
End-to-End Steering for Autonomous Vehicles via Conditional Imitation
Co-Learning

Mahmoud M. Kishky1, Hesham M. Eraqi2,∗ and Khaled M. F. Elsayed1

1Faculty of Engineering, Cairo University, Egypt
2Amazon, Last Mile, U.S.A.

Keywords: Autonomous Driving, End-to-End, Conditional Imitation Learning, Co-Learning Matrix, Co-Existence
Probability Matrix, Steering Model, CARLA.

Abstract: Autonomous driving involves complex tasks such as data fusion, object and lane detection, behavior predic-
tion, and path planning. As opposed to the modular approach which dedicates individual subsystems to tackle
each of those tasks, the end-to-end approach treats the problem as a single learnable task using deep neural net-
works, reducing system complexity and minimizing dependency on heuristics. Conditional imitation learning
(CIL) trains the end-to-end model to mimic a human expert considering the navigational commands guiding
the vehicle to reach its destination, CIL adopts specialist network branches dedicated to learn the driving task
for each navigational command. Nevertheless, the CIL model lacked generalization when deployed to unseen
environments. This work introduces the conditional imitation co-learning (CIC) approach to address this is-
sue by enabling the model to learn the relationships between CIL specialist branches via a co-learning matrix
generated by gated hyperbolic tangent units (GTUs). Additionally, we propose posing the steering regression
problem as classification, we use a classification-regression hybrid loss to bridge the gap between regression
and classification, we also propose using co-existence probability to consider the spatial tendency between the
steering classes. Our model is demonstrated to improve autonomous driving success rate in unseen environ-
ment by 62% on average compared to the CIL method.

1 INTRODUCTION

An autonomous system is capable of understanding
the surrounding environment and operating indepen-
dently without any human intervention (Bekey, 2005),
in the context of autonomous vehicles, the objective is
to mimic the behaviour of a human driver. To mimic
a human driver’s behaviour, the system is expected to
take actions similar to those taken by a human driver
in the same situation, the driver’s action can be de-
fined as a set of vehicle’s controls such as steering,
throttle, brake and gear.

Autonomous driving systems can follow ei-
ther the modular approach, or the end-to-end ap-
proach(Yurtsever et al., 2019). In the modular ap-
proach, the system’s pipeline is split into several com-
ponents, each component has its own subtask, then
the information provided by each component is com-
bined to help the system understand the surround-
ing environment (Dammen, 2019) so the system can
eventually generate different actions. On the other
hand, the end-to-end approach replaces the entire task

∗This work was conducted prior to Hesham M. Eraqi
joining Amazon.

of autonomous driving with a neural network, where
the network is fed observations (the inputs from the
different sensors) and produces the predicted actions
(steering, throttle, brake, gear), the objective is to
train the network to learn the mapping between the
observations and the actions.

The end-to-end approach was first introduced in
(Bojarski et al., 2016), a convolutional neural net-
work (CNN) was trained to map the raw pixels from
a front-facing camera directly to steering commands.
Later, the end-to-end approach was adopted widely
in research such as in (Prakash et al., 2021), (Cui
et al., 2022), (Codevilla et al., 2018), (Hawke et al.,
2019),(Liang et al., 2018) and (Eraqi et al., 2022)
due to the simplicity of the process of development
and deployment. Also, the model is free learn any
implicit sources of information and the researcher
is only concerned with developing a network that
receives the raw data and delivers the final output
(Dammen, 2019), unlike the modular approach, there
are no human-defined information bottlenecks (Tam-
puu et al., 2020).

(Codevilla et al., 2018) proposed using a branched
network architecture as shown in Figure 1, where the

Kishky, M., Eraqi, H. and Elsayed, K.
End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning.
DOI: 10.5220/0013069900003837
In Proceedings of the 16th International Joint Conference on Computational Intelligence (IJCCI 2024), pages 629-636
ISBN: 978-989-758-721-4; ISSN: 2184-3236
Copyright © 2024 by Paper published under CC license (CC BY-NC-ND 4.0)

629



network is fed the navigational commands (go left,
go right, go straight, follow lane) from a route plan-
ner representing the driver’s intention, each special-
ist branch is dedicated to learn the mapping between
the observations and the vehicle’s actions indepen-
dently. At test time, the navigational command acts
as a switch to select the final action taken by the net-
work. The major issue with the proposed model by
(Codevilla et al., 2018) was its lack of generalization
and the poor performance when deployed to unseen
environment.

