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The advent of the Internet of Things (IoT) has transformed how we conduct our daily lives and engage with
technology. The seamless integration of connected devices, from household to industrial equipment, has
ushered in a new era of interconnectivity. Nevertheless, this swift expansion of the IoT also presents novel
security concerns that must be addressed. We present a customizable framework for assessing the risk of
deploying and utilizing IoT devices in various environments. We dynamically calculate risk scores for different
devices, considering their importance to the system and their vulnerabilities, among other parameters. The
framework we propose improves on existing research by considering the important parameters of the devices,
their vulnerabilities and how they impact the overall risk assessment. The importance of these devices and
the severity of vulnerabilities are incorporated in the framework using well-known Multi-Attribute Decision
Making (MADM) methods, namely, Simple Additive Weighting (SAW) and Weighting Product (WP). The
risk is assessed on a setup comprised of a set of IoT devices widely deployed in healthcare systems, such as

emergency rooms.

1 INTRODUCTION

The “Internet of Things” is a concept that refers to the
connection of daily physical objects or devices to the
Internet or each other. This allows them to share in-
formation and perform specific functions through the
network (Kumar et al., 2019). IoT enables sophisti-
cated services to be offered by connecting all objects
so that the Internet is used to mediate seamless con-
nectivity and data transfer between them (Ray, 2018).

The IoT ecosystem contains various smart ob-
jects located in different constrained environments
that communicate with each other or with the Internet
and share data using different methods and protocols.
In other words, the IoT device can be defined as any
device (cyber or physical) having an IP address and
connected to a network (Radanliev et al., 2018).

The availability, integrity, and confidentiality of
data are significant concerns for manufacturers and
consumers of IoT systems. There are four layers in
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any IoT architecture: Sensor, network, middleware,
and application (Shameli-Sendi et al., 2016a). In the
Sensor layer, the sensed information, stored in local
or cloud storage, is not encrypted, making it vulnera-
ble to security attacks. In the network layer, the com-
munication between IoT devices is known to be vul-
nerable to attacks (Opoku et al., 2024; Falola et al.,
2023). In the middleware layer, attackers can degrade
the firmware version of IoT devices using malicious
applications. Then, an attack could be carried out on
the degraded and outdated firmware version. In the
Application layer, operating systems could have back-
doors that lead to security issues.

Cyber risk refers to the probability that an unde-
sirable event occurs and the level of impact it would
have. According to the National Institute of Stan-
dards and Technology (NIST), we need to consider
the probability that a possible threat exploits a vul-
nerability to assess the risk and the resulting impact
of this event on the system or organization. The
International Organization for Standardization (ISO)
and the International Electrotechnical Commission
(ISO/IEC) have defined IT risk as the possibility of
a threat exploiting an organization’s asset vulnerabil-
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ities and causing damage. Risk assessment considers
the likelihood of an event and its impact on the orga-
nization.

Cybersecurity risk is the likelihood of compro-
mised sensitive information, critical assets, or repu-
tation due to a cyber attack or breach within an or-
ganization’s network. Asset, threat, and vulnerabil-
ity are critical components of information security
risk. The Open Web Application Security Project
(OWASP) test guide defines risk as a product of like-
lihood and impact, where likelihood and impact are
assigned specific values. Various definitions of risk
exist, taking into account threats and vulnerabilities.

Contemporary approaches focus on IoT risk as-
sessment using only Risk and Likelihood impacts.
They do not consider the critical parameters of vul-
nerabilities of IoT devices.

In this paper, we propose a customizable security
risk assessment framework, which considers differ-
ent and diverse risk assessment parameters, provid-
ing more insightful risk scoring. Different parameters
are involved in the risk assessment, which normally
contribute differently to the final score of the assess-
ment. Therefore, different weights must be assigned
to these parameters to provide a more precise and per-
sonalized risk assessment framework that can applied
in different environments. Our proposed risk assess-
ment framework for IoT environments is developed
based on these key factors, which is not only innova-
tive, but also highly practical. Furthermore, our pro-
posed framework can be applied in various 10T sce-
narios in different sectors, ensuring its wide applica-
bility.

The paper is structured as follows. In section 2,
we review the most important security risk assessment
solutions and frameworks proposed in the literature.
Section 3 presents our customizable security risk as-
sessment framework, the parameters used, and the ap-
plication of the MADM methods. Section 4 presents
the simulation setup and results. Lastly, section 5 con-
cludes the paper.

2 RELATED WORK

Kandasamy et al. (Kandasamy et al., 2020) pro-
posed a risk prioritization approach, dividing risks
into four distinct categories: Ethical, Privacy, Secu-
rity, and Technical risks. They also classify Risk
Assessment theories into several categories, includ-
ing, Dempster-Shafer theory, Game-Theoretic com-
puting, Failure Mode Effects Analysis, and Cyberse-
curity Game (CSG), which study how attackers, de-
fenders, and users make decisions about cybersecu-
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rity. Their analysis provides a thorough examination
of the various risks associated with IoT across diverse
domains, such as finance, healthcare, and others.

Radanliev et al. (Radanliev et al., 2020) discussed
a self-adapting and dynamic supply chain system.
This system utilizes real-time intelligence, Al, and
ML to detect cyber-risks. The authors also conducted
a literature review to examine the impact of state-of-
the-art supply chain technologies and their connected
cyber risks. Additionally, they developed a method
to reduce cyber risks in assessing Industrial IoT and
Industry 4.0 supply chain integration.

Kumar et al. (Kumar et al., 2020) introduced
a model incorporating regression analysis, utiliz-
ing predefined and authorized specification limits to
maintain cyber risks associated with critical informa-
tion infrastructure within the organization’s predeter-
mined boundaries. Additionally, their algorithm fore-
casted the capability of the risk assessment process,
enabling utilities to proactively implement security
measures.

Malik and Tosh (Malik and Tosh, 2022) presented
a model for quantitatively assessing an organization’s
security posture, evaluating security controls, and un-
derstanding associated risks. They further provided
a detailed explanation of the formulations and eval-
uated the proposed model in an industrial scenario.
Their risk evaluation approach implicates determin-
ing risks related to all assets belonging to a system,
estimating the risks, and prioritizing them.

