
A Secret Key Spreading Protocol for Extending ETSI Quantum Key
Distribution*

Thomas Prévost1 a, Bruno Martin1 b and Olivier Alibart2 c

1I3S, Université Côte d’Azur, CNRS, Sophia-Antipolis, France
2InPhyNi, Université Côte d’Azur, CNRS, Nice, France

{thomas.prevost, bruno.martin}@univ-cotedazur.fr, olivier.alibart@univ-cotedazur.fr

Keywords: ETSI, Quantum Cryptography and Safety, Formal Verification, ProVerif, Maude, Shamir’s Secret Sharing,
Network Security.

Abstract: This paper presents an information theoretic secure secret key transfer protocol by Quantum Key Distribution
(QKD) in the case of multi-hops quantum links between the two correspondents. We aim to transmit a secret
between two parties using existing quantum infrastructure in the case where half of the intermediate routers
are evil. We recursively divide the secret into Shamir’s shares, which are transmitted through different routes.
This protocol has been successfully verified with ProVerif, which grants the secrecy of the transmitted key. We
also propose an on-the-fly route discovery algorithm, in case the network is too large for each node to know
all possible routes, and provide a formal verification of this algorithm using Maude.

1 INTRODUCTION

Key exchange protocols enable two previously unac-
quainted parties to establish a common cryptographic
key for symmetric encryption. Traditional methods
rely on one-way cryptographic functions, but current
asymmetric algorithms (e.g., RSA, ECC) face obso-
lescence with the advent of quantum computers (Bha-
tia and Ramkumar, 2020). Post-quantum algorithms
promise resistance to quantum attacks but remain
unproven, with vulnerabilities still possible (Kalud-
erovic, 2022). Moreover, computational security of-
fers only time-limited guarantees.

Quantum Key Distribution (QKD) leverages quan-
tum physics, specifically the non-cloning theo-
rem (Zygelman and Zygelman, 2018), to detect eaves-
dropping via alterations in qubit states (e.g., photon
polarization). Unlike computational methods, QKD
ensures security through real-time attack detection.
However, QKD requires a pre-established authenti-
cated classical communication channel, often secured
via public-key cryptography, to guarantee forward

a https://orcid.org/0009-0000-2224-8574
b https://orcid.org/0000-0002-0048-5197
c https://orcid.org/0000-0003-4404-4067
∗ This work was supported by a government grant

managed by the Agence Nationale de la Recherche under
the Investissement d’avenir program, ref. ANR-17-EURE-
004.

Figure 1: Given an infrastructure with existing QKD links
between sites, we aim to transmit secret between the green
sites that are not directly connected via a QKD link.

secrecy. In QKD systems, photons are transmitted
through “black fiber” quantum links, supported by au-
thenticated classical links for data exchange.

QKD networks face distance limitations, necessi-
tating multi-hop connections (Fig.1) for secure key
exchange across data centers, a scenario relevant to
Cloud providers. (ETSI, 2019) proposed a QKD key
transmission standard but left technical aspects, such
as multi-link key exchange, unaddressed.

Existing multi-path QKD protocols (Wang et al.,
2023; Vyas and Mendes, 2024; Mehic et al., 2020;
Salvail et al., 2010) rely on XOR operations for
information-theoretic secrecy. (Choi et al., 2021) re-
views QKD communication protocol standardization.

We propose a novel protocol using recursive
Shamir’s secret sharing to securely extend QKD-
based secret transmission across broader networks.

Prévost, T., Martin, B. and Alibart, O.
A Secret Key Spreading Protocol for Extending ETSI Quantum Key Distribution.
DOI: 10.5220/0013077100003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 2, pages 411-418
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

411



Figure 2: Example of a QKD network modeled and proved with ProVerif with n = 8 participants and a threshold of k = 2. In
this example KMEs 4 and 6 are controlled by the attacker, and the link between KME 7 and KME 8 has been cut.

This approach ensures perfect secrecy and robustness
against node corruption or link failures. It supports
dynamic route discovery in large networks via a pro-
tocol verified in Maude (Clavel et al., 2003). Addi-
tionally, ProVerif-based formal security proofs vali-
date our method.

This paper is organized as follows: Section 2 re-
views the ETSI GS QKD 014 standard. Section 3
details our secret transfer protocol. In section 4, we
provide a formal verification of our protocol using
ProVerif. Section 5 presents our dynamic routing pro-
tocol and security analysis.

2 THE ETSI GS QKD 014
STANDARD PROPOSAL

In the (ETSI, 2019) protocol, two types of entities co-
exist: Key Management Entities (KME) in charge of
quantum key exchange and storage, and Secure Ap-
plication Entities (SAE). The latter correspond to fi-
nal applications which will subsequently use the ex-
changed keys. The protocol considers that several
SAEs can share the same KME within a “secure”
zone, i.e. connected in a secure perimeter with only
trusted nodes. A “secure” zone refers, for example,
to a data center, in which the network is assumed to
be secure. Within a secure zone, communications are
carried out via a classical TLS secured link.

In order for the SAEs to be able to request a com-
mon key from their respective KMEs, it is necessary
for the latter to carry out a secret exchange through
a quantum link, via a QKD protocol. However, since
it is a “quantum network”, there is not necessarily a

direct quantum link between two KMEs. The ETSI
GS QKD 014 standard proposal does not detail how
to transmit keys in this case: “how KMEs relay keys
securely in a QKD network is outside the scope of the
present document”. Additionally, every KME is con-
sidered “trusted”, which is a pretty strong assumption,
but plausible in a context of cross-datacenter use : “It
is assumed that every Trusted Node is securely op-
erated and managed.”. (Prévost et al., 2024) proved
that under these assumptions, there is no security vul-
nerability in the standard protocol proposal by using
ProVerif.

3 OUR NETWORK KEY
TRANSMISSION ALGORITHM

3.1 Secret Sharing Scheme

The principle of Shared Secret Scheme consists of
distributing a share of a given secret S0 to each of n
participants. To recover the secret, a subset of at least
k participants must pool their shares, the threshold k
having been defined in advance by the dealer. There
are several secret sharing schemes, the best known be-
ing (Shamir, 1979) or (Blakley, 1979).

For Shamir’s secret-sharing scheme, let n be the
number of participants and k the threshold necessary
to recover the secret S0. Let Fp be the field with p
elements, p prime, p > S0. The dealer starts by gen-
erating a prime p randomly and a random polynomial
of degree k− 1, P ∈ Fp[X ], P(X) = S0 +∑

k−1
i=1 aiX i,

where a1, . . . ,ak−1 ∈ Fp. The dealer generates n
shares by distributing S1 = P(1), S2 = P(2), ..., Sn =

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

412



P(n) to the n participants. A subset of k participants
among n can retrieve the secret S0 = P(0) by recon-
structing P(X) with Lagrangian interpolation of the
shares.

3.2 Algorithm Definition

We want to get rid of certain assumptions formulated
in the ETSI standard proposal. We thus allow the
possibility that certain KMEs could be corrupted by
the attacker. This could happen if a malicious actor
manages to break into a data center network. Our al-
gorithm also supports the case when some quantum
links could be broken. This is a scenario that can oc-
cur when an adversary physically cuts fiber links or
launches a Denial Of Service (DOS) attack.

The algorithm relies on Shamir’s secret sharing
scheme, proven information-theoretic secure (Corni-
aux and Ghodosi, 2014), and therefore quantum safe.

Here, we focus on the case of a static network
topology, which every KME would know in advance.
If we want to introduce the possibility of dynamic
routing, we would then have to ensure that an attacker
cannot modify the knowledge that the KMEs have of
the routes. We will address this issue in Section 5.

