
CodeSCAN: ScreenCast ANalysis for Video Programming Tutorials

Alexander Naumann1,2, Felix Hertlein1,2, Jacqueline Höllig1,2, Lucas Cazzonelli1,2

and Steffen Thoma1,2

1FZI Research Center for Information Technology, Karlsruhe, Germany
2Karlsruhe Institute of Technology, Karlsruhe, Germany

Keywords: Computer Vision, Optical Character Recognition, Object Detection, Image Binarization, Datasets.

Abstract: Programming tutorials in the form of coding screencasts play a crucial role in programming education, serving
both novices and experienced developers. However, the video format of these tutorials presents a challenge
due to the difficulty of searching for and within videos. Addressing the absence of large-scale and diverse
datasets for screencast analysis, we introduce the CodeSCAN dataset. It comprises 12,000 screenshots cap-
tured from the Visual Studio Code environment during development, featuring 24 programming languages,
25 fonts, and over 90 distinct themes, in addition to diverse layout changes and realistic user interactions.
Moreover, we conduct detailed quantitative and qualitative evaluations to benchmark the performance of Inte-
grated Development Environment (IDE) element detection, color-to-black-and-white conversion, and Optical
Character Recognition (OCR). We hope that our contributions facilitate more research in coding screencast
analysis, and we make the source code for creating the dataset and the benchmark publicly available at a-
nau.github.io/codescan.

1 INTRODUCTION

In the ever-evolving landscape of programming edu-
cation and knowledge dissemination, coding screen-
casts on platforms such as YouTube have emerged as
powerful tools for both novice and experienced de-
velopers. These video tutorials not only provide a vi-
sual walkthrough of coding processes but also offer a
unique opportunity for learners to witness real-time
problem-solving, coding techniques, and best prac-
tices. As the popularity of coding screencasts con-
tinues to soar, the possibility to augment traditional
video content with additional information to improve
the learner’s experience, becomes increasingly inter-
esting and relevant. The source code extracted from
a screencast, that replicates the full coding project up
to the given position in the video, is one such element
that can empower learners with the ability to delve
deeper into the presented material.

Incorporating such code extraction into the realm
of coding screencasts enables learners to benefit from
a dual advantage. Firstly, it empowers video search
algorithms to utilize the full source code, enhancing
the precision and relevance of search results. By in-
dexing and analyzing the extracted code, search en-
gines can pinpoint specific programming concepts,

Figure 1: Source code extraction pipeline: Given an image
from a coding screencast (1), the IDE elements need to be
detected (2). This is followed by an optional binarization
step (3) which converts the color image into a black-and-
white image, and finally OCR is applied (4) to read out the
source code.

language features, or problem-solving techniques,
leading learners to the most pertinent videos that align
with their educational needs. Rather than watching
an entire video in search of a specific code segment,
learners can navigate directly to the relevant sections,
streamlining the learning process and increasing over-
all comprehension. Secondly, having access to the

Naumann, A., Hertlein, F., Höllig, J., Cazzonelli, L. and Thoma, S.
CodeSCAN: ScreenCast ANalysis for Video Programming Tutorials.
DOI: 10.5220/0013093100003912
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2025) - Volume 2: VISAPP, pages
269-277
ISBN: 978-989-758-728-3; ISSN: 2184-4321
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

269



full code at any given point in a coding screencast also
empowers learners to engage in hands-on experimen-
tation seamlessly. By providing learners with the en-
tire codebase in its current state, irrespective of their
position in the video timeline, the educational expe-
rience is transformed into an interactive playground
for exploration and experimentation, where the code
can be executed and experimented with at any stage
within the video.