In Jasour et al. (Jasour et al., 2022), challenges
related to cyber threats and risk assessment for con-
nected and autonomous vehicles (CAV) were high-
lighted. A dynamic risk management framework has
been proposed to address highly dynamic operational
environments and associated dynamic threats and vul-
nerabilities. The framework functions through four
sequential steps: validation of the risk profile, selec-
tion and training of the risk assessment model, per-
formance of adaptive and real-time security monitor-
ing, and evaluation, validation, and updating of the
model. In contrast to existing rigid risk assessment
approaches, this framework promotes an exploration
of risks across various risk profiles. However, their
work was only validated on a network of vehicles.

In Chen et al. (Chen et al., 2020), a model was
proposed to study the behavior of cyber attacks on
power grids. This model takes into account the at-
tackers’ subjective attitudes towards their targets and
the characteristics of potential targets. In addition, the
authors have incorporated two supplementary models
based on historical events data analysis: the proba-
bility response model, which is used to describe the
selection of attack targets, and the utility attenuation
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model, which is used to describe the allocation of at-
tack resources.

Matsuda et al. (Matsuda et al., 2021) Proved the
presence of cyber risks in their research and intro-
duced a secure implementation for Industry 4.0 el-
ements like Al, IoT, and the Object Linking and
Embedding for Process Control Unified Architecture
(OPC UA). Their proposed method has benefits for
clarifying the impact of cyber attacks on real-world
industrial control systems. This is achieved through
penetration tests on an actual machine-based testbed.

Matheu et al. (Matheu et al., 2020) analyzed cur-
rent cybersecurity certification schemes and the po-
tential challenges to making them applicable to the
IoT ecosystem. They examined current efforts related
to risk assessment and testing processes, which are
widely recognized as the processes to build a cyberse-
curity certification framework. They presented a cy-
bersecurity certification framework for IoT that inte-
grates research and technical tools and processes with
policies and governance structures, and analyzed it
against identified challenges from a multidisciplinary
perspective.

Radanliev et al. (Radanliev et al., 2019) presented
a transformation roadmap for the standardization of
IoT risk impact assessment and transformation de-
sign imperatives. They described how IoT compa-
nies can achieve their target state based on their cur-
rent state with a Goal-Oriented approach. The new
method they presented for applying the roadmap in-
clude IoT Risk Analysis through Functional Depen-
dency, Network-based Linear Dependency Modeling,
IoT risk impact assessment with a Goal-Oriented Ap-
proach, and a correlation between the Goal-Oriented
Approach and the IoT maturity model (IoTMM).

Bahizad (Bahizad, 2020) highlighted the impor-
tance of security in IoT systems, where there are many
IoT devices connected to each other using different
communication methods. The paper investigates the
increasing concerns related to the growing number of
IoT devices and proposes recommendations for the
development of these devices to minimize potential
risks.

Wangyal et al. (Wangyal et al., 2020) extracted
28 risk factors using the risk breakdown structure
method and expanded this traditional view to include
others (physical, psychological) critical to business
operations. They also proposed and quantitatively
evaluated countermeasures for all the risks extracted.
Their findings help clarify IoT security and its rela-
tion to non-cyber risks for properly implementing IoT
systems.

Lee (Lee, 2020) reviewed IoT cybersecurity tech-
nologies and cyber risk management frameworks.

Moreover, it presents a four-layer IoT cyber risk man-
agement framework. He also applied a linear pro-
gramming method to allocate financial resources to
multiple IoT cybersecurity projects.

Affia et al. (Affia et al., 2023) proposed a secu-
rity risk management framework for IoT architecture
and a hackathon learning model to teach participants
how to apply it in real-world scenarios. They con-
ducted an action research study by integrating the
hackathon model into a cybersecurity course for stu-
dents to learn how to apply the framework effectively.
The IoT Assurance-Security Reference Model (IoTA-
SRM) and hackathon model interventions helped stu-
dents learn IoT security risk management and apply
the framework to real-world situations.

Tariq et al. (Tariq et al., 2023) reviewed security
issues related to IoT architecture, including connec-
tivity, communication, and management protocols.
They examined current attacks, threats, and cutting-
edge solutions and set security objectives as bench-
marks for evaluating IoT solutions.

To summarize, most of the different approaches
reviewed in this section can be used in specific in-
dustries, technological contexts, or IoT environments.
However, it is important to note that the effectiveness
of these methods may change depending on factors
such as organizational structure and operational pro-
cesses. It is also worth mentioning that these methods
do not take into account the situations in which at-
tackers can exploit vulnerabilities present in IoT de-
vices. Hence, there is a need for a customizable so-
lution that allows organizations to tailor the risk as-
sessment process to their specific IoT environment,
considering their infrastructure’s unique device char-
acteristics, requirements, and vulnerabilities.

3 PROPOSED RISK
ASSESSMENT FRAMEWORK

The customizable risk assessment framework we pro-
pose for IoT systems is based on three parameters,
namely “Risk Likelihood”, “Impact Likelihood”, and
“Device Vulnerability Score”. This framework, in-
cluding these parameters and their relationships, is
presented in Figure 1.

3.1 Risk Evaluation

Every resource within the organization, whether it is
physical equipment, digital tools, services, or per-
sonnel, is susceptible to risks that can jeopardize its
confidentiality, integrity, and accessibility. Risk in-
volves the potential danger posed to these resources,
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Figure 1: Proposed Framework.

the probability that such dangers occur and the result-
ing impact on the business. In our context, under-
standing both the impact and the likelihood of threats
is crucial due to their direct implications on business
operations. The formula for conducting a comprehen-
sive risk evaluation is given by Equation 1.

R(a) =1(a) x P(a) x V(a) (1

where a represents any asset (e.g., “Remote heart
monitor”), I represents the risk impact due to vulner-
abilities and cybersecurity issues, and PP is the proba-
bility (likelihood) of that risk taking place. The vari-
able V represents the attack surface coverage, which
is affected by the number of vulnerabilities present in
the device and their severity levels.