In this work, we propose two contributions to
improve the CIL end-to-end steering. In the first
contribution, we introduce the conditional imitation
co-learning (CIC) approach which involves modify-
ing the CIL network architecture in (Codevilla et al.,
2018). (Codevilla et al., 2018) assumed total inde-
pendence between the specialist branches while train-
ing, each branch was only trained on a subset of the
training scenarios, for instance, the specialist branch
dedicated to learn the right turns was only exposed
to right turns scenarios during training. If the train-
ing data was not big enough to cover all the scenar-
ios for all the branches, it could lead to unbalanced
learning, which means that the model may perform
properly in right turns and perform poorly in left turns
or vice verse (Dammen, 2019). We claim that one
branch can make use of the features extracted by an-
other. So, a branch dedicated to learn right turns can
learn from observations collected in left turns and vice
verse which enhances the model’s generalization and
increases its robustness in unseen environments.

The second contribution is posing regression
problem as classification, posing regression prob-
lem as deep classification problem was introduced in
(Rothe et al., 2015), classification showed improve-
ment in age prediction from a single image compared
to regression. In our work, we adopt posing regres-
sion problem as classification as introduced in (Rothe
et al., 2015), the classes were obtained by steering
discretization. However, using this approach assume
full independence between the steering classes ignor-
ing their spatial tendency. So, we propose two im-
provements to the classification approach, the first
improvement uses a combination of the categorical
cross-entropy and the mean squared error losses to
bridge the gap between classification and regression.

The second improvement proposes considering
the spatial relationship between the steering classes
at the output layer using co-existence probability ma-
trix, we claim that considering the spatial relationship
between the classes will help to improve the overall
performance of the model since the network will tend
to predict the spatially close classes together.

2 RELATED WORK

2.1 Conditional Imitation Learning

End-to-end Imitation learning aims to train the model
to mimic an expert, the model with parameters w is
fed a set of observations and actions (o,a) pairs ob-
tained from the expert. The model is optimized to
learn the mapping function between the observations
and actions F(o,w). In the context of autonomous
driving, the observations are the data collected from
different sensors (Cameras, Radars, LiDARs, ..), the
actions are the vehicles controls such as steering,
throttle and brake. The model is trained to mimic the
actions taken by the expert to perform the task of au-
tonomous driving.

The problem with the imitation learning approach
is that the same observation could lead to different
actions, based on the intention of the expert. Hence,
the model cannot be trained to find a mapping func-
tion between the observations and the actions since
it contradicts with the mathematical definition of the
function itself, a function f : O → A shall only map
observation instance o to a single action a. In other
words, the driver’s intention must be taken into con-
sideration to make it mathematically possible to have
a mapping function between the observations and the
actions. So, at time step i, the predicted action be-
comes a function of the driver’s intention hi as well
as the observation ai = F(oi,hi), the network uses
the navigational command ci at intersections coming
from a route planner to represent the driver’s inten-
tion.

(Codevilla et al., 2018) proposed conditional
imitation learning (CIL) approach by adopting a
branched architecture as shown in Figure 1. After the
feature extraction phase, the model is split into spe-
cialist branches each branch is dedicated to learn the
mapping function between the observations and the
actions given the navigational command (go left, go
right, go straight, follow lane). Hence, the network
produces the predicted action F at time step t given
navigational command ct :

F(ot ,ct) = Act (ot)

where Act is the predicted action by the specialist
branch dedicated for command ct , which means that
at testing, the navigational command is used as a
switch to select the proper action to be taken by the
model.

2.2 Regression as Classification

In (Rothe et al., 2015), the regression problem of age
prediction from images was posed as classification,

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

630



Figure 1: Network Architecture proposed by (Codevilla
et al., 2018).

