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Abstract: We propose general visual inspection model using Vision-Language Model (VLM) with few-shot images of
non-defective or defective products, along with explanatory texts that serve as inspection criteria. Although ex-
isting VLM exhibit high performance across various tasks, they are not trained on specific tasks such as visual
inspection. Thus, we construct a dataset consisting of diverse images of non-defective and defective products
collected from the web, along with unified formatted output text, and fine-tune VLM. For new products, our
method employs In-Context Learning, which allows the model to perform inspections with an example of
non-defective or defective image and the corresponding explanatory texts with visual prompts. This approach
eliminates the need to collect a large number of training samples and re-train the model for each product. The
experimental results show that our method achieves high performance, with MCC of 0.804 and F1-score of
0.950 on MVTec AD in a one-shot manner. Our code is available at https://github.com/ia-gu/Vision-Language-
In-Context-Learning-Driven-Few-Shot-Visual-Inspection-Model.

1 INTRODUCTION

In this study, we propose a method that can de-
tect defective locations in new product images by
using Vision-Language Model (VLM) (Yin et al.,
2024) (Liu et al., 2024b) and In-Context Learn-
ing (ICL) (Dong et al., 2023) (Zong et al., 2024).

With the advancements in deep learning technol-
ogy, the automation of visual inspection has become
increasingly common in recent years. However, cur-
rent visual inspection models inspect specific prod-
ucts by collecting a large number of images of the tar-
get product and training the model. Thus, these mod-
els are only applicable to the target products on which
they have been trained, and re-training is necessary
for new products. Although some methods can in-
spect multiple products with a single model, they still
require hyperparameter tuning or additional training
for each product. In this study, we propose a general
visual inspection model that leverages VLM and ICL
allowing the inspection of new products without any
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hyperparameter tuning or model training.
Many of the current VLMs (Liu et al.,

2024a) (Chen et al., 2023) leverage Large Lan-
guage Model (LLM) to align visual and language
features, demonstrating excellent performance in a
wide range of tasks. These tasks range from basic
image recognition tasks, such as classification, to
advanced vision-language tasks, such as Visual Ques-
tion Answering (VQA). However, these VLMs are
not trained on specific tasks such as visual inspection.

In this study, we propose a general visual in-
spection model that can detect defective locations in
new products without any hyperparameter tuning or
model re-training, using VLM and ICL. The frame-
work of our proposed method is shown in Fig. 1.
First, we fine-tune the VLM for general visual inspec-
tion with a dataset constructed from a diverse set of
non-defective and defective product images collected
from the web. In this study, we use ViP-LLaVA (Cai
et al., 2024), which has been trained on visual prompt
recognition, as the foundation of our VLM, and fine-
tune it with our dataset. In addition, in typical vi-
sual inspection processes by humans, inspectors use
inspection standards for the target products. To em-
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Figure 1: Framework of our proposed method. We utilize ICL for multiple image inputs to give VLM the inspection criteria
of new products. Our framework gives the coordinates of the defective location, which helps the user understand the model’s
decision. In addition, it is easy to address by replacing the foundational model when a better VLM is proposed.

ulate this inspection process by human, we use ICL
during the evaluation to provide an example of non-
defective or defective product image along with ex-
planatory texts that serve as inspection criteria. ICL is
a method the model learns from few-shot input-output
examples as prompts, without parameter update. Us-
ing ICL during the inference of new products, we pro-
vide VLM with inspection criteria, enabling specific
inspection of target products. Since ICL performance
varies significantly based on the provided examples,
we propose an algorithm that can select high-quality
example based on the distance in Euclidean space.
Consequently, our proposed method does not need
to collect a large number of images or to re-train the
model for each target product.

In summary, our main contributions are:

• We propose a general visual inspection model ca-
pable of inspections and detecting defective loca-
tions for new products using VLM and ICL with
only an example. In our proposed method, fine-
tune VLM on visual inspection and utilize ICL
enabling the inspection of specific products.

• We construct a new dataset consisting of diverse
non-defective and defective products collected
from the web, along with unified formatted out-
put, for fine-tuning. Also, our dataset includes co-
ordinates of defective locations for defective prod-
ucts, ensuring the explainability of the model.