We introduce the concept of routing layer. For
each secret we aim to transmit between an initial and
a final KME, we can imagine the KMEs network as a
Directed Acyclic Graph (DAG). A layer is thus a sub-
set of nodes that will reshare the received shares with
the same depth. Subsets of layers therefore differ de-
pending on each secret transmission, since the routes
will be different. In Fig. 2, the successive layers are:

Layer 1 = {KME 1}, Layer 2 = {KME 2, KME 3,
KME 4}, Layer 3 = {KME 5, KME 6, KME 7},
Layer 4 = {KME 8}.

Here every possible path will pass once through
one of the nodes of each layer. For example a pos-
sible route between KME 1 and KME 8 would be as
follows: KME 1→ KME 2→ KME 6→ KME 8.

Our algorithm also works with paths of different
length. In Fig. 2 we represent a simplified case where
each path has the same length.

For each KME the transmission of Shamir’s
shares is described in Algorithm 1.

So each node will generate new Shamir’s shares
from the received one and transmit them to the outgo-
ing neighbor nodes. After receiving all the shares, the
final KME recursively decrypts them, finally obtain-
ing the secret distributed by the first KME.

We choose a threshold of 51% for each Shamir’s
sharing iteration. This means that an attacker would
need to be able to control more than half of the KMEs

Algorithm 1: Algorithm for transmitting secret shares, for
each KME.

if is first KME then
secret← generate a secret;
n← recipient KMEs count // Number
of outgoing neighbors;

k← ⌞n/2⌟+1 // Denotes the
Shamir’s threshold;

shares← Shamir’s shares(secret,
participants=n, threshold=k) // A
list;

for i in recipient KMEs do
Establish an encrypted
communication with
recipient KMEs[i] using QKD;

send shares[i] to recipient KMEs[i];
end

else
forall share in received shares via QKD

secured channel do
if Only 1 KME left then

Forward share to recipient KME;
else

n← recipient KMEs count
// Number of outgoing
neighbors;

k← ⌞n/2⌟+1 // Denotes the
Shamir’s threshold;

shares← Shamir’s shares(share,
participants=n, threshold=k)
// A list;

for i in recipient KMEs do
Establish an encrypted
communication with
recipient KMEs[i] using
QKD;

send shares[i] to
recipient KMEs[i];

end
end

end
end

in a layer of the network to be able to decrypt the se-
cret, a very pessimistic estimate (as long as the net-
work is well designed to avoid bottlenecks). With a
lower threshold, the transfer of secrets would be faster
and more resilient to network failures. Threshold can
be set independently by each KME depending on the
trust it places in those of the following layer.

A Secret Key Spreading Protocol for Extending ETSI Quantum Key Distribution

413



3.3 Proof of Concept

A POC in Rust is available at: https://github.com/
thomasarmel/qkd kme key spread. The code runs en-
tirely locally with logs explaining each step; it uses
the ssss library for computing Shamir’s secrets.

We have thus modeled the network topology pre-
sented in Fig. 2: KMEs 4 and 6 are controlled by the
attacker and the link between KME 7 and 8 is broken.
Note that the attacker always controls less than 51%
of each routing layer.

3.4 Exchanged Data Volume

One might be concerned about the growth in mes-
sages’ size as recursive sharing occurs in successive
layers. In our implementations, every new iteration
increases the shares size by 5 bytes. So for each KME,
let l be the received share size and n the number of
outgoing neighboring KMEs to which it will propa-
gate the recursive shares, L = n(l+5) is the total vol-
ume of data sent by the KME to the next layer:

Let C1 be a cut between layers 1 and 2, C2 between
layers 2 and 3 and C3 the last cut between layers 3 and
4. Consequently, in the network topology presented
in Fig. 2, the total volume V =VC1 +VC2 +VC3 = 489
bytes of messages exchanged for a key of initial size
l = 32 bytes: V = 3(l + 5)+ 7(l + 5+ 5)+ 2(l + 5+
5) bytes.

Taking into account that the connection between
KME 7 and KME 8 is broken with no data exchanged.