Figure 2: Training and deployment paths in the work in (Er-
aqi et al., 2017).

the continuous age value was discretized to obtain the
classification labels. Considering only the age val-
ues from 0 to 100, the network was trained to predict
the true age of the human face in the input image.
(Eraqi et al., 2017) followed the same approach to
solve autonomous vehicle steering problem. Inspired
by (Moustafa, 2005) and (Rothe et al., 2015), (Eraqi
et al., 2017) proposed posing steering angle prediction
for autonomous vehicles regression problem as clas-
sification, the model was trained and validated using
comma.ai dataset (Rasmus et al., 2016). (Eraqi et al.,
2017) also proposed considering the spatial relation-
ship between the steering angle classes using arbitrary
function encoding, the encoding function was chosen
to be a sine wave and the steering angle to be its phase
shift. According to (Eraqi et al., 2017), this choice of
sinusoidal encoding led to gradual change in the val-
ues of the activations at the output layer. As shown
in Figure 2, least squares error regression was used
to optimize the model to generate a predicted wave-
form similar to the actual one from the steering angle
encoding.

The motive behind the need to consider the spatial
relationship between the steering classes is the fact

that the crossentropy loss only penalizes the model if
the input is mislabeled neglecting all the scores corre-
sponding to the other labels, which means that in case
of mislabeling, the network will be penalized with
the same amount no matter how big the difference
between the predicted steering angle and the ground
truth steering angle is. Since classification is only
used to mimic regression, it is important to insure that
the model still gives predictions close to the actual
steering even in case of mislabeling.

3 METHODOLOGY

3.1 Data Collection

The dataset was collected with the help of CARLA
simulator (Dosovitskiy et al., 2017), CARLA pro-
vides a set of pre-built maps vary in size and complex-
ity called towns as well as predefined weather con-
ditions to facilitate the development of autonomous
driving systems. In our work, we adopted the same
three camera model proposed in (Codevilla et al.,
2018). Thus, three cameras were attached (front cam-
era, right camera, left camera) to the ego-vehicle with
resolution 200 x 88 pixels each. During data collec-
tion, we relied on CARLA simulator’s autopilot fea-
ture, this feature allows the ego-vehicle to follow the
lane and take random turns (left, right, straight) at in-
tersections based on the navigational commands com-
ing from the ego-vehicle’s navigation agent, we ran
100 data collection episodes with the vehicle on au-
topilot mode with episode predefined period of ten
minutes.

Besides the cameras’ captures, we recorded the
vehicle’s steering and measurements (location and ro-
tation) as well as the navigational commands from the
ego-vehicle’s navigation agent, the data was collected
in Town01 with ClearNoon and ClearSunset weather
conditions and sampled every 0.1 second, the camera
captures were passed thought a randomized sequence
of augmentation methods such as additive Gaussian
noise, change of brightness and image cropping. As
mentioned in (Codevilla et al., 2018), noise was in-
jected into the steering during data collection, the in-
jected noise simulates the ego-vehicle’s drifting and
recovery to provide the network with examples of re-
covery from disturbances and allow the model to re-
cover after making wrong predictions during testing.

Although simulation environments fail to capture
the real world complexities, it provides a fast and safe
way to develop and test autonomous driving mod-
els, Sim-to-Real is also a way to bridge the gap be-
tween simulation and real-world data by transferring

End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning

631



the learned policies from simulated data into the phys-
ical world (Bewley et al., 2019), (Muller et al., 2018).

3.2 Specialist Branches Co-Learning

As discussed in Sec.I, the CIL model introduced
in (Codevilla et al., 2018) assumed independence
between the specialist branches, each branch was
trained on a subset of the training data to learn the
mapping between the observations and actions given
the navigational command coming form the route
planner, the problem with this assumption is that it
might lead to unbalanced learning, the dataset might
contain enough scenarios for some branches to fit a
mapping function and does not for the others. In our
work, we propose considering dependencies between
the specialist branches which allows the branches to
co-learn by sharing their extracted features with each
other.