However, the task of retrieving the full source
code of a project at any given point in a coding
screencast is challenging: Instructors frequently nav-
igate between different files within a project, intro-
duce small modifications or copy-paste large amounts
of code and additionally, the character distribution of
source code differs strongly from standard text para-
graphs. To cope with this it is crucial to understand
the visible IDE components in addition to being able
to extract the visible source code as text. To this
end, we present a novel large-scale and high-quality
dataset for coding screencast analysis called CodeS-
CAN, in this work. It contains more than 12,000
screenshots of coding projects in 24 different pro-
gramming languages. These screenshots are indepen-
dent and cannot be composed into coherent videos.
While full programming tutorials would enable bet-
ter end-to-end testing of the pipeline, it is important
to note, that all current approaches only use single
frames as input. CodeSCAN is the first dataset of its
kind that sets itself apart by its unprecedented size,
diversity and annotation granularity. We use Visual
Studio Code with approximately 100 different themes
and 25 different fonts. Through automated interac-
tion with Visual Studio Code, we achieve large vi-
sual diversity by e.g. editing code, highlighting ar-
eas, performing search, and much more. In addition
to the dataset, we present a detailed literature review
and analyze the performance for text recognition on
integrated development environment (IDE) images in
detail. More specifically, we analyze the influence of
different OCR engines, image binarization and image
quality. An overview of a potential source code ex-
traction pipeline is outlined in Fig. 1.

To summarize, the main contributions of our work
are

• we introduce CodeSCAN, a novel high-quality
dataset for screencast analysis of video program-
ming tutorials with 12,000 screenshots contain-
ing a multiplicity of annotations and high diver-
sity regarding programming languages and visual
appearance,

• we evaluate a baseline CNN on diverse IDE el-
ement detection and propose the usage of a so-
called coding grid for source code localization,

• we benchmark five different OCR engines, and
analyze the influence of image binarization and
image quality on performance.

The remainder of this work is organized as fol-
lows. We present an overview of related work in
Sec. 2. Subsequently, we present the details of our
dataset generation approach in Sec. 3. Sec. 4 presents
the evaluation for IDE element detection and OCR.
Finally, Sec. 5 concludes the paper.

2 RELATED WORK

We review the existing literature on approaches for
code extraction, tools using code extraction, and, fi-
nally, available datasets.

2.1 Approaches

A common pipeline to extract the source code from a
programming screencast as text looks as follows: (1)
the video is split up into images and duplicates are
removed, (2) the image is classified as containing or
not containing source code, (3) the source code is lo-
cated by predicting a bounding box, and finally (4)
OCR is applied within this bounding box to extract
the source code as text. This full pipeline is neces-
sary to be able to perform inference on new, unseen
video programming tutorials. However, the literature
frequently focuses only on a subset of these tasks.
Ott et al. (2018a) trained a CNN classifier to iden-
tify whether a screenshot contains fully visible code,
partially visible code, handwritten code or no code.
Ott et al. (2018b) use a CNN to locate the code and to
classify its programming language (Java or Python)
purely by using image features. Alahmadi et al.
(2020b) tackle code localization to remove the noise
in OCR results which is introduced by additional IDE
elements such as the menu by comparing five differ-
ent backbone architectures. Malkadi et al. (2020) fo-
cus on comparing different OCR engines, thus, focus-
ing on step (3). The literature analyzes between one
and seven different programming languages (if these
are specified). Java is most popular (Alahmadi et al.,
2018, 2020b; Bao et al., 2019, 2020b, 2020a; Bergh
et al., 2020; Ott et al., 2018a, 2018b; Ponzanelli et
al., 2016b, 2016a, 2019; Yadid & Yahav, 2016; Zhao
et al., 2019), followed by Python (Alahmadi et al.,
2020b; Bergh et al., 2020; Malkadi et al., 2020; Ott
et al., 2018b; Zhao et al., 2019), C# (Alahmadi et
al., 2020b; Malkadi et al., 2020) and XML (Alahmadi,
2023). Also, different IDEs, such as Eclipse (Bao et
al., 2015, 2017, 2019), Visual Studio (Malkadi et al.,
2020) or a diverse mix of multiple IDEs (Alahmadi et

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

270



al., 2018, 2020b, 2020a; Alahmadi, 2023; Malkadi et
al., 2020; Ott et al., 2018a, 2018b; Zhao et al., 2019)
are used. Other related tasks include recognizing user
actions (e.g. enter or select text) in coding screen-
casts (Zhao et al., 2019) and identifying UI screens in
videos (Alahmadi et al., 2020a).