As these messages are exchanged via classical
links, this should not cause performance issues.

4 FORMAL VERIFICATION

4.1 ProVerif

The reader will be able to find in the project’s GitHub
repository a “formal verif” folder, containing the
formal proof of confidentiality and authenticity of the
protocol. We used the ProVerif software, which trans-
lates the protocol into logical constraints and attempts
to find a counterexample to prove the existence of an
attack (Blanchet et al., 2018; Blanchet, 2012). The
verification carried out by ProVerif is also proven to
be complete, which means that there cannot be an at-
tack that would not be discovered by the software.

ProVerif takes as input a formal description of a
cryptographic protocol (Blanchet et al., 2016). Cryp-
tographic primitives are represented by equations:
type key.
fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key;
sdec(senc(m, k), k) = m.

This equation formalizes the fact that it is possible to
call the decryption sdec() function with the result of
the senc() encryption of a message m using the key
k, and the same key k as argument. In this case only
the message m will be retrieved. The cryptographic
primitives are assumed to be perfect.

The attacker is represented as in the (Dolev and
Yao, 1983) model, in which the verifier assumes that
the attacker “carries the message”. It is possible to
specify whether the attacker can modify messages or
not (resp. active or passive attacks).

User can formulate different queries to ProVerif,
meaning different questions which the tool must an-
swer, given the description of the protocol. The most
common query is query attacker(secret)
which should be understood as query NOT
attacker(secret), meaning ProVerif is asked
to ensure that an attacker, as predefined before, is
NOT able to recover secret in any way whatsoever.

Queries for material implication can be formu-
lated, such as:
query var:type; event(second_event(var)) ==>
event(first_event(var)).

This query checks that the second event called
with var variable, in all cases, implies first event,
called with the same variable. This type of query is
very often used to verify the authentication property,
since we ensure, for example, that the reception by a
participant of a message necessarily implies its trans-
mission by another participant.

Generally, the problem of proving a security pro-
tocol is undecidable. ProVerif can return the next re-
sponses for the queries:

• True: the query will succeed in all cases, which
means for example that the attacker will not be
able to retrieve the secret.

• False: the query failed and an attacker can re-
trieve the secret or create a counterexample to an-
other query. In this case the tool returns the attack.

• Cannot be Proven: the tool cannot give a defini-
tive answer. This happens when the protocol has
not been modeled correctly or the amount of cal-
culation to be carried out is too large.

Using ProVerif, we therefore attempted to prove
confidentiality and authenticity of the network topol-
ogy from Fig. 2. The result can be transposed to any
other topology provided that the threshold of compro-
mised nodes on each layer is not exceeded.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

414



4.2 Assumptions and Modeling

ProVerif allows to model an active or passive attacker.
As we do not wish to make dangerous assumptions,
we have chosen an active attacker, capable of reading
and modifying any message on the public channels.

We are not trying to prove the security of QKD
here. We therefore consider that two KMEs which
are directly connected by a quantum link have already
established an encrypted and authenticated channel
via QKD. We therefore model the communication be-
tween two successive KMEs by a private channel, i.e.:
free kme1_2_channel:channel [private].

To model a node controlled by the attacker, we con-
sider that any information received will be brought
to the attention of the latter. We have thus intro-
duced a public channel through which the compro-
mised KMEs leak all the received information:
free public_leak_channel:channel.

Furthermore, we consider that the attacker is able to
compromise the messages sent from the compromised
KMEs. The message flows output from these KMEs
are therefore modeled by public channels, i.e. read-
able and modifiable by an attacker:
free kme4_6_dangerous_channel:channel.

Message authenticity is modeled by the following
query: let m be a clear message, does the event of re-
ception of m by KME 8 imply the unique transmission
of m by KME 1?
event sent_secret_kme1(bitstring).
event received_secret_kme8(bitstring).
query s:bitstring;
inj-event(received_secret_kme8(s)) ==>
inj-event(sent_secret_kme1(s)).