As shown in Figure 3, assuming we have an N x 1
vector Ât representing the extracted features from the
specialist branches at any time stamp t, where N in
the number of specialist branches, given an N x N co-
learning matrix Ct , for action prediction, we propose
the following formula:

At =Ct Ât (1)

For four breaches dedicated for the navigational com-
mands (go left, go right, go straight, follow lane) to
which we will refer as l, r, s, f respectively:

Ct =


1 clr

t cls
t cl f

t
crl

t 1 crs
t cr f

t
csl

t csr
t 1 cs f

t
c f l

t c f r
t c f s

t 1



At =


Âl t + clr

t Ârt + cls
t Âst + cl f

t Â f t

Ârt + crl
t Âl t + crs

t Âst + cr f
t Â f t

Âst + csl
t Âl t + csr

t Ârt + cs f
t Â f t

Â f t + c f l
t Âl t + c f r

t Ârt + c f s
t Âst


, each matrix coefficient ci j represents the the re-
lationship between the extracted features Âi and Â j

coming from branches i and j respectively.
In our work, we explored two approaches to gen-

erate co-learning coefficients. In the first approach,
we break down the co-learning matrix as follows:

Ct = R ·Et (2)

where R is a hyperparameter binary matrix indicat-
ing the presence or absence of relationships between
the specialist branches, the relationship matrix R is
fine tuned and set manually before training. To pro-
duce matrix E, we added a dedicated neural network
to generate the co-learning coefficients corresponding

to each branch, we chose tanh activation at the output
layer to allow the co-learning matrix coefficients to
vary between -1 and 1, the final predictions are then
produced using Equation 1 as shown in Figure 3.

The second approach involves generating the co-
learning coefficients directly from gated tanh units
(GTUs) (Dauphin et al., 2017) allowing the net-
work to implicitly learn the relationship matrix R.
Gated units provide more control to the generated
co-learning coefficients, the network is able to dy-
namically turn on/off the connections between the
branches based on the driving scenario. The idea of
the CIC approach can be extended to other applica-
tions especially those relying on foundational mod-
els, allowing the modules performing related tasks to
share useful information.

Figure 3: Co-learning between branch 1 and branch 2.

Other approaches addressed the improvement of
multi-task learning (MTL) performance, such as mix-
ture of experts (MoEs) (Jacobs et al., 1991), soft pa-
rameter sharing, cross-stitch networks (Misra et al.,
2016) and sluice networks (Ruder et al., 2019). MoEs
involves adding a gated mixture of experts layer be-
fore splitting the network into specialist branches, al-
lowing the branches to dynamically learn from a com-
bination of experts instead of single shared network,
each expert learns its own features from the input,
then a gating network is used to decide which experts
will be activated.

On the other hand, soft parameter sharing allows
each task to have its own branch with its own param-
eters, then the model is regularized by L2 distance
to encourage the parameters to be similar instead of
learning from a shared network (hard parameter shar-
ing). Unlike mixture of experts and soft parameter
sharing approaches, (Misra et al., 2016) and (Ruder
et al., 2019) allow parameter sharing between special-
ist branches via learnable parameters.

(Misra et al., 2016) introduced using cross-stitch
units to learn the linear combinations of the activa-
tions coming from the different tasks at each layer
of the network. In contrast, (Ruder et al., 2019) fo-

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

632



cused on determining which features should be shared
between loosely coupled tasks, the hidden layers are
split into two orthogonal subspaces, one for shared
features and the other for task-specific features, the
network learns to dynamically decide which features
to be shared via learnable parameters.

As opposed to other MTL approaches, our CIC
model is output-oriented, we focus on learning the re-
lationships between the outputs. In addition, we study
the presence or absence of these relationships using
GTUs, rather than trying to learn the relationships be-
tween hidden layer parameters. Our approach is moti-
vated by the nature of our driving problem, where the
overlapping between the branches’ subsets is minimal
and occurs only in a few specific driving scenarios,
which reduces the network ability to learn the map-
ping between the parameters in the hidden layers and
makes it less effective.

3.3 Classification-Regression Hybrid
Loss

(Kourbane and Genc, 2021) proposed splitting the
process of object pose prediction into two stages,
coarse and refinement. The coarse stage involves a
rough prediction of the pose using classification fol-
lowed by offset prediction using regression, the net-
work was spilt into two modules after feature extrac-
tion, one module for pose classification and the other
for offset estimation. Given that the network had two
types of outputs (softmax scores and offsets), (Kour-
bane and Genc, 2021) optimized the network using
a combination of cross-entropy loss for classification
and Huber loss (Huber, 1992) for regression.