2.2 Tools

Ponzanelli et al. (2016b) present CodeTube, a recom-
mender system that leverages textual, visual and au-
dio information from coding screencasts. The users
inputs a query, and CodeTube intends to return a rel-
evant, cohesive and self-contained video. Bao et al.
(2020b) introduce ps2code, a tool which leverages
code extraction to provide a coding screencast search
engine and a screencast watching tool which enables
interaction. PSFinder (Yang et al., 2022) classifies
screenshots into containing or not containing an IDE
to identify live-coding screencasts.

2.3 Datasets

To the best of our knowledge, only two of the pre-
viously mentioned works have their full annotated
datasets publicly available. The dataset presented by
Malkadi et al. (2020) comprises screenshots of only
the visible code with the associated source code files
in Java, Python and C#. The dataset was created
manually, and no pixel-wise correspondence between
source code and images is available. Furthermore,
there is low diversity in the IDE color scheme and
font. Alahmadi et al. (2020a) present a dataset where
UI screenshots are annotated with bounding boxes.
Since they do not target code extraction, no such an-
notations are provided.

2.4 Discussion

To empower learners to engage in hands-on experi-
mentation seamlessly and to improve the search qual-
ity within and across videos, it is crucial to be able
to extract the source code of a complete project. This
requires, for example, to identify the file tree and the
currently active tab. Moreover, it is important to reli-
ably and incrementally edit existing files. In order to
enable such sophisticated full-project source code ex-
traction, it is essential to have a large, high-quality
dataset with detailed annotations. Since currently
only one relevant annotated dataset with insufficient
annotation granularity is publicly available (Malkadi
et al., 2020), we present the novel dataset CodeS-
CAN. CodeSCAN covers 24 different programming
languages, over 90 Visual Studio Code themes and 25

different fonts. We provide a multiplicity of automat-
ically annotated pixel-accurate annotations that reach
far beyond code localization. Furthermore, we are the
first to benchmark diverse IDE element localization
and to analyze the influence of image binarization and
image quality on OCR.

3 DATASET GENERATION

Our dataset was acquired by scraping data from
https://github.dev. The details on the dataset acqui-
sition will be presented in Sec. 3.1. Subsequently,
we lay out our annotation generation approach in
Sec. 3.2.

3.1 Data Acquisition

For the data acquisition, we exploit the fact that
any Github repository can be opened with a browser
version of Visual Studio Code by changing the
URL from https://github.com/USERNAME/REPONAME
to https://github.dev/USERNAME/REPONAME. Thus, we
randomly select 100 repositories with a permissive
license (MIT, BSD-3 or WTFPL) per programming
language. Since we consider 24 programming lan-
guages, this results in a total of 2,400 repositories.
The considered programming languages are C, C#,
C++, CoffeeScript, CSS, Dart, Elixir, Go, Groovy,
HTML, Java, JavaScript, Kotlin, Objective-C, Perl,
PHP, PowerShell, Python, Ruby, Rust, Scala, Shell,
Swift, and TypeScript. We select five files with
file endings corresponding uniquely to the underly-
ing language (e.g. .py for Python) at random per
repository, leading to a total of 12,000 files. To
achieve highly diverse IDE appearances, we use more
than 90 different Visual Studio Code themes and 25
monospaced fonts. Moreover we apply the following
fully automated, random layout changes

• different window sizes (for desktop 1920×1200,
1920×1080, 1200×1920, 1440×900 and tablet
768×1024, 1280×800, 800×1280),

• layout type (classic or centered layout),

• coding window width,

• degree of zoom for the source code text,

• output panel visