR

• AEFS with Nneur ∈ {⌊ p
2 ⌋+ 1, p− 1} where p is

the number of variables and ⌊ p
2 ⌋ is the floor of p

2
i.e. the greatest integer less than or equal to p

2 .

• U-TSFS where the teacher model F is T SNE with
the number of components n comp∈{2,3} and in
the student network Nneur = n comp×10.

To assess the proposed method and compare it with
other methods, the relevance of the selected features
for each approach is assessed. To avoid the bias prob-
lem during the assessment, the original dataset D has
been split into two subsets Dtrain (67% of D) and Dtest
(33% of D). Optimal values of hyperparameters have
been determined according to a criterion on the MSE
by 5-fold cross-validation on Dtrain as follows:

• for C ∈ IC = {10−4,10−3, . . . ,103,104} and for
λ ∈ Iλ = {10−4,10−3, . . . ,103,104}.
Compute Ŷ (λ,C) the estimate of Y associated with
C and λ and MSE(Y,Ŷ (λ,C)).

• Choose (C∗,λ∗) ∈ IC × Iλ such that

(C∗,λ∗) = argmin
(C,λ)∈IC×Iλ

MSE(Y,Ŷ (λ,C))< 0.1 (12)
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obtained by 5 fold cross-validation on Dtrain.
For RSR and U-TSFS the procedure is similar to
the one above but only C∗ is determined.

Once the optimal hyperparameters have been chosen,
the feature weights have been determined by running
the feature selection approach on all observations of
Dtrain using the optimal hyperparameters. Then the
importance of each feature has been determined using
its representation in the feature weights as follows:

• for RSR, AEFS, and U-TSFS, rank the variables
as defined in section 2.2.

• for U-FS-ELM, rank the variables according to
the scaling factors αi.

Once features have been ranked, the pertinence has
been assessed by building p models on Dtrain and
evaluating them on Dtest by keeping from 1 to p vari-
ables corresponding to the highest rank for recon-
structing all variables of S . The model used for eval-
uation is a one-hidden-layer neural network with 500
neurons. The activation function is sigmoid and the
optimizer is adam. The metric used for the assess-
ment of the model is the MSE.
The observations of all variables have been normal-
ized (removing the mean and scaling to unit variance)
to avoid scaling problems.

4.1 Synthetic Dataset

This section describes the results with two generated
datasets called synth1 and synth2. In synth1, there
are only linear relationships (coefficients have been
randomly determined according to a continuous uni-
form distribution between -1 and 1) between features
while in synth2 there are nonlinear relationships
between features. In synth1 (resp. synth2), 7 (resp.
8) features were firstly defined then 5 (resp. 7)
random features that depend on these 7 (resp. 8)
features with linear (resp. nonlinear) relationships
were defined. Finally, in synth1, 3 redundant features
were created from the 7 features first defined. Thus
2000 observations have been generated from these 15
features for each dataset. In synth1, the variables are
defined as follows :
f1, f2, . . . , f7 ∼ N (0,1)

f8 = −0.56 f1 + 0.22 f2 − 0.84 f3 − 0.46 f4 + 0.2 f5 −

0.72 f6 −0.96 f7 + ε8
f9 = 0.74 f1 + 0.54 f2 + 0.48 f3 − 0.18 f4 − 0.46 f5 −

0.66 f6 −0.6 f7 + ε9
f10 = −0.58 f1 + 0.04 f2 − 0.12 f3 − 0.4 f4 − 0.44 f5 +

0.92 f6 +0.4 f7 + ε10
f11 = 0.84 f1−0.4 f2−0.68 f3+0.26 f4−0.5 f5+0.92 f6+

0.56 f7 + ε11

f12 = −0.02 f1 − 0.62 f2 + 0.76 f3 + 0.16 f4 − 0.34 f5 −
0.62 f6 −0.96 f7 + ε12
f13 = f7 + ε13, f14 = f3 + ε14, f15 = f5 + ε15.
ε8,ε9,ε10,ε11ε12 ∼N (0,0.05) and ε13, ε14, ε15 ∼N (0,1).