In our work, we adopt a similar approach to
(Kourbane and Genc, 2021), for fair comparison be-
tween classification and regression, we only convert
the regression output layer to a softmax layer rather
than having two types of outputs in (Kourbane and
Genc, 2021). To bridge the gap between classification
and regression, we used a combination of categorical
cross-entropy (CCE) and mean squared error (MSE)
losses for model optimization, the CCE loss imposes
high penalty to the model is case of mislabeling al-
lowing the network to produce coarse estimations to
the steering, then MSE loss tunes the output activa-
tions for more accurate predictions.

Given O Nx1 the softmax output scores, y the true
continuous steering, y Nx1 the one hot representation
of the discretized steering, m Nx1 steering midpoints
corresponding to each class, N is the number of steer-
ing classes and the hyperparameter W .

l =−
N

∑
i=1

yi log(Oi)+W (y− ŷ)2 (3)

where

ŷ = E(O) =
N

∑
i=1

Oimi

3.4 Co-Existence Probability Based
Loss

Inspired by (Rothe et al., 2015) and (Eraqi et al.,
2017), this work poses vehicle steering regression
problem as classification considering the spatial re-
lationship between the steering classes. As illustrated
in Sec.I, it’s important to insure that the model gives
desirable predictions even in the case of mislabel-
ing. Unlike (Eraqi et al., 2017), we used co-existence
probability matrix instead of sine wave encoding to
represent this relationship, using co-existence proba-
bility matrix was introduced in (Bengio et al., 2013) to
improve multi-class image categorization, this work
used the same concept to force the scores at the output
layer to follow a desired distribution which represents
the spatial relationship between the discrete steering
classes.

The co-existence probability matrix was used in
(Bengio et al., 2013) to represent the statistical ten-
dency of visual object to co-exist in images. In our
steering problem, the objective of forcing the model
to learn the output distribution is to make sure that in
the case of misprediction, the model is always able to
make acceptable predictions allowing the vehicle to
recover from disturbances.

The co-existence probability matrix µ is an N x N
matrix, where N is the number of classes, the element
µi j represents the co-existence probability between la-
bels i and j, given that the output scores O ∈ RN and
µ∈RNXN , the model shall try to find the output vector
O that minimizes the following cost function accord-
ing to (Bengio et al., 2013):

l =−(1−W )
N

∑
i=1

yi log(Oi)−W OT µO (4)

the first term is the crossentropy loss, the second term
describes how much the output scores vector O fol-
lows the desired distribution defined by µ, and W is
a hyperparameter between 0 and 1 describing how
much we care about forcing the desired distribution.
Thus, the value O j shall be pulled up or pulled down
by Oi based on how high or low the value µi, j is (Ben-
gio et al., 2013), the advantage of this approach is the
flexibility it provides to the researcher to define the
distribution most fitted for each class. In this work,
we use Gaussian distribution with σ2 = 1.

End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning

633



Figure 4: Spatial relationship between the steering classes.

4 TRAINING AND EXPERIMENT

We split the dataset into training and validation sets,
70% of the dataset for training and the remaining
30% for validation, the models were trained using
Adam optimizer (Kingma and Ba, 2014) with β1 =
0.70, β2 = 0.85 and learning rate of 0.0002, we
used mini-batches of 120 samples each, the mini-
batches contained equal number of samples corre-
sponding to each navigational command, the models
were trained on the dataset collected as illustrated in
Sec.III. The steering values coming from the dataset
samples ranges between -1 and 1, where -1 means a
full turn to left and 1 means a full turn to the right,
the actual value of steering depends on the vehicle
used (Dosovitskiy et al., 2017). While training, the
samples with steering between -0.8 and 0.8 were only
considered. For classification models, we discretized
the steering to 9 classes with 0.2 discreteization step.

The models were tested using CARLA simula-
tor, we adopted a modified CoRL 2017 benchmark
(Dosovitskiy et al., 2017) where we considered only
single turn task for performance evaluation, the task
of the ego-vehicle is to successfully navigate from a
start point and reach a destination point given pre-
defined navigational commands forcing the vehicle
to perform one single turn on its way. The vehicle
was tested in in Town01 (training town) and Town02
(new town), in four different weather conditions, two
training conditions (ClearNoon and ClearSunset) and
two new conditions (midRainyNoon and wetCloudy-
Sunset), the new town and weather conditions are
fully unseen to the steering models during training.
We defined 38 pairs of start and destination points in
Town01 and 40 pairs in Town02 associated with pre-
defined navigational commands to cover all the inter-
sections in both towns, which gives us 312 testing sce-
narios. On testing, we got the shown results in Tables
I, II, III and IV.