• To empirically verify the proposed methodology,
we evaluate on MVTec AD (Bergmann et al.,
2019) and VisA (Zou et al., 2022). Our method
achieves MCC (Chicco Davide and Jurman
Giuseppe, 2020) of 0.804 and F1-score (Sokolova

et al., 2006) of 0.950 on the MVTec AD dataset in
a one-shot manner.

2 RELATED WORK

2.1 Visual Inspection

Many visual inspection methods based on deep learn-
ing are trained only on non-defective images (Yi and
Yoon, 2020) (Defard et al., 2021). Thus, such meth-
ods require the collection of training samples and the
re-training of the model for each target product. Con-
sequently, it is challenging to apply the same model
to different products without re-training.

Recently, visual inspection methods combining
vision and language have been proposed. Anoma-
lyGPT (Gu et al., 2024) can detect defective locations
by learning an image decoder from non-defective and
pseudo-defective images. However, AnomalyGPT
utilizes PaDiM or PatchCore (Roth et al., 2022) for
anomaly maps, and these methods need re-training for
each products. WinCLIP (Jeong et al., 2023) calcu-
lates the similarity between images and texts of non-
defective and defective images using CLIP (Radford
et al., 2021) and can detect defective locations by us-
ing relative anomaly scores. However, WinCLIP only
assigns anomaly scores to test samples during infer-
ence. To inspect correctly, it is necessary to experi-
mentally determine the optimal threshold on test sam-
ples. Thus, these existing approaches cannot be con-
sidered general visual inspection models.
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Figure 2: Architecture of ViP-LLaVA. After providing an
image and the corresponding text, the image is tokenized
by CLIP ViT, LayerNorm, and MLP layers, while the text
is tokenized by tokenizer. Then the visual tokens and the
text tokens are given to the LLM to generate the answer.

2.2 Vision-Language Model

VLMs leverage LLM to align visual and language
features, demonstrating excellent performance across
a wide range of tasks, from basic image recog-
nition tasks such as classification, to advanced
vision-language tasks, such as VQA. For example,
LLaVA (Liu et al., 2023) inputs the vision embed-
ding vectors and language embedding vectors into the
LLM decoder to learn the alignment between vision
and language. LLaVA has spawned many derivative
methods, among which ViP-LLaVA focuses on visual
prompt recognition by utilizing a dataset where ar-
rows or visual cues are directly embedded in the in-
put images, thereby strengthening the alignment be-
tween low-level image details and language. How-
ever, these VLMs have not been trained on visual in-
spection tasks and thus lack the general knowledge
for visual inspection (Liu et al., 2024b).

2.3 In-Context Learning

ICL is a method that the model learns from few-shot
input-output examples as prompts, without updating
model parameters. For instance, given the input “Ex-
ample input: (4, 2), Example output: 6, Question: (5,
6),” the model infers from the provided example that
the task is addition and can answer “11.” In multi-
modal ICL, the model makes inferences based on im-
ages, prompts, and their examples. Many VLMs are
trained on diverse image-text pairs, enabling them to
acquire ICL capabilities (Chen et al., 2024).

Some VLMs are explicitly built to enhance ICL
capabilities. Otter (Li et al., 2023b) enhances ICL
capabilities by fine-tuning Open Flamingo (Awadalla
et al., 2023) on MIMIC-IT (Li et al., 2023a), which is
in an ICL and Instruction Tuning format. At the same
time, not to forget the knowledge of Open Flamingo,
Otter only update parameters of Perceiver Resampler
and Cross Attention Layer in language model. Simi-
larly, LCL (Tai et al., 2023) proposes a new evaluation
dataset, ISEKAI, which includes new concepts in the

examples, making it challenging without seeing the
examples. To address ISEKAI, LCL enhances its ICL
capability by fully fine-tuning Shikra (Chen et al.,
2023) on a custom dataset based on ImageNet (Deng
et al., 2009). However, in practice, these VLM ex-
plicitly designed to enhance ICL capabilities do not
necessarily outperform regular VLM (Chen et al.,
2024) (Zong et al., 2024).