The inj-event query checks the injective impli-
cation. With this query, we ensure that the event
received secret kme8 involves one and only one
event sent secret kme1.

We chose to model only one iteration of the proto-
col, since we are modeling the transmission of a sin-
gle secret across the network.

4.3 Analysis Results

The analysis of our protocol by ProVerif in the topol-
ogy from Fig. 2 showed that it is safe, both for confi-
dentiality and authenticity.

5 DISCOVERING THE ROUTES
ON THE FLY

The main problem with the algorithm mentioned
above is the need for each node to know exhaustively

all the routes to all the other nodes. Since the net-
work is more secure when there are many possible
routes between two nodes, the total number of routes
quickly becomes huge as the network grows. From a
certain number of nodes and links in the network, the
memory would be insufficient to store all the possible
routes. It is therefore necessary to find a way for a
node to exhaustively discover all the possible routes
to another node on the fly when it wants to transmit a
secret to the latter.

5.1 Attacker Model

An attacker who has managed to take control of an in-
sufficient number of nodes to decrypt a secret would
be interested in lowering the decryption threshold for
the secret. Since this threshold is adjusted according
to the number of possible routes (for example > 51%
of possible routes), the attacker will have to mislead
the attacked node about the possible routes to the des-
tination node.

Here are the possible attacks we identified:

Route Suppression Attack. Make the attacked node
believe that there are fewer possible routes than in
reality, when the attacker took control of one of
the nodes on a legitimate route.

Route Addition Attack. The attacker wrongly
makes the attacked node believe that one of
the nodes it controls is a possible route to the
destination node.

Route Addition Attack with a Fake Link. The at-
tacker has also taken control of another node that
is really linked to the destination node. As in the
Route addition attack, the attacker pretends a
node it controls is a route to the destination, but
the attacker uses a fake quantum link between the
two nodes to forward the message to the destina-
tion. As the attacked node cannot know that the
link between the two nodes controlled by the at-
tacker is not quantum, the detection of this attack
is very hard.

These maneuvers aim to give the nodes controlled
by the attacker a Shamir share number higher or equal
than the decryption threshold.

It is assumed that nodes can authenticate each
other, even if they are not connected by a direct quan-
tum link. PKC is used for this. Indeed, although pub-
lic key encryption may be broken in the future, this is
not currently the case. It is therefore possible to use
public key authentication securely with PQC signa-
ture standards.

A Secret Key Spreading Protocol for Extending ETSI Quantum Key Distribution

415



5.2 Description of the Exhaustive Route
Discovery Algorithm

Technically speaking, our route discovery algorithm
is more a flooding algorithm rather then an exhaus-
tive path search algorithm. In fact, the starting node
searches, among its neighbor nodes, which ones are a
possible route to the destination without loops. While
network route discovery has been widely studied, here
we need to exhaustively discover all routes in order to
ensure protocol security, so we will not be able to rely
on those algorithms that search for the most efficient
route.

We recall that the direct links between the nodes
are already encrypted and authenticated by QKD. In
order to authenticate the communications between the
remote nodes, we will use a Public Key Infrastructure
(PKI). Each node, or KME, having a unique identi-
fier on the network, we can issue them a public key
certificate, signed by a Certification Authority (CA).

When an initiator node wants to discover the pos-
sible paths to a destination, it asks all its direct neigh-
bors if they are able to reach the destination node.
These neighbors will then forward the question to
their own neighbors etc. During each request, the list
of previous nodes is transmitted to detect loops. The
process stops when a loop is detected or the destina-
tion node is reached. At the end, each node is able to
determine which of its neighbors is a possible route
to the destination from the initiator. Since the direct
links between nodes are authenticated, it is impossible
for a node to claim to be the only possible route to the
destination if this is not the case (route suppression
attack).

In order to avoid the fictitious route addition at-
tack, we add a direct link validation mechanism, as
shown in Fig. 3. With its private key, the destination
node certifies with a temporary certificate that there is
indeed a direct path between it and each of its direct
neighbors to the initiator, and then sends each neigh-
bor their respective certificate. These same neighbors
then generate a direct link certificate with their own
neighbors to the initiator node, and send the certifi-
cate to their respective neighbors, in addition to the
certificate received from the destination node. If a
node receives several certificate suites to the destina-
tion node, it only keeps one, since it only has to prove
that it is a possible route to the destination node. In the
end, each node is thus able to prove that it is indeed
a valid route between the initiator and the destination.
The issuance of direct link certificates is not condi-
tional on the communication being up at the time of
the request. Thus, it is not possible for an adversary
to cut a quantum link between two nodes in the hope

of lowering Shamir’s decryption threshold.
From a purely theoretical point of view, it is im-

possible to prevent an attack by adding a fictitious
route between two malicious nodes (route addition
attack with a fake link). Indeed, the initiator node
has no way of verifying whether there is indeed a
quantum link between two distant nodes. However,
since dark fiber QKD has a maximum geographical
distance, one could imagine implementing a heuris-
tic aimed, for example, at detecting abnormally short
paths. It would also be possible to detect if the ad-
versary is trying to add virtual nodes that do not exist
in order to add hops, since these nodes would not be
connected to the rest of the network.

5.3 Formal Security Analysis

To ensure the security of our dynamic route discovery
algorithm, we performed a formal security analysis.
We still assume that cryptographic primitives are se-
cure. In particular, we model authentication on direct
links and between remote nodes as perfect. This is in
practice a reasonable assumption; it is very unlikely
that an attacker can break public key authentication
while the protocol is running. In fact, we are adopt-
ing a “perfect forward secrecy” approach, meaning
that the authentication mechanism is supposed to be
constantly adapted to cope with the attacker’s power,
while encryption must be able to withstand changes
in the attacker’s power over the long term.

We used Maude (Clavel et al., 2003) to model our
routing system. This is a reflective language and sys-
tem supporting both equational and rewriting logic
specification capable of automatically rewriting logi-
cal equations. We tested several initial network topol-
ogy configurations that we modeled by equations, and
we used Maude to simulate the different phases of the
dynamic route discovery protocol. We thus tested that
the final stable state corresponding to the configura-
tion after the discovery ends corresponded to the ex-
pected state. We also simulated different initial con-
figurations corresponding to possible attacks, to en-
sure that the final state did not correspond to a suc-
cessful attack.

Here is the syntax in Maude to model a two nodes
topology: n(1,v(2,r(2))) ; n(2,v(1,r(1))) where:

• n() is a node. The global state is basically a set of
nodes, separated by “ ; ”. Its parameters are: the
node number ∈ N and the neighbors set.

• v() is a neighbor. A node should contain a set
of neighbors, separated by “ : ” with parameters
a neighbor node number ∈ N and the set of pos-
sible routes (meaning reachable nodes) from this
neighbor.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

416



Figure 3: Example of forwarding the direct link certificate suite from the destination node to the initiator node. Since each
node only needs to be able to prove that it is a valid route to the destination node, node 2 only needs to forward one certificate
suite to node 1.

δ(Ω ∪ { n(Y,τ′ ∪ { v(T,χ′ ∪ { r(Z) } ) } ) } ∪ { n(X ,τ ∪ { v(Y,χ) } ) } ) [1]

=


Ω ∪ { n(Y,τ′ ∪ { v(T,χ′ ∪ { r(Z) } ) } ) } ∪ { n(X ,τ ∪ { v(Y,χ ∪ { r(Z) } ) } ) }, [2]
if r(z) /∈ χ and X ̸= Z and X ̸= T [3]
Ω ∪ { n(Y,τ′ ∪ { v(T,χ′ ∪ { r(Z) } ) } ) } ∪ { n(X ,τ ∪ { v(Y,χ) } ) }, [4]
otherwise (no change) [5]

(1)

1: Equation describing the evolution of the network state as modeled in Maude at the time of on-the-fly route discovery. Line
[1] represents the δ function applied to the previous state of the network. Lines [2] and [3] show the net state of the network.
Line [2] shows that node X associates with its neighbor Y the new route to Z if the condition in line [3] is met. Otherwise, the
state of the network does not change, as shown in line [4].

• r() used to designate a possible route from a
neighbor. A neighbor should contain the exhaus-
tive set of nodes it is able to reach. Possible routes
are separated by “ + ”. For a route to be validated,
it is assumed that the node has performed the veri-
fication of the certificate suite. It has as parameter
the route, meaning reachable node number ∈ N.

This means that there are two nodes, node 1 and node
2. Node 1 has node 2 as a neighbor, and that neighbor
is a valid route to node 2 (itself). Node 2 has node 1
as a neighbor, which is also a valid route to itself.

The route discovering algorithm equation as mod-
eled in Maude is given in eq. 1, with:

• Ω a set of nodes (possibly empty)
• τ,τ′ sets of neighbors (possibly empty)
• χ,χ′ sets (possibly empty) of possible routes
• T,X ,Y,Z ∈ N node numbers
• N set of nodes
• V set of neighbors
• R set of routes from a neighbor
• n : N×P (V )→ N the function describing a node
• v : N×P (R)→ V the function describing a node

neighbor, as explained above
• r : N→ R the function describing a route from a

neighbor, as explained above

• δ : P (N)→ P (N) the transition function, P (N)
being a state

To simplify, it means that at each transition, a node
among the network will ask one neighbor about a pos-
sible routing, and add the route to the corresponding
routing table if:

• the new route isn’t the node itself: X ̸= Z
• the new route doesn’t pass through the node itself
• the node didn’t know the route before: r(z) /∈ χ.

This condition is not needed in the equation but it
helps understanding the algorithm.

The final stable state occurs when all the nodes
know all possible routes. An incomplete routing table
means the global state isn’t final.

Let us take for example the initial state of a dia-
mond network topology with four nodes expressed in
Maude:
n(1, v(2, r(2)) : v(3, r(3))) ;
n(2, v(1, r(1)) : v(4, r(4))) ;
n(3, v(1, r(1)) : v(4, r(4))) ;
n(4, v(2, r(2)) : v(3, r(3)))

We then launch the rewriting of the equation with
Maude, and we find only one possible final state:
n(1, v(2, r(2) + r(3) + r(4)) :
v(3, r(2) + r(3) + r(4))) ;

n(2, v(1, r(1) + r(3) + r(4)) :
v(4, r(1) + r(3) + r(4))) ;

A Secret Key Spreading Protocol for Extending ETSI Quantum Key Distribution

417



n(3, v(1, r(1) + r(2) + r(4)) :
v(4, r(1) + r(2) + r(4))) ;

n(4, v(2, r(1) + r(2) + r(3)) :
v(3, r(1) + r(2) + r(3)))

Each node knows all possible routes from its neigh-
bors.

We tested several possible configurations, with
some malicious nodes. Each time the final config-
uration allowed the nodes to know all the possible
routes. You can find the Maude code as well as dif-
ferent examples at https://github.com/thomasarmel/
qkd dynamic routing protocol/.

6 CONCLUSION

Our protocol proposal responds to the problem ad-
dressed in the ETSI QKD standard regarding the
transmission of keys in a QKD network, when all
the KMEs would not be directly linked together via
a quantum link. We freed ourselves from the assump-
tion that “each Trusted Node is securely operated and
managed”, by allowing a minority of nodes on each
routing layer to be compromised by an attacker with-
out compromising confidentiality and authenticity of
the secret. If there is a bottleneck in the network, then
it is still necessary to trust the nodes that constitute
the single point of passage. It is also possible for each
node to adapt the secret sharing threshold accord-
ing to the trust it puts on the nodes of the following
layer. Since Shamir’s Secret Sharing Scheme (SSSS)
is information-theoretic safe, our protocol would re-
tain its safety properties even if the attacker had ac-
cess to quantum computation power.

Our protocol, however, has the disadvantage of in-
creasing the number of messages sent in total, espe-
cially if the trust placed in the KMEs network is low.

In the case where the network becomes too large
for its topology to be known in advance by all nodes,
we then propose an algorithm allowing nodes to dis-
cover on the fly the routes between the node wanting
to transmit the secret and the destination node. We
have also made a formal analysis of the security of
this on-the-fly route discovery algorithm.

REFERENCES

Bhatia, V. and Ramkumar, K. (2020). An efficient quantum
computing technique for cracking RSA using Shor’s
algorithm. In 2020 5th ICCCA, pages 89–94. IEEE.

Blakley, G. R. (1979). Safeguarding cryptographic keys.
In Managing Requirements Knowledge, Int. Workshop
on, pages 313–313. IEEE.

Blanchet, B. (2012). Automatic verification of security pro-
tocols in the symbolic model: The verifier proverif. In
Int. School on Foundations of Security Analysis and
Design, pages 54–87. Springer.

Blanchet, B. et al. (2016). Modeling and verifying security
protocols with the applied pi calculus and proverif.
Foundations and Trends in Privacy and Security, 1(1-
2):1–135.

Blanchet, B., Smyth, B., Cheval, V., and Sylvestre, M.
(2018). Proverif 2.00: automatic cryptographic pro-
tocol verifier, user manual and tutorial. Version from,
pages 05–16.

Choi, T., Kim, H., Kim, J., Yoon, C. S., and Lee, G. M.
(2021). Quantum key distribution networks for trusted
5g and beyond: An ITU-T standardization perspec-
tive. In 2021 ITU Kaleidoscope: Connecting Physical
and Virtual Worlds (ITU K). IEEE.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N.,
Meseguer, J., and Talcott, C. (2003). The maude 2.0
system. In Int. Conf. on Rewriting Techniques and
Applications. Springer.

Corniaux, C. L. and Ghodosi, H. (2014). An entropy-
based demonstration of the security of Shamir’s secret
sharing scheme. In 2014 Int. Conf. on Information
Science, Electronics and Electrical Engineering, vol-
ume 1, pages 46–48. IEEE.

Dolev, D. and Yao, A. (1983). On the security of public key
protocols. IEEE Trans. on IT, 29(2):198–208.

ETSI, G. (2019). 014. Quantum Key Distribution (QKD);
protocol and data format of REST-based key delivery
API.

Kaluderovic, N. (2022). Attacks on some post-quantum
cryptographic protocols: The case of the Legendre
PRF and SIKE. Technical report, EPFL.

Mehic, M., Niemiec, M., Rass, S., Ma, J., Peev, M.,
Aguado, A., Martin, V., Schauer, S., Poppe, A.,
Pacher, C., et al. (2020). Quantum key Distribution: a
networking perspective. ACM Computing Surveys.

Prévost, T., Martin, B., and Alibart, O. (2024). Formal veri-
fication of the ETSI proposal on a standard QKD pro-
tocol. GT MFS 2024.

Salvail, L., Peev, M., Diamanti, E., Alléaume, R.,
Lütkenhaus, N., and Länger, T. (2010). Security of
trusted repeater quantum key distribution networks.
Journal of Computer Security.

Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612–613.

Vyas, N. and Mendes, P. (2024). Relaxing trust assump-
tions on Quantum Key Distribution Networks. arXiv
preprint arXiv:2402.13136.

Wang, M., Li, J., Xue, K., Li, R., Yu, N., Li, Y., Liu, Y.,
Sun, Q., and Lu, J. (2023). A segment-based multipath
distribution method in partially-trusted relay quantum
networks. IEEE Communications Magazine.

Zygelman, B. and Zygelman, B. (2018). No-cloning the-
orem, quantum teleportation and spooky correlations.
A First Introduction to Quantum Computing and In-
formation, pages 125–147.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

418