Table 1: Driving Reach Destination Success Rate for Co-
learning Model.

Model
Reach destination success rate

Training town New town

Training weathers New weathers Training weathers New weathers

Regression (CIL) 94.74 86.84 52.50 46.25

GTU 100.00 93.42 81.25 75.00

Fine Tuning 97.37 92.11 78.75 78.75

Table 2: Driving Reach Destination Success Rate for
Classification-Regression Hybrid Loss.

Model
Reach destination success rate

Training town New town

Training weathers New weathers Training weathers New weathers

Classification 72.37 43.42 41.25 32.50

W = 5 71.05 67.11 42.50 41.25

W = 10 97.37 85.53 64.25 56.25

W = 15 86.84 50.52 50.00 41.25

Table 3: Driving Reach Destination Success Rate for Clas-
sification with Co-existence Probability Based Loss Model.

Model
Reach destination success rate

Training town New town

Training weathers New weathers Training weathers New weathers

Classification 72.37 43.42 41.25 32.50

W = 0.4 71.05 65.79 45.00 36.25

W = 0.6 76.32 68.42 63.75 48.75

W = 0.8 69.74 61.84 50.00 41.25

Table 4: Driving Reach Destination Success Rate (All Mod-
els).

Model
Reach destination success rate

Training town New town

Training weathers New weathers Training weathers New weathers

Regression (CIL) 94.74 86.84 52.50 46.25

Co-learning (GTU) 100.00 93.42 81.25 75.00

Parameter soft sharing 96.05 84.21 67.50 60.00

Mixutre of experts 97.37 81.58 72.50 67.50

Sluice network 100.00 89.47 70.00 61.25

Classification 72.37 43.42 41.25 32.50

Co-existence based loss 76.32 68.42 63.75 48.75

CCE + MSE 97.37 85.53 64.25 56.25

Sine wave encoding 97.37 86.84 57.50 48.75

As discussed in Sec.II, the CIL model (Codevilla
et al., 2018) lacked generalization when tested in un-
seen environments. On the other hand, our proposed
CIC model tackled this issue, we could see improve-
ment in the reach destination success rate in unseen
environment (unseen town, unseen weather) by 62%.
Classification model failed to improve the CIL perfor-
mance which conforms to the results in (Rothe et al.,
2015) where classification could only outperform re-
gression for some datasets. Using the hybrid loss
in Equation 3 showed 21% improvement compared

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

634



to the CIL model. Nevertheless, the co-existence
based loss in Equation 4 only showed improvement
compared to the basic classification model but failed
to outperform the CIL regression model. MTL ap-
proaches such as MoEs (Jacobs et al., 1991), soft
parameter sharing and sluice networks (Ruder et al.,
2019) showed improvement to the CIL model espe-
cially in new town, but failed to outperform our CIC
model while stitch network (Misra et al., 2016) failed
to learn the driving task, sine wave encoding (Eraqi
et al., 2017) also showed slight improvement com-
pared to the CIL model.

5 CONCLUSION

In this work, we propose two contributions to the end-
to-end steering problem tackled by the conditional
imitation learning (CIL) model, the CIL model suf-
fered from lack of generalization and poor perfor-
mance when tested in unseen environment, the first
contribution of this work is conditional imitation co-
learning (CIC), the introduced approach proposes a
modified network architecture that allows the special-
ist branches in the CIL model to co-learn to overcome
the generalization issue and increase the model’s ro-
bustness in unseen environment, the other contribu-
tion is posing the steering regression problem as clas-
sification by using a combination of CCE and MSE
losses. The CIC model showed a significant improve-
ment to performance in unseen environment by 62%
while posing regression as classification showed only
improvement by 21%.

REFERENCES

Bekey, G. A. (2005). Autonomous robots: from biological
inspiration to implementation and control. The MIT
Press.

Bengio, S., Dean, J., Erhan, D., Ie, E., Le, Q., Rabinovich,
A., Shlens, J., and Singer, Y. (2013). Using web co-
occurrence statistics for improving image categoriza-
tion. ArXiv preprint, arXiv:1312.5697.

Bewley, A., Rigley, J., Liu, Y., Hawke, J., Shen, R., Lam,
V.-D., and Kendall, A. (2019). Learning to drive from
simulation without real world labels. In 2019 In-
ternational Conference on Robotics and Automation
(ICRA), pages 4817–4823. IEEE.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner,
B., Flepp, B., Goyal, P., Jackel, L. D., Monfort,
M., Muller, U., Zhang, J., et al. (2016). End to
end learning for self-driving cars. arXiv preprint,
arXiv:1604.07316.

Codevilla, F., Miiller, M., Lopez, A., Koltun, V., and Doso-
vitskiy, A. (2018). End-to-end driving via conditional

imitation learning. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation
(ICRA), pages 1–9.

Cui, J., Qiu, H., Chen, D., Stone, P., and Zhu, Y. (2022).
Coopernaut: End-to-end driving with cooperative per-
ception for networked vehicles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 17252–17262.

Dammen, J. (2019). End-to-end deep learning for au-
tonomous driving. Master’s thesis, Norwegian Uni-
versity of Science and Technology.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D.
(2017). Language modeling with gated convolutional
networks. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 933–
941. PMLR.

Dosovitskiy, A., Ros, G., Codevilla, F., López, A., and
Koltun, V. (2017). Carla: An open urban driving sim-
ulator. In Proceedings of the Conference on Robot
Learning (CoRL).

Eraqi, H., Moustafa, M., and Honer, J. (2017). End-
to-end deep learning for steering autonomous ve-
hicles considering temporal dependencies. CoRR,
abs/1710.03804.

Eraqi, H. M., Moustafa, M. N., and Honer, J. (2022). Dy-
namic conditional imitation learning for autonomous
driving. IEEE Transactions on Intelligent Transporta-
tion Systems.

Hawke, J., Shen, R., Gurau, C., Sharma, S., Reda, D.,
Nikolov, N., Mazur, P., Micklethwaite, S., Grif-
fiths, N., Shah, A., et al. (2019). Urban driving
with conditional imitation learning. arXiv preprint,
arXiv:1912.00177.

Huber, P. J. (1992). Robust estimation of a location param-
eter. In Breakthroughs in statistics, pages 492–518.
Springer, New York.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
(1991). Adaptive mixtures of local experts. Neural
Computation, 3(1):79–87.

Kingma, D. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint,
arXiv:1412.6980.

Kourbane, I. and Genc, Y. (2021). A hybrid classification-
regression approach for 3d hand pose estimation us-
ing graph convolutional networks. arXiv preprint,
arXiv:2105.10902.

Liang, X., Wang, T., Yang, L., and Xing, E. (2018).
Cirl: Controllable imitative reinforcement learning for
vision-based self-driving. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
584–599.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016).
Cross-stitch networks for multi-task learning. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3994–4003.

Moustafa, M. N. (2005). System and method for pose-angle
estimation.

Muller, M., Dosovitskiy, A., Ghanem, B., and Koltun, V.
(2018). Driving policy transfer via modularity and ab-

End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning

635



straction. In Conference on Robot Learning (CoRL),
pages 1–14.

Prakash, A., Chitta, K., and Geiger, A. (2021). Multimodal
fusion transformer for end-to-end autonomous driv-
ing. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR).

Rasmus, A., Valpola, H., Honkala, M., Berglund, M.,
Raiko, T., Santana, E., and Hotz, G. (2016). Learn-
ing a driving simulator. CoRR.

Rothe, R., Timofte, R., and Gool, L. V. (2015). Dex: Deep
expectation of apparent age from a single image. In
Proceedings of the IEEE International Conference on
Computer Vision Workshops (ICCV), pages 10–15.

Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A.
(2019). Latent multi-task architecture learning. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 33(01):4822–4829.

Tampuu, A., Matiisen, T., Semikin, M., Fishman, D., and
Muhammad, N. (2020). A survey of end-to-end driv-
ing: Architectures and training methods. IEEE Trans-
actions on Neural Networks and Learning Systems.

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K.
(2019). A survey of autonomous driving: Common
practices and emerging technologies. arXiv preprint,
arXiv:1906.05113.

NCTA 2024 - 16th International Conference on Neural Computation Theory and Applications

636