3 PROPOSED METHOD

3.1 Overview

In this study, we propose a general visual inspection
model that combines VLM and ICL, enabling the spe-
cific inspection of new products without parameter
optimization. In addition, by constructing unified out-
put format dataset for fine-tuning, we enable quantita-
tive evaluation of visual inspections using VLM. An
overview of the proposed method is shown in Fig. 1.

3.2 Model

In this study, we use ViP-LLaVA (Cai et al., 2024)
as the foundational VLM. ViP-LLaVA is a model that
improves recognition capabilities for visual prompts
by fine-tuning LLaVA 1.5 (Liu et al., 2024a) on a
dataset where red circles or arrows are overlaid on the
original images. In addition to this, ViP-LLaVA uti-
lizes the multi-level visual features to address the ten-
dency of CLIP’s deeper features to overlook low-level
details. These methodologies improves the recogni-
tion capability for low-level details, which is espe-
cially needed for visual inspection. ViP-LLaVA has
not been trained on visual inspection tasks.

The model architecture of ViP-LLaVA is shown
in Fig. 2. ViP-LLaVA consists of a vision encoder to
extract visual features, LayerNorm (Ba et al., 2016)
and an MLP to tokenize visual features, a tokenizer
to tokenize the language, and an LLM to gener-
ate text from these tokens. The vision encoder is
CLIP-ViT-L/14(Radford et al., 2021), and the LLM is
LLaMA2 (Meta, 2023) During fine-tuning, we update
the parameters of the LayerNorm, MLP, and LLM in
accordance with the ViP-LLaVA procedure.

3.3 Dataset for Fine-Tune

To enhance the general knowledge of existing VLM
for visual inspection, we collect images of non-
defective and defective products from the web. The
image collection process consists of five main steps:
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Figure 3: Examples of non-defective and defective images
of “Pill” in MVTec AD and “Capsules” in VisA. For “Pill”,
the non-defective image also contains red spots, making
it difficult to inspect Similarly, for “Capsules”, the non-
defective image also contains brown stains.

1. Generate product names and inspection-related
keywords (e.g., “disk”, “broken disk”, “discol-
ored disk”) by GPT-4 (OpenAI, 2023).

2. Expand the keywords into eight languages: En-
glish, Chinese, Spanish, French, Portuguese, Ger-
man, Italian, and Japanese.

3. Perform image searches using the expanded key-
words and collect images with selenium.

4. Remove duplicate or unclear images.

5. Annotate the defective location coordinates for
the defective images in the remaining set.

Through this procedure, we collect images of var-
ious products. Each product category includes images
of non-defective and defective products with up to five
types of defects. Finally, we obtained a final set of 941
images of 84 categories.

After collecting the images, we construct a dataset
for fine-tuning. The format of the dataset is based on
VQA (i.e., a pair of question and answer for each im-
ages). Question is “This is an image of {product}.
Does this {product} in the image have any defects? If
yes, please provide the anomaly mode and the bound-
ing box coordinate of the region where the defect is
located. If no, please say None.”, answer is coordi-
nates of the defective location for defective image,
“None” for non-defective image.

3.4 In-Context Learning Driven Visual
Inspection

It is challenging to inspect new products from a single
image. An example is shown in Fig. 3. As shown in
Fig. 3, some products need their specific inspection
criteria for accurate visual inspection. Thus, in this
study, we utilize ICL to provide an example of non-
defective or defective image along with explanatory
texts that serve as inspection criteria. Based on the
example, model precisely inspects new products.

In addition, in multi-modal ICL, example images
significantly influence the output of VLM (Baldassini

test image q

This is an image of shell of hazelnut used for 

visual inspection. Shells or ridges like the ones in 

the image are not considered defects this time.

Based on this, the first image is defective because 

the area marked with a red circle is considered a 

defect.¥n<image>¥nThen, is the second image 

defective? If yes, please provide the bounding box 

coordinate of the region where the defect is 

located. If no, please say None.

ICL Prompt

Explanation

Visual Prompt

Question

support set

Example Selection

Figure 4: Framework of evaluation. First, select the exam-
ple based on Eq. (1), then infer the test image with ICL.

et al., 2024). RICES (Yang et al., 2022) is an existing
algorithm for selecting examples in ICL, it uses co-
sine similarity of features. However, cosine similarity
can yield high values when the scales of features dif-
fer or when the feature dimensions are large, failing
to accurately evaluate similarity (Steck et al., 2024).
Thus, in this study, we propose a new selection algo-
rithm. Our proposed method is shown in Eq. (1).

argmin
(
min

∥∥ f (xi)− f (xq)
∥∥

2

)
(1)

Where x denotes the image, f denotes the vision
encoder (pre-trained ResNet50 (He et al., 2015)), and
q denotes the index of the test image for inference, i
denotes the index of the image except for q. Eq. (1)
is an algorithm that selects neighboring image of the
test image as example based on Euclidean distance.
By this, Eq. (1) takes into account the scale and di-
mensions of the features, and expected to select better
example compared to RICES.

4 EXPERIMENT

4.1 Settings

The dataset used for fine-tuning was collected and
created as described in Sec. 3.3. We perform one-
stage fine-tuning for 300 epochs using ZeRO2 with
XTuner (XTuner Contributors, 2023) on 8 NVIDIA
6000Ada-48GB GPUs. The batch size is set to 4,
thus the global batch size is set to 32. We utilized
the AdamW (Loshchilov and Hutter, 2019) optimizer
and 1e-4 learning rate, with the warm-up ratio set to
0.03. We also apply cosine decay to the learning rate.

To evaluate the performance, we used MVTec AD
and VisA. These datasets were not used at all during
training. During the evaluation, one example image
is given by using ICL (i.e., one-shot manner). The
method for selecting the example image follows the
procedure described in Eq. (1). Also, to evaluate
the effectiveness of the proposed example image se-
lection algorithm, we compare its performance with-
out example image and with that of RICES. Finally,
framework of the evaluation is shown in Fig. 4.

We use F1-score (Sokolova et al., 2006) and
Matthews Correlation Coefficient (MCC) (Chicco
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Table 1: Result of MVTec-AD. ’N/A’ means that zero division occurred. Bold means the highest performance.

Settings Vanilla w/o ICL ICL (RICES) ICL (Ours)

Product Name F1-score MCC F1-score MCC F1-score MCC F1-score MCC

Bottle N/A N/A 0.863 N/A 0.892 0.510 0.917 0.610
Cable N/A N/A 0.400 0.338 0.795 0.564 0.899 0.754
Capsule N/A N/A 0.750 0.426 0.912 0.384 0.946 0.658
Carpet 0.044 0.074 1.000 1.000 0.983 0.929 1.000 1.000
Grid N/A N/A 0.973 0.910 0.884 0.476 0.982 0.935
Hazelnut 0.228 0.226 0.780 N/A 0.795 0.257 0.800 0.289
Leather 0.043 0.076 1.000 1.000 1.000 1.000 1.000 1.000
Metal Nut N/A N/A 0.832 0.540 0.912 0.468 0.989 0.947
Pill N/A N/A 0.838 0.402 0.922 0.368 0.968 0.814
Screw 0.209 0.140 0.851 0.244 0.903 0.506 0.925 0.673
Tile N/A N/A 0.957 0.870 0.977 0.916 0.977 0.916
Toothbrush N/A N/A 0.906 0.633 0.866 0.418 0.921 0.697
Transistor N/A N/A 0.762 0.592 0.871 0.780 0.894 0.821
Wood N/A N/A 0.976 0.752 0.992 0.965 0.992 0.965
Zipper N/A N/A 0.741 0.541 0.975 0.879 0.987 0.941

All category 0.042 0.068 0.860 0.519 0.917 0.665 0.950 0.804

Davide and Jurman Giuseppe, 2020) for the evalua-
tion. F1-score, as shown in Eq. (2) , is a common
metric for binary classification.

F1-score =
2×TP

2×TP+FP+FN
(2)

As shown in Eq. (2), F1-score does not use pre-
diction of true negative. Thus, when there is a large
number of positive samples during inference, the per-
formance can be significantly inflated by predicting
all samples as positive. For instance, in MVTec AD,
with 1,258 positive samples and 467 negative sam-
ples in the test data, F1-score shows a high value of
0.844. This shows F1-score is suspicious when there
is a bias in the test data. Thus, we use not only F1-
score but also MCC as evaluation metrics. MCC is re-
ported to be adequate for binary classification, partic-
ularly for better consistency and less variance (Gran-
dini et al., 2020) (Gösgens et al., 2022). MCC is
shown in Eq. (3).

MCC =
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(3)

MCC ranges from -1 to 1, where 1 indicates per-
fect prediction of all samples, -1 indicates incorrect
prediction of all samples, and 0 indicates random pre-
diction. In the previously mentioned example, MCC
cannot be calculated because the denominator be-
comes zero. Thus, in this study, we use both F1-
score and MCC for evaluation. The evaluation meth-
ods include assessing the performance for each prod-
uct within each dataset, as well as the overall perfor-
mance across the entire dataset.

4.2 Evaluation of Results

4.2.1 Result of MVTec AD

The results for MVTec AD are shown in Tab. 1. The
settings are as follows: “Vanilla” for ViP-LLaVA be-
fore fine-tune, “w/o ICL” for ViP-LLaVA after fine-
tune without using an example during inference, “ICL
(RICES)” for using a selected example image with the
RICES algorithm during inference, and “ICL (Ours)”
for using a selected example image with Eq. (1) dur-
ing inference. In each settings, results of F1-score
and MCC are in a row. From the table, we confirm
that providing an example significantly improves per-
formance. This demonstrates the effectiveness of our
framework. Additionally, compared to RICES, our
selection algorithm achieves improvement in perfor-
mance with an increase in MCC, demonstrating the
effectiveness of our algorithm.

Next, for qualitative evaluation, the visualization
of the model prediction is shown in Fig. 5. As shown
in the figure, our approach can roughly detect defec-
tive locations, which means the model recognizes the
defects in the image. However, the model cannot de-
tect multiple defects or logical defects, such as those
in “Cable”. This is due to the lack of variety in the
training dataset. Thus, further image collection and
an enlarged training dataset are required for perfor-
mance improvement.

Also, for some products like “Hazelnut”, while
our approach improved the performance, it is still in-
sufficient for real-world conditions. For “Hazelnut”,
the model detected thin parts as defective, indicat-
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Figure 5: Visualize the model prediction for MVTec AD.

ing that the model does not fully leverage ICL. Thus,
providing detailed inspection criteria is necessary. It
has been reported that increasing the number of ex-
amples improves ICL performance (Agarwal et al.,
2024) (Bertsch et al., 2024). Alternatively, further
performance improvement is expected by proposing
an optimal selection algorithm that selects multiple
example images (based on the query strategies, in-
cluding those from Deep Active Learning (Pengzhen
Ren et al., 2021) (Ueno et al., 2023)).

Additionally, for all products, although coordi-
nates are output, their positions deviate from the ac-
tual defective locations. Indeed, pixel-level AUROC
was 0.730, which is very low compared to the existing
methods. This is because the CrossEntropyLoss used
for training uniformly calculates the loss for differ-
ences in token values. For example, when the ground
truth of the starting x-coordinate is 100, the loss is
the same when the model outputs 101 and 900 (as-
suming the prediction probabilities are equal). Thus,
CrossEntropyLoss is not optimal for tasks requiring
specific numerical outputs like coordinates. How-
ever, existing VLMs are trained with CrossEntropy-
Loss, meaning their outputs are text-based cannot be
safely converted to floats (with gradient flow intact),
thus performance improvement is expected by con-
structing a multi-head VLM for defect detection and
modifying the loss function to alternatives like Mean
Squared Error or GIoU Loss.

While “Bottle” has the same product in the train-
ing dataset, their performance is lower compared to
“Wood”, which also has the same product in the train-
ing dataset. This is likely due to the significant dif-
ferences in appearance between the images in the
training data and those in MVTec AD, as shown in
Fig. 6. However, despite the differences in appear-
ance, “Tile” shows high performance, confirming the
generalization capability for some products. Also,
to prevent the forgetting of knowledge acquired dur-
ing pre-training when fine-tuning, it is necessary to
use Parameter Efficient Fine-Tuning methods, such as

Bottle Tile

Figure 6: Examples of the images of “Bottle”, and “Tile”
from the collected images and MVTec AD.