To evaluate risk, impact (I) and likelihood (IP)
will be represented separately through different sets
of parameters. However, since each parameter in
these sets affects the system differently, and with
the complexity of IoT systems and multiple crite-
ria and objectives, it is often necessary to use a
structured approach. This is where Multi-Attribute
Decision Making (MADM) methods can be help-
ful (Yoon and Hwang, 1995; Hwang and Yoon, 2012).
There are many MADM methods, ranging from sim-
ple weighted scoring methods, such as the “Simple
Additive Weighting (SAW)” and “Weighting Product
(WP)”, to more advanced approaches, such as the An-
alytic Hierarchy Process (AHP) and the Technique for
Order of Preference by Similarity to Ideal Solution
(TOPSIS).

For simplicity reasons, in this paper, we use the
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SAW and WP methods and their impact on the risk
impact evaluation. Moreover, these two methods
are context-dependent and suitable for our decision
problem (Shameli-Sendi et al., 2016b) (Louafi et al.,
2018). By utilizing these models, we aim to make in-
formed and effective decisions through a comprehen-
sive and rigorous evaluation of the relevant factors.

3.2 Risk Impact Evaluation (I)

Since the risk impact category I greatly influences
the assessment of risk and its consequences for the
organization and assets, it is crucial to examine its un-
derlying causes in depth. The suggested framework
for risk assessment considers several essential factors
that contribute to the impact of the risk, including
the network factor (N), the protocol factor (P), the
network design (D) and the attack attributes (A).
These factors are detailed in the following, as well as
their assigned weights:

Network Attacks/Issues (N): IoT networks are po-
tentially connected to the Internet and are part of a
more extensive network that provides fast and reli-
able services. However, being part of a network also
makes them vulnerable to various issues that can di-
rectly impact the device’s functionality and indirectly
affect the entire IoT network. Many network-related
problems and attacks can increase the risk impact,
such as denial-of-service (DoS), distributed denial-of-
service (DDoS), man-in-the-middle (MITM), packet
sniffing, and traffic analysis.
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We assign a weight of 0.30 to this parameter as
it directly targets the infrastructure, which can cause
disruptions, data breaches, or unauthorized access.
Mitigating these risks is crucial to maintain opera-
tional integrity and protect sensitive information.

Protocol Issues (P): Another factor that directly im-
pacts the likelihood of risk is the choice of protocol
utilized by IoT devices. IoT devices employ numer-
ous protocols for communication and network func-
tions. Examples include MQTT, ZigBee, Bluetooth,
and RFID, all commonly used but susceptible to cer-
tain vulnerabilities and attacks of the protocols.

Since protocols serve as the backbone of IoT
network communication, and attackers can exploit
their vulnerabilities to compromise security of the
entire system, we assign a weight of 0.25 to this
parameter.

Network Design Issues (D): The network’s arrange-
ment and configuration also have a direct impact on
determining overall security. For example, a network
with more intermediate systems provides more op-
portunities for attackers, thus substantially increasing
the risk. In such scenarios, the potential for compro-
mised devices increases and the exposure factor of the
IoT network also increases. Hence, this factor is fun-
damentally crucial in assessing the overall impact of
risk. Furthermore, the design of the network infras-
tructure influences its resilience against attacks and
ability to facilitate secure communication.

Since poor network design can introduce vul-
nerabilities, create single point of failure, or hinder
effective security controls, we assign 0.30 to this
parameter. Emphasizing network design issues helps
to build a robust and secure architecture.

Attack Attribute (A): The importance of security at-
tributes varies significantly under different circum-
stances. For example, DoS and DDoS attacks im-
pact availability, while Replay attacks impact confi-
dentiality or integrity. Understanding the attributes
of potential attacks provides valuable information for
risk impact assessment. This includes knowledge of
attack vectors, techniques, motivations, and potential
impact.

Although important for informed security deci-
sion making, attack attributes are relatively more re-
active compared to other parameters, and thus receive
a slightly lower weight of 0.15.

The different weights assigned to the risk impact
parameters (e.g., N, P, D, and A) are summarized
in Table 1. Note that different weights can be assigned
to these parameters to reflect the importance and con-

tribution of each one to overall risk evaluation. The
weights used in our case were determined based on
the characteristics of IoT and the associated security
challenges. Also, each parameter is provided with a
justification for its weight. It is also important to high-
light that security experts can adjust these parameters
to fit the system, industry, or environment’s needs.

Table 1: The Risk Impact Parameters and their Assigned
Weights.

Risk Impact Parameter Assigned Weight
Network Attacks/Issues (N)  0.30

Protocol Issues (P) 0.25
Network Design Issues (D)  0.30
Attack Attribute (A) 0.15

Given all the aforelisted factors, we propose to
evaluate the risk impact for a given asset a using the
SAW and WP methods, as shown in the following
equations:

n n w;
HSAw(Cl) = ZW,‘I,'(CZ) ]pr(a) = H (I,-(a))

i=1 i=1
where, I;(a) and w; represent risk impact of the pa-
rameter i of the asset a, such as the “Protocol Issues
(P)”, and its assigned weight, respectively. n is the
number of the parameters involved in the evaluation
of I, which is equal to 4 (e.g., N, P, D, and A). Note
that, this number can be increased if other parameters
are considered, which makes our framework scalable.

3.3 Risk Likelihood Evaluation (IP)

In addition to the immediate danger posed to assets
by cybersecurity issues, the probability of a vul-
nerability being exploited and the threat becoming
real is crucial. Thus, in assessing the likelihood of
a security risk occurring, we consider four factors:
device attack history (H), device layer security (L),
device criticality (C), and device application of use
(M). These parameters are further elaborated, and
different weights are assigned and justified in the
following sections.

Device Attack History (H): This parameter reflects
the number of times a device has been targeted and
attacked in the past, making it an essential metric
for predicting the device’s future vulnerability. For
instance, if we consider an IoT device located in a
highly secured facility, it might have been targeted
multiple times in the past, given the sensitive nature of
the data it holds. The parameter helps us identify such
devices with a history of frequent attacks, making
them more prone to security breaches in the future.
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While understanding a device’s historical vulnerabil-
ities can offer insights into potential weaknesses, it
may not always accurately predict current security
risks.