For synth2, the variables are defined as follows:
f1 ∼ N (1,0.5) ; f2 ∼ N (0.7,1); f3 ∼ N (3,1);
f4 ∼ N (0,0.5); f5 ∼ N (0.3,1) ; f6 ∼ N (2,0.7) ;
f7 ∼ U(−1,1) ; f8 ∼ U(−3,1)
f9 = f1sin( f1)+ ε f9 where ε f10 ∼ N (0,0.08)
f10 = f 3

2 +2 f2 + e f2− f4− f 2
6 − cos( f4 − f6 + f2)+ ε10 where

ε f10 ∼ N (0,0.08)
f11 = e f1− f 2

4 + ε f11 where ε f11 ∼ N (0,0.1)

f12 =
| f3 + f4|
f 2
3 + f 2

4
+ ε f12 where ε f12 ∼ N (0,0.04)

f13 = e f4cos( f6)+ ε f13 ∼ N (0,0.02)
f14 = arctanh( f7)+ ε f14 where ε f14 ∼ N (0,0.08)
f15 = ln(3 − f 2

8 − 2 f8) + arctan(
√

3− f8) + ε f15 where
ε f15 ∼ N (0,0.08)

For the two datasets, the goal was to determine
the subset S ′ ⊂ S such that the reconstruction loss
between the variables of S and their estimate from
the variables of S ′

is minimized. The optimal values
for the hyperparameters have been determined by 5-
fold cross-validation for each approach as described
above. The chosen parameters on each dataset for
each approach are given in Table 1. After the choice
of regularization parameters on synth1 and synth2,
variables have been ranked according to their impor-
tance for each approach, and the list is given in Ta-
ble 2. It may be noticed that U-FS-ELM manages to
better select independent features compared to RSR,
AEFS, and U-TSFS, in particular on synth1 it set all
coefficients to zero after the 7th most important vari-
able. Figure 2 shows the estimated value of the mean
of MSE between X and its estimated value X̂ versus
the number of most important variables used to build
the model.

Table 1: Chosen parameters on each synthetic dataset for
each approach.

synth1 synth2
Methods λ C λ C

U-FS-ELM (Nneur = 400) 1 103 10−1 103

RSR - 102 - 102

AEFS (Nneur = 8) 10−3 10−2 10−4 10−2

AEFS (Nneur = 14) 10−4 10−1 10−3 10−2

U-TSFS (n comp = 2) - 10−3 - 10−3

U-TSFS (n comp = 3) - 10−3 - 10−3
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(a) synth1 (b) synth2

Figure 2: MSE versus the number of most important variables on synthetic data.

(a) Breast cancer data set (b) Ansur data II (c) US crimes dataset

Figure 3: MSE versus the number of most important variables on real-world datasets.

Table 2: List of ranked variables for each approach.
(a) synth1 dataset

AEFS U-TSFS+TSNE
U-FS-ELM RSR Nneur = 8 Nneur = 14 n comp = 2 n comp = 3

var weight var weight var weight var weight var weight var weight
f7 5,5.10−2 f4 7,5.10−1 f1 2,5.10−1 f2 4,5.10−4 f3 4,9.10−1 f12 2,5.10−1