Low-Rank Adaptation (Hu et al., 2021), which forget
less than fine-tuning (Biderman et al., 2024).

4.2.2 Result of VisA

The results for VisA are shown in Tab. 2. The table
follows the same format as Tab. 1. From the table,
it can be confirmed that the performance improves
by using ICL in VisA as well, demonstrating the ef-
fectiveness of the proposed framework. However,
compared to RICES, our selection algorithm does
not show significant improvement. This is because
both RICES and our selection algorithm are based
on similarity, which depends on the data distribu-
tion. Most of the products in VisA are too widely dis-
tributed (e.g., “Macaroni”, “PCB”). Thus, proposing
a more distribution-robust selection algorithm could
potentially improve performance. Also, it can be
seen that the performance does not improve regard-
less of the presence of ICL when there are two or
more products in the image, especially if those prod-
ucts are not aligned. In fact, “Macaroni1”, which is
neatly aligned, shows higher qualitative and quanti-
tative performance compared to “Macaroni2”, which
is randomly arranged. This is likely due to the lack
of training dataset that considers differences in prod-
uct positions and orientations. Thus, performance im-
provement is expected by collecting fine-tuning data
and performing data augmentation, such as rotation
and flipping. Simultaneously, it should be noted that
for some products, positional shifts or orientation dif-
ferences may be defined as defects.

For qualitative evaluation, the visualization of the
model prediction is shown in Fig. 7. As shown in
Fig. 7, for products that have multiple objects like
“Candle” or “Capsules”, the model prediction gets
worse. As mentioned, our dataset is still insufficient
for generalization because there are limited products
and they are mostly single object. In addition, images
with multiple objects are highly distributed compared
to the images with single object, which influences the
performance of ICL because the selection algorithms
depend on the distribution.
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Table 2: Result of VisA.

Settings Vanilla w/o ICL ICL (RICES) ICL (Ours)

Product Name F1-score MCC F1-score MCC F1-score MCC F1-score MCC

Candle N/A N/A 0.635 0.539 0.692 0.241 0.694 0.253
Capsules N/A N/A 0.599 0.415 0.841 0.513 0.809 0.389
Cashew N/A N/A 0.814 0.623 0.890 0.670 0.889 0.674
Chewinggum N/A N/A 0.921 0.758 0.921 0.758 0.935 0.804
Fryum N/A N/A 0.867 0.699 0.917 0.741 0.888 0.648
Macaroni1 N/A N/A 0.760 0.502 0.685 0.204 0.683 0.190
Macaroni2 N/A N/A 0.669 0.071 0.667 N/A 0.667 N/A
PCB1 N/A N/A 0.131 0.190 0.891 0.792 0.875 0.762
PCB2 N/A N/A 0.347 0.343 0.772 0.493 0.763 0.471
PCB3 N/A N/A 0.243 0.248 0.747 0.503 0.751 0.513
PCB4 N/A N/A 0.622 0.516 0.801 0.594 0.817 0.610
Pipe Fryum N/A N/A 0.870 0.726 0.920 0.744 0.929 0.774

All category N/A N/A 0.671 0.429 0.800 0.492 0.795 0.479

Figure 7: Visualize the model prediction for VisA.

5 CONCLUSION

In this study, we propose a general visual inspection
model based on a few images of non-defective or de-
fective products along with explanatory texts serv-
ing as inspection criteria. For future work, further
performance improvement is expected by collecting
more images for fine-tuning. In this study, we en-
abled visual inspection using VLM by training on a
dataset consisting of only 941 images, which is very
small compared to the pre-training dataset of VLM.
Another consideration is to construct the multi-head
VLM and change of the loss function. Furthermore,
introducing the example image selection algorithm is
another way for improvement. Specifically, existing
algorithms are for selecting one example image for
the inspection, so proposing an optimal selection al-
gorithm for many example images improves model
performance. Finally, the proposed method is based
on VLM, so by adding the rationale statements for
the decision in the response, model explainability is
expected to improve, and performance could be en-
hanced through multitasking.
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