Therefore, this parameter is assigned a relatively
lower weight of 0.20, reflecting its importance in con-
text but acknowledging that other factors may carry
more weight in determining overall security priorities.

Device Layer (L): IoT is a system that operates
within multiple layers of architecture. Each layer con-
sists of different devices with varying levels of func-
tionality. Due to this diversity, the vulnerability of
IoT to cyberattacks varies significantly across these
layers. For instance, assets at the sensor layer are con-
siderably less exposed to attacks and associated risks
compared to those at the network or application lay-
ers. Likewise, the business layer presents a lower risk
profile than the network layer.

Therefore, it is essential to consider the likeli-
hood of an attack and the resulting risks in relation
to the specific deployment layer. Thus, we as-
sign a weight of 0.30 to acknowledge the need
to establish a connection between the probability
of an attack and the resulting risk within the IoT layer.

Device Criticality (C): As we increasingly rely on
the Internet of Things to manage various aspects of
our lives, it is essential to recognize that some devices
of the Internet of Things are more critical than others.
These devices play a vital role in ensuring our safety
and security, and as a result, they are likely to be tar-
geted by cybercriminals. When a critical IoT device is
compromised, the consequences can be catastrophic
and even life-threatening.

This particular parameter holds significant impor-
tance in likelihood evaluation as it provides insight
into the device’s purpose. Hence, a weight of 0.35 is
assigned to this parameter.

Device Application/Environment of Use (M): IoT
applications can vary depending on individual needs,
preferences and perspectives. They can have critical
uses, such as in a healthcare environment where IoT
devices are used for remote patient monitoring, med-
ication adherence tracking, facility security cameras,
and improving healthcare delivery, where they have
a direct impact on human life. However, they can be
used in less important applications, such as connected
toothbrushes or smart umbrellas, where the impact of
cyberattacks is generally less immediate and direct
than in healthcare.

Therefore, it is crucial to assess the likelihood of
an attack and eventual risk with the IoT application of
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use. While important, the weight we assign for this
parameter is 0.15, as it may not always be as critical
as the device’s inherent security features or its overall
criticality.

The different weights assigned to the risk likeli-
hood parameters (e.g., H, L, C, and M) are summa-
rized in Table 2. Similarly, different weights can be
assigned to these parameters to reflect the importance
and contribution of each one to overall risk evaluation.

Table 2: The Risk Likelihood Parameters and their As-
signed Weights.

Risk Likelihood Parameters  Assigned Weight
Device Attack History (H) 0.20
Device Layer (L) 0.30
Device Criticality (C) 0.35

Device Application of Use (M)  0.15

After considering the given likelihood parameters
and their weights, we propose to assess the risk like-
lihood of an asset a using the SAW and WP method,
as shown in the following equations:

n

Pow(a) = Ywik(a) Puela) =TT (@)

i=1

where, P;(a) and w; represent probability of risk tak-
ing place for the parameter i of the asset a, such as the
“Device Attack History (A)”, and its assigned weight,
respectively. n is the number of the parameters in-
volved in the evaluation of PP, which is equal to 4
(e.g., H, L, C, and M). Similarly, this number can be
increased if other parameters are considered, which
makes our framework scalable.

3.4 Attack Surface Coverage (V)

In many real-world scenarios, assessing the overall
risk to an asset and an organization based solely on
risk impact and likelihood may be insufficient. This
becomes particularly evident when considering sys-
tems facing numerous security challenges, such as
IoT systems. IoT devices introduce a range of vul-
nerabilities that can compromise the security of the
systems they are integrated into. Due to their unique
characteristics, IoT devices lack many security mech-
anisms, such as encryption, authentication protocols,
and access controls, leading to various security at-
tacks, such as unauthorized access or data breaches.
Security at the device level is essential, as different
devices have different security issues.

A vulnerable device is more exposed to attacks
when compared to a device with no or low vulnerabil-
ity. The National Vulnerability Database (NVD) (Na-
tional Institute of Standards and Technology (NIST),
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2024b), which is managed and maintained by the Na-
tional Institute of Standards and Technology (NIST),
is an extensive collection of security vulnerabilities. It
offers information on vulnerabilities found in various
systems, such as software, hardware, and firmware.

In our framework, we utilize the NVD database
to obtain vulnerability scores for different IoT de-
vices and evaluate the attack surface coverage asso-
ciated with each device. The NVD ranks vulnera-
bilities using a Common Vulnerability Scoring Sys-
tem (CVSS) (Mell et al., 2006), which assigns numer-
ical scores to vulnerabilities based on their severity
and potential impact. The CVSS scores range from
0.0 to 10.0, with higher scores indicating more se-
vere vulnerabilities. These scores and their normal-
ized versions and severity levels are presented in Ta-
ble 3.

Table 3: CVSS Scores and their Normalized Versions and
Severity Levels, Based on CVSS v3.x Ratings (National In-
stitute of Standards and Technology (NIST), 2024a).

CVSS Normalized Severity Level
Score Score

0.0 0 No Vulnerability
0.1t03.9 0.1t00.39 Low severity
40t06.9 0.4 t00.69 Medium severity
7.0t08.9 0.7t00.89 High severity
9.0to 100 09tol Critical severity

As each IoT device may have O or more discov-
ered vulnerabilities, each of which has a certain sever-
ity level (CVSS score), we propose to evaluate the
attack surface coverage (V) using the SAW and WP
methods, as shown in the following equations:

m m W

Veaw(a) = Y wiCla) Vwe(a) =[] (C(a))

i=1 i=1
where, C(a) is the cruciality of the asset a to the en-
tire system and w; the weight associated with it, which
is evaluated as the normalized CVSS score. m repre-
sents the number of vulnerabilities present in the asset
a.