f3 5,3.10−2 f2 6,3.10−1 f2 1,9.10−1 f6 2,9.10−4 f10 3,4.10−1 f14 2.10−1

f5 5.10−2 f1 3,9.10−1 f4 1,6.10−1 f1 2,4.10−4 f1 2,6.10−1 f11 1,6.10−1

f6 4,8.10−2 f6 2,9.10−1 f6 1,6.10−1 f5 10−4 f13 2,4.10−1 f3 1,3.10−1

f1 4,7.10−2 f15 1,6.10−1 f3 6.10−2 f3 8,9.10−5 f11 2,3.10−1 f5 1,3.10−1

f2 4,6.10−2 f5 1,4.10−1 f14 4.10−2 f7 6,9.10−5 f8 2,2.10−1 f13 1,2.10−1

f4 3,9.10−2 f14 1,3.10−1 f5 3,2.10−2 f15 5,3.10−5 f5 1,4.10−1 f8 1,1.10−1

f8 0 f13 1,2.10−1 f7 3.10−2 f14 3,8.10−5 f4 1,2.10−1 f1 9,2.10−2

f9 0 f3 9,4.10−2 f15 3.10−2 f13 2,2.10−5 f2 1,1.10−1 f2 8,4.10−2

f10 0 f7 7,8.10−2 f13 1,8.10−2 f10 2,2.10−5 f14 1,1.10−1 f10 7,3.10−2

f11 0 f8 8,8.10−3 f9 2,1.10−3 f8 1,9.10−5 f15 10−1 f7 6,4.10−2

f12 0 f10 7,6.10−3 f8 1,6.10−3 f11 8,4.10−6 f12 8,2.10−2 f9 5,8.10−2

f13 0 f9 6,8.10−3 f10 1,4.10−3 f12 1,5.10−6 f6 6,3.10−2 f6 5,8.10−2

f14 0 f11 5,8.10−3 f11 9,1.10−4 f9 1,5.10−6 f7 2,1.10−2 f15 3,8.10−2

f15 0 f12 4,1.10−3 f12 5,4.10−4 f4 6.10−8 f9 1,9.10−2 f4 2,9.10−2

(b) synth2 dataset
AEFS U-TSFS + TSNE

U-FS-ELM RSR Nneur = 8 Nneur = 14 n comp = 2 n comp = 3
var weight var weight var weight var weight var weight var weight
f4 1,2.10−1 f8 1 f8 2,5.10−2 f8 3,1.10−1 f10 4,9.10−1 f11 2,4.10−1

f6 7,9.10−2 f5 1 f5 2,3.10−2 f4 2.10−1 f12 2,9.10−1 f12 1,8.10−1

f10 6,6.10−2 f15 1 f15 1,4.10−2 f5 1,7.10−1 f11 2,2.10−1 f13 1,4.10−1

f1 2,5.10−2 f4 1 f14 4.10−3 f3 1,4.10−1 f13 1,3.10−1 f8 1,3.10−1

f14 2,2.10−2 f3 1 f13 2,7.10−3 f15 1,1.10−1 f4 1,2.10−1 f2 1,3.10−1

f5 1,8.10−2 f6 1 f7 2,6.10−3 f9 3,8.10−2 f1 1,1.10−1 f15 1,1.10−1

f3 1,8.10−2 f11 1 f6 2,4.10−3 f11 3,4.10−2 f14 8,8.10−2 f3 9,9.10−2

f8 1,8.10−2 f13 1 f10 2,2.10−3 f6 2,9.10−2 f15 8,7.10−2 f1 8,8.10−2

f12 1,8.10−2 f12 1 f2 1,8.10−3 f14 2,9.10−2 f9 8,5.10−2 f10 8,8.10−2

f15 1,7.10−2 f2 1 f12 1,7.10−3 f1 2,6.10−2 f7 7.10−2 f14 8.10−2

f2 0 f10 1 f1 1,3.10−3 f12 2,5.10−2 f8 4,6.10−2 f7 6,6.10−2

f7 0 f7 1 f3 9,7.10−4 f13 2,1.10−2 f2 3,4.10−2 f9 2,6.10−2

f9 0 f14 1 f11 6,9.10−4 f7 2.10−2 f3 3.10−2 f5 2,5.10−2

f11 0 f9 1 f9 5,9.10−4 f2 1,6.10−2 f6 2,1.10−2 f4 2,1.10−2

f13 0 f1 1 f4 2,2.10−4 f10 1,5.10−2 f5 1,5.10−3 f6 1,4.10−2

4.2 Real-World Datasets

This part presents the results on real-world datasets.
Table 3 contains the list of real-world data used as

Table 3: Real-world data sets.
Name Size Features Source

Breast Cancer 569 30 (Zwitter and Soklic, 1988)
Ansur data 2 6068 93 (Paquette et al., 2009)
US crimes 2215 125 (Redmond, 2009)

Mnist 10000 784 (28×28) (Deng, 2012)

Table 4: Number of variables with weights greater than 0
and percentage of selected variables among the 784 vari-
ables for different values of C with λ = 10−2.

C Number of variables with αi > 0 % of selected features
10−2 457 58.29 %
10−1 365 46.56 %

1 208 26.53 %
101 106 13.52 %

well as the number of variables, and the number of
samples. Some information about these datasets as
well as the pre-processing done are described below:
• Breast cancer
The breast cancer dataset contains 569 observations
of features extracted from a digitized image of a fine
needle aspirate (FNA) of a breast mass. They de-
scribe the characteristics of the cell nuclei present in
the image. The goal is to determine if breast can-
cer is cancerous or non-cancerous based on extracted
features. This dataset is often used to explore fea-
ture selection techniques. In this paper, the nominal
variable containing the classes is removed. U-FS-
ELM and other unsupervised feature selection tech-
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Figure 4: Mnist dataset image reconstruction using 200 im-
ages as the training dataset. The first row contains the re-
tained pixels (first column) and some original images (sec-
ond column to last column). The following 4 rows con-
tain respectively the retained pixels by U-FS-ELM (first
column) and the reconstruction results (second column to
last column) using the retained pixels for C = 10−2,C =
10−1,C = 1,C = 101 with λ = 10−2.

niques have been applied to the normalized obser-
vations of 29 variables to select important features
and remove the redundant variables. The dataset
can be downloaded on the UCI website at this URL:
https://archive.ics.uci.edu/datasets.
• Ansur data II
The Anthropometric Survey of US Army Personnel
(ANSUR 2 or ANSUR II) is a database with mea-
surements of American military personnel done in
2012 and made public in 2017. This database con-
tains 6000 observations (4082 men and 1986 women)
of 93 numerical anthropometric measurements that
describe the size and shape of the human. The
feature selection methods have been applied to the
1145 observations of females whose age is between
20 and 30. The dataset is available at this URL:
https://www.openlab.psu.edu/ansur2/.
• Communities and Crime
It is a dataset on crime in communities in the United
States. The data combines socio-economic data from
the 1990 US Census, law enforcement data, and crime
data with a target variable and 127 other variables.
Among the 127 remaining variables, 5 variables are
considered as non-predictive in the description of the
dataset. After removing the variables with missing
values and non-predictive variables, the feature selec-
tion approaches have been applied to 84 continuous
variables to select important features allowing the re-
construction of all of them. The data set is available
on the UCI website.

• Mnist (Mixed National Institute of Standards and
Technology)
This dataset is composed of 10000 black and white
handwritten digits images used for training neural net-
work in computer visions. It contains ten classes cor-
responding to the 10 numerical digits. For each hand-
written digit, there are 28 × 28 pixels between 0 and
255. To apply our approach, the dataset has been
normalized by the min-max feature scaling method
which brings all values between 0 and 1 and is defined

for each variable as x
′
=

x−min(x)
max(x)−min(x)

where x

contains observations of a variable of S . To deter-
mine the feature weights, only 200 observations have
been considered as training dataset and another 200
observations as the test dataset.

After the choice of the regularization parameters
and the ranking of the features for each approach, X
has been reconstructed by building p models from 1
to p variables corresponding to the highest rank. The
number of important variables taken successively is
{1,2, . . . ,30} on Breast cancer data set, {1,2, . . . ,93}
on Ansur data II set, {1,2, . . . ,84} on Communities
and Crime data set. Figure 3 shows the MSE between
X and its estimated value X̂ versus the number of im-
portant variables taken successively on these datasets
and it can be noticed that U-FS-ELM performs well
compared to AEFS and U-TSFS, precisely on Breast
cancer dataset between 1 and 10 first important vari-
ables, on Ansur data II dataset between the first 15 and
the first 40 important variables, and on Communities
and Crime dataset U-FS-ELM has the lowest MSE for
any number of variables taken.

The proposed method successfully reduces the ini-
tial number of variables in structured continuous data
by keeping relevant variables that can estimate prop-
erly other related variables. It can also be noticed that
generally, U-FS-ELM selects important variables bet-
ter than AEFS and U-TSFS. Indeed, if the number of
variables p is not very large, AEFS is a simple au-
toencoder that may not capture complex relationships
between features, and in the U-TSFS approach the
teacher model must be chosen according to the data
to obtain a better representation of the data in order to
avoid propagating the estimation errors in the student
model and this latter also requires the choice of the
right activation function, the number of neurons, the
choice of the optimal parameter C∗, . . .
U-FS-ELM has been also applied to image data,
the mnist dataset. The goal was to determine rel-
evant variables among 784 (28 × 28) variables cor-
responding to pixels on each handwritten digit. U-
FS-ELM with λ = 10−2 and C ∈ {10−2,10−1,1,101}
was trained on 200 images (20 images per class)
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randomly chosen and the number of variables with
weights greater than 0 and percentage of selected vari-
ables among the 784 variables for each value of C is
given in Table 4.

The reconstruction results using these hyperpa-
rameter values for some images in the test dataset are
shown in Figure 4 and it can be noticed that U-FS-
ELM has reduced the number of features while keep-
ing useful information. It should be noted that this
approach is different from reduction methods which
determine a representation of the data in a subspace
while here a selection of important variables is done.

5 CONCLUSIONS

In this paper, an approach is proposed to deal with un-
supervised feature selection problems exploiting non-
linear relationships between variables. It consists of
assigning to each feature i a weight αi ∈ [0,1] updated
during the reconstruction of the input variables and of
determining hyperparameters λ and C which are re-
spectively parameters for stability and sparsity. By
tuning these hyperparameters according to MSE, the
weights αi associated to the features make it possi-
ble to determine important features while minimizing
the reconstruction error. Many experiments have been
done on two synthetic data, three structured continu-
ous real-world data, and one image data and the re-
sults have been compared with other methods. They
show the effectiveness of the proposed approach.
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