The cruciality of an asset a to the entire system
represents how that asset is important and critical to
the system it is connected to. Hence, we propose to
evaluate the cruciality with values ranging from 0 to
1, with higher values indicating higher cruciality.

3.5 Number of Devices

In a practical context, we may have several devices
of the same type, meaning that they share the same
characteristics that are involved in the evaluation of
the risk. Therefore, we need a mechanism to incorpo-
rate such information in the evaluation of I, I, and V.

As proposed in (Waqdan et al., 2023; Waqdan. et al.,
2023), we propose to multiply the ratio of each de-
vice type with each of the three functions I, P, and V.
Table 4 shows the device type ratios and their corre-
sponding weights. For instance, if for a given device
type a, we have 8 devices and the total of devices is
10, the weight that needs to be used is 1, as the ratio
of the device type a is greater than 60%.

Table 4: Device Type Weight Allocation through Their Ra-
tios.

Device Type Ratio Ratio Weight
Over 60% 1

40% to 60% 0.7

20% to 39% 0.5

Below 20% 0.2

3.6 Opverall Risk Evaluation (R)

After evaluating the three functions I, PP, and V, the
overall risk R, which is stated in Equation 1, becomes
as shown in Equation 2 and Equation 3, using the
SAW and WP methods respectively.

RSAw(a) = Zwili(a) X ZwiP,-(a) X Zin,-(a) (2)
i=1 i=1 i=1

Rue(a) =TT <[i(tl))‘VI T (P"(“))M xITi (Vi(a))m 3

After calculating the overall risk R, which returns
a score between 0 and 1, we provide the end-user with
a guide that helps him/her interpreting the returned
score, as shown in Table 5.

Table 5: Risk Ranges and Criticality.

Risk Score (R) Risk Level
0.0t0 0.2 Very low
0.2t00.3 Low
0.3t00.6 Medium
0.6t00.8 High
0.8t0 1.0 Very high

4 SIMULATION AND
VALIDATION

As our framework was designed with application-
specific parameters, we tested and validated it in
the healthcare industry. This validation was car-
ried out through a practical simulation of a hospi-
tal emergency room involving twenty interconnected
ToT devices. Table 6 shows the list of IoT devices,
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their numbers, along with their vulnerabilities and the
CVSS of each one. In this setup, we selected 10
Smart sensors (Shekar Endoscope), 6 insulin pumps
(Insulet Omnipod 19191), and 4 Remote heart moni-
tors (BIOTRONIK CardioMessenger II).

To demonstrate the real-world applicability of our
framework, we evaluated it through two use cases
of MADM methods with different parameter weights
and device properties.

The assigned scores for the three types of IoT de-
vices are extracted from our work (Waqdan et al.,
2023), (Waqdan. et al., 2023) , to further emphasize
the practicality of our approach.

In the following, we illustrate the risk evaluation
using the two MADM methods considered in this pa-
per, i.e., SAW and WP.

Table 6: The List of IoT Devices Used in the Simulation
Setup.

IoT Device

Qty. Vulnerability Vulnerability CVSS
No.

Shekar En- 10 Exploit CVE-2017- 8.8
doscope memory 10724

corruption
Insulet 6  Weak Au- CVE-2020- 8.1
Omnipod thentication 10627
19191
BIOTRONIK 4  Sensitive CVE-2019- 4.6
Car- Info. Not 18254
dioMessen- Encrypted
ger II

4.1 Risk Evaluation

In this section, we will assess the risk using the SAW
and WP methods. Hence, all devices are evaluated in
SAW and WP with their parameter weights.

Among all the devices used in a hospital’s emer-
gency room, three devices are highly important: 1)
Insulin Pumps, ii) Medical Sensors, and iii) Remote
Heart Monitors. For instance, Medical sensors like
Endoscopes and Borescopes are essential, as real-time
health monitors use them to present patient statistics
to doctors. Doctors then use this data to make in-
formed decisions. Therefore, we need to calculate the
risk associated with Medical Sensors, along with the
other types of devices.

These three devices and their scores (extracted
from (Waqdan et al., 2023)), and assigned weights
(which are presented in Table 1 and Table 2), are sum-
marized in Table 8 and Table 9. The Latter show also
the evaluated risk impact (I) and likelihood (P) for
the three devices considered using the SAW and WP
methods.

Regarding the evaluation of the attack surface cov-
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erage (V), we use normalized CVSS and the crucial-
ity of the devices. The normalized CVSS are com-
puted from the CVSS values listed in Table 6 and are
reported in Table 7. The latter shows also the cru-
ciality scores we propose. These cruciality scores are
assigned to the three types of devices, as follows:

* Medical Sensors (Shekar Endoscope): They are
very important and numerous medical and clini-
cal decisions rely on the outcomes they provide.
However, they do not represent an immediate life
threat to the patient’s life. Additionally, they
mostly hold or transmit video feeds and pictures.
Hence, we assign a cruciality score of 0.20 to this
device.

e Insulin Pumps (Insulet Omnipod Insulin Manage-
ment System insulin pump product ID 19191):
They are implanted in the patient’s body, prevent-
ing insulin delivery or adjusting pump settings.
Thus, they could seriously threaten the patient’s
life. Therefore, we assign a cruciality score of
0.35 to emphasize its importance.

* Remote Heart Monitors (BIOTRONIK Car-
dioMessenger II): They are vital to a patient’s
medical care despite not being implanted in their
body. They serve as crucial links between the
patient and their healthcare provider, transmitting
essential data about their heart health. The de-
vice’s importance cannot be overstated, as any
malfunction or failure could result in severe harm
or even death for the patient. Due to this signifi-
cant danger, the device has been assigned a higher
cruciality score of 0.45.

Similarly, Table 10 shows the evaluated attack sur-
face coverage (R) for the three devices, using SAW
and WP methods.

Table 7: IoT Devices, Their Normalized CVSS and Their
Cruciality Values.

IoT Device CVSS Normalized Cruciality
CVSS

Shekar Endo- 8.8 0.88 0.20

scope

Insulet Omni- 8.1 0.81 0.45

pod 19191

BIOTRONIK 4.6 0.46 0.35

CardioMessen-

ger 11

4.1.1 Risk Evaluation for ‘“Medical Sensor”

Evaluation of I: We evaluate the risk impact of
the Medical Sensor using the SAW and WP meth-
ods. Then, it is multiplied by the device ratio weight,
which is equal to 1 for this device (see Table 4). As
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Table 8: Risk Impact Evaluation Using SAW and WP.

Impact Medical Sensors Insulin Pumps Heart Monitors
Criteria Score | Weight Score | Weight| Score | Weight
N 1 0.3 1 0.3 1 0.3
P 0.5 0.25 0.75 0.25 0.5 0.25
D 1 0.3 1 0.3 0.3 0.3
A 0.5 0.15 1 0.15 0.3 0.15

Ratio W. 0.7 0.5 0.5
Isaw 0.56 0.468 0.28
Iwp 0.530 0.465 0.244

Table 9: Risk Likelihood Evaluation Using SAW and WP.

Prob. Medical Sensors Insulin Pumps Heart Monitors
Criteria Score | Weight Score | Weight| Score | Weight
H 0.5 0.2 1 0.2 1 0.2
L 1 0.3 0.75 0.3 0.3 0.3
C 1 0.35 1 0.35 1 0.35
M 1 0.15 1 0.15 1 0.15

Ratio W. 0.7 0.5 0.5
Psaw 0.63 0.462 0.395
Pwp 0.609 0.458 0.348

Table 10: Attack Surface Coverage Evaluation Using SAW
and WP.

Vuln. Medical Sensors Insulin Pumps Heart Monitors

Criteria Score | Weight Score | Weight| Score | Weight

v 0.20 0.88 0.35 0.81 0.45 0.46
Ratio W. 0.7 0.5 0.5
Vsaw 0.123 0.141 0.103
Vwe 0.169 0.213 0.346

shown in Table 8, the risk impact for the Medical Sen-
sor is calculated as follows:

Isaw (Medical Sensor) = 0.56 “)
Iwp(Medical Sensor) =0.530 %)

Evaluation of PP : Similarly, we evaluate the likeli-
hood risk of the Medical Sensor, using the SAW and
WP methods. Then, it is multiplied by the device ra-
tio weight, which is equal to 1 for this device (see Ta-
ble 4). As shown in Table 9, the risk likelihood for the
Medical Sensor is calculated as follows:

Psaw (Medical Sensor) =0.63 6)
Pwp(Medical Sensor) =0.609 @)

Evaluation of V: Similarly, we evaluate the attack
surface coverage of the Medical Sensor, using the
SAW and WP methods. Then, it is multiplied by the
device ratio weight, which is equal to 1 for this device
(see Table 4). As shown in Table 10, the attack sur-
face coverage for the Medical Sensor is calculated as
follows:

Vsaw (Medical Sensor) = 0.7 x 0.20 x 0.88 = 0.123 (8)
Vwp(Medical Sensor) = 0.7 x (0.20%%) =0.169  (9)

Evaluation of R: The overall security risk is calcu-
lated using the results obtained from the risk impact
( Equation 4 and Equation 5), the likelihood impact
( Equation 6) and Equation 7), and the attack surface
coverage ( Equation 8 and Equation 9). Thus, the
overall risk is evaluated as follows:

Rsaw (Medical Sensor) =Igaw (Medical Sensor) X

Psaw (Medical Sensor) X 10

Vsaw (Medical Sensor) (10)

=0.04346

Rwp(Medical Sensor) =Iywp(Medical Sensor) x
Pwp(Medical Sensor) x
Vwe (Medical Sensor)
=0.0549

an

4.1.2 Risk Evaluation for ‘“Insulin Pumps”

Evaluation of I: Similar to the Medical Sensor, the
risk impact of the Insulin Pump is evaluated using the
SAW and WP methods. Then, it is multiplied by the
device ratio weight, which is equal to 0.7 for this de-
vice (see Table 4). As shown in Table 8, the risk im-
pact for the Insulin Pump is calculated as follows:

Isaw (Insulin Pump) =0.468 (12)

Iyp (Insulin Pump) =0.465 (13)

Evaluation of P: Similarly, the risk likelihood of the
Insulin Pump is evaluated using the SAW and WP
methods. Then, it is multiplied by the device ratio
weight, which is equal to 0.7 for this device (see Ta-
ble 4). As shown in Table 9, the risk impact for the
Insulin Pump is calculated as follows:

Psaw (Insulin Pump) =0.462 (14)

Pywp (Insulin Pump) =0.458 (15)

Evaluation of V: Similarly, we evaluate the attack
surface coverage of the Insulin Pump, using the SAW
and WP methods. Then, it is multiplied by the de-
vice ratio weight, which is equal to 0.7 for this device
(see Table 4). As shown in Table 10, the attack sur-
face coverage for the Insulin Pump is calculated as
follows:

Vgaw (Insulin Pump) = 0.5 x 0.35 x 0.81 = 0.141  (16)

Vwp (Insulin Pump) = 0.5 x (0.35%31) =0.213  (17)
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Evaluation of R: The overall security risk is calcu-
lated using the results obtained from the risk impact
(Equation 12 and Equation 13), the likelihood impact
( Equation 14) and Equation 15), and the attack sur-
face coverage ( Equation 16 and Equation 17). Thus,
the overall risk is evaluated as follows:

Rsaw (Insulin Pump) =Igaw (Insulin Pump) x
Psaw (Insulin Pump) x

18
Vsaw (Insulin Pump) (18)
=0.0307
Rwp (Insulin Pump) =Iwp (Insulin Pump) x
Pwep (Insulin Pump) x
wp( p) (19)

Vwe (Insulin Pump)
=0.0455

4.1.3 Risk Evaluation for “Remote Heart
Monitor”

Evaluation of I: Similarly, the risk impact of the Re-

mote Heart Monitor is evaluated using the SAW and
WP methods. Then, it is multiplied by the device ratio
weight, which is equal to 0.7 for this device (see Ta-
ble 4). As shown in Table 8, the risk impact for the
Remote Heart Monitor is calculated as follows:

Isaw (Remote Heart Monitor) = 0.28 (20)

Iwp(Remote Heart Monitor) = 0.244 1)

Evaluation of P: Similarly, the risk likelihood of the
Remote Heart Monitor is evaluated using the SAW
and WP methods. Then, it is multiplied by the de-
vice ratio weight, which is equal to 0.7 for this device
(see Table 4). As shown in Table 9, the risk impact for
the Remote Heart Monitor is calculated as follows:

Psaw (Remote Heart Monitor) = 0.395 (22)

Pwp (Remote Heart Monitor) = 0.348 (23)

Evaluation of V: Similarly, we evaluate the attack
surface coverage of the Remote Heart Monitor, using
the SAW and WP methods. Then, it is multiplied by
the device ratio weight, which is equal to 0.7 for this
device (see Table 4). As shown in Table 10, the at-
tack surface coverage for the Remote Heart Monitor
is calculated as follows:

Vsaw (Remote Heart Monitor) =

24
0.5 x 0.45 x 0.46 = 0.103 @4

Vwp (Remote Heart Monitor) =

(25)
0.5 x (0.45%46) = 0.346
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Evaluation of R: Similarly, the overall security risk
is calculated using the results obtained from the risk
impact ( Equation 20 and Equation 21), the likelihood
impact ( Equation 22) and Equation 23), and the at-
tack surface coverage ( Equation 24 and Equation 25).
Thus, the overall risk for the Remote Heart Monitor is
evaluated as follows:

Rsaw (Remote Heart Monitor) =
Isaw (Remote Heart Monitor) x
Psaw (Remote Heart Monitor) x (26)
Vsaw (Remote Heart Monitor)
=0.0114

Rywp (Remote Heart Monitor) =
Iwp(Remote Heart Monitor) x
Pywp(Remote Heart Monitor) x 27
Vwp (Remote Heart Monitor)
=0.0295

4.2 Discussion and Analysis

The obtained results of the three risk functions, I, P,
and V, as well as the overall risk R are presented
in Figure 2, Figure 3, Figure 4, and Figure 5, respec-
tively. Besides, the overall security risk scores are
summarized in Table 11. Using the SAW method, the
overall security risk for the Medical Sensors is evalu-
ated using the Impact set of parameters with their as-
signed weights, the Likelihood parameters with their
assigned weights, the Curuciality of IoT devices with
their CVSS scores. Then, we used the number of de-
vices, expressed with the device ratio’s weights.

For the Medical Sensors, the overall security risk
score obtained using SAW is 0.0434, while the score
escalated to 0.0549 when WP is used with the same
device parameters. On the other hand, for the Insulin
Pumps, the overall security risk score evaluated using
SAW is 0.03073. On the contrary, for the same de-
vice, using WP, the overall security risk is 0.04559.
This risk is also affected by the number of devices
(devices ratio) since the setup has fewer Insulin Pump
devices than the Medical Sensors. Furthermore, for
our last set of devices, the Remote Heart Monitors, us-
ing SAW, the overall risk is 0.01145, while the overall
score using WP is 0.0295. Besides, adding weights to
the parameters used gives more insight and objectiv-
ity to the results obtained. Moreover, these weight-
ing system brings more flexibility and adaptability to
business owners, stakeholders, or even security ex-
perts, who can tune these parameters in a way suitable
for the system industry or environment. Additionally,
the customizability of our framework makes it usable
in various IoT applications.



Table 11: Overall Security Risk, as Evaluated Using the

SAW and WP Methods.
IoT Devices
Medical Insulin Heart
Method Sensors Pumps Monitors
SAW 0.0434 0.0307 0.01145
WP 0.0549 0.04559 0.02951

0.6

0.5 u SAW

04 uWP
0.3
0.2
0.1
0

Medical Sensors

Figure 2: Impact Evaluation Using SAW and WP.

Insulin Pumps Remote Heart Monitors

0.7

0.6

= SAW
uWP

0.5

0.4
0.3
0.2
0.1

0

Medical Sensors

Insulin Pumps Remote Heart Monitors

Figure 3: Likelihood Evaluation Using SAW and WP.

0.4 uSAW
0.35 =WP

0.3

0.2
0.15
0.1
0

Medical Sensors Insulin Pumps Remote Heart Monitors

Figure 4: Attack Surface Coverage Evaluation Using SAW
and WP.

5 CONCLUSION

IoT technology creates new security risks for organi-
zations. To evaluate these risks, organizations need
to develop a comprehensive Risk Assessment Frame-
work for IoT. The framework should identify, assess,
and respond to potential risks.

In this paper, we proposed a customizable secu-
rity risk assessment framework that takes into account
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uSAW
= WP

o

0.04

0.03

0.02

0.01 -
0

Medical Sensors

Insulin Pumps Remote Heart Monitors

Figure 5: Overall Security Risk Evaluation Using SAW and
WP.

critical factors such as risk impact, likelihood impact,
and device vulnerability. Since the IoT devices in-
volved in the risk do not affect the entire system, they
are connected to, equally, their risk should be calcu-
lated differently. Therefore, in our framework, we
evaluated the importance of each IoT device using a
weighting system, which reflects how the device is
important and critical to the entire system. We also
considered the vulnerabilities that may be present in
the ToT devices, which represent a risk to the entire
system if they are not patched. Then, to take into ac-
count the assigned weights in the calculation of the
overall risk, we used two widely used MADM meth-
ods, namely SAW and WP. These two methods are
tested together to understand the impact of the ap-
proach utilized. Then, the security experts can ana-
lyze the results and decide which method is the most
appropriate to his context and environment.

REFERENCES

Affia, A.-a. O., Nolte, A., and Matulevicius, R. (2023). IoT
Security Risk Management: A Framework and Teach-
ing Approach. Informatics in Education.

Bahizad, S. (2020). Risks of increase in the IoT devices. In
2020 7th IEEE international conference on cyber se-
curity and cloud computing (CSCloud)/2020 6th IEEE
international conference on edge computing and scal-
able cloud (EdgeCom), pages 178-181. IEEE.

Chen, B., Yang, Z., Zhang, Y., Chen, Y., and Zhao, J.
(2020). Risk assessment of cyber attacks on power
grids considering the characteristics of attack behav-
iors. IEEE Access, 8:148331-148344.

Falola, O., Louafi, H., and Mouhoub, M. (2023). Optimiz-
ing iot device fingerprinting using machine learning.
In Innovations in Digital Forensics, pages 293-317.
World Scientific.

Hwang, C.-L. and Yoon, K. (2012). Multiple attribute deci-
sion making: methods and applications a state-of-the-
art survey, volume 186. Springer Science & Business
Media.

Jasour, A., Huang, X., Wang, A., and Williams, B. C.
(2022).  Fast nonlinear risk assessment for au-

131



ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

tonomous vehicles using learned conditional proba-
bilistic models of agent futures. Autonomous Robots,
46(1):269-282.

Kandasamy, K., Srinivas, S., Achuthan, K., and Rangan,
V. P. (2020). IoT cyber risk: A holistic analysis of cy-
ber risk assessment frameworks, risk vectors, and risk
ranking process. EURASIP Journal on Information
Security, 2020(1):1-18.

Kumar, D., Khan, A. H., Nayyar, H., and Gupta, V. (2020).
Cyber Risk Assessment Model for Critical Informa-
tion Infrastructure. In 2020 International Conference
on Power Electronics & loT Applications in Renew-
able Energy and its Control (PARC), pages 292-297.
IEEE.

Kumar, S., Tiwari, P., and Zymbler, M. (2019). Internet
of Things is a revolutionary approach for future tech-
nology enhancement: a review. Journal of Big data,
6(1):1-21.

Lee, I. (2020). Internet of Things (IoT) cybersecurity: Liter-
ature review and loT cyber risk management. Future
internet, 12(9):157.

Louafi, H., Coulombe, S., and Cheriet, M. (2018). A
TOPSIS-based QoE model for adapted content selec-
tion of slide documents. Multimedia Tools and Appli-
cations, 77(20):26741-26768.

Malik, A. A. and Tosh, D. K. (2022). Dynamic risk assess-
ment and analysis framework for large-scale cyber-
physical systems. EAI Endorsed Transactions on Se-
curity and Safety, 8(30).

Matheu, S. N., Hernandez-Ramos, J. L., Skarmeta, A. E.,
and Baldini, G. (2020). A survey of cybersecurity cer-
tification for the internet of things. ACM Computing
Surveys (CSUR), 53(6):1-36.

Matsuda, W., Fujimoto, M., Hashimoto, Y., and Mitsunaga,
T. (2021). Cyber Security Risks of Technical Com-
ponents in Industry 4.0. In 2021 [EEE Interna-
tional Conference on Omni-Layer Intelligent Systems
(COINS), pages 1-7. IEEE.

Mell, P., Scarfone, K., and Romanosky, S. (2006). Com-
mon vulnerability scoring system. [EEE Security &
Privacy, 4(6):85-89.

National Institute of Standards and Technology (NIST)
(2024a). Common Vulnerability Scoring System
(CVSS).

National Institute of Standards and Technology (NIST)
(2024b). National Vulnerability Database (NVD).

Opoku, S. M., Louafi, H., and Mouhoub, M. (2024). Iot
device identification based on network traffic analysis
and machine learning. In 2024 International Sympo-
sium on Networks, Computers and Communications
(ISNCC), pages 1-8.

Radanliev, P., De Roure, D., Cannady, S., Montalvo, R. M.,
Nicolescu, R., and Huth, M. (2018). Economic impact
of IoT cyber risk-analysing past and present to predict
the future developments in IoT risk analysis and IoT
cyber insurance.

Radanliev, P., De Roure, D., Page, K., Nurse, J. R., Man-
tilla Montalvo, R., Santos, O., Maddox, L., and Bur-
nap, P. (2020). Cyber risk at the edge: current and fu-
ture trends on cyber risk analytics and artificial intelli-

132

gence in the industrial internet of things and industry
4.0 supply chains. Cybersecurity, 3(1):1-21.

Radanliev, P, De Roure, D. C., Maple, C., Nurse, J. R,
Nicolescu, R., and Ani, U. (2019). Cyber Risk in IoT
Systems.

Ray, P. P. (2018). A survey on Internet of Things architec-
tures. Journal of King Saud University-Computer and
Information Sciences, 30(3):291-319.

Shameli-Sendi, A., Aghababaei-Barzegar, R., and Cheriet,
M. (2016a). Taxonomy of information security risk
assessment (ISRA). Computers & security, 57:14-30.

Shameli-Sendi, A., Louafi, H., He, W., and Cheriet, M.
(2016b). Dynamic optimal countermeasure selection
for intrusion response system. IEEE Transactions on
Dependable and Secure Computing, 15(5):755-770.

Tariq, U., Ahmed, I., Bashir, A. K., and Shaukat, K.
(2023). A Critical Cybersecurity Analysis and Fu-
ture Research Directions for the Internet of Things:
A Comprehensive Review. Sensors, 23(8):4117.

Wangyal, S., Dechen, T., Tanimoto, S., Sato, H., and Kanai,
A. (2020). A Study of Multi-viewpoint Risk Assess-
ment of Internet of Things (IoT). In 2020 9th Inter-
national Congress on Advanced Applied Informatics
(IIAI-AAI), pages 639—-644. IEEE.

Wagqdan., M., Louafi., H., and Mouhoub., M. (2023). A
Comprehensive Risk Assessment Framework for IoT-
Enabled Healthcare Environment. In Proceedings of
the 20th International Conference on Security and
Cryptography, pages 667—-672. SciTePress.

Wagqdan, M., Louafi, H., and Mouhoub, M. (2023). An IoT
Security Risk Assessment Framework for Healthcare
Environment. In 2023 International Symposium on
Networks, Computers and Communications (ISNCC),
pages 01-08. IEEE.

Yoon, K. P. and Hwang, C.-L. (1995). Multiple attribute
decision making: an introduction. Sage publications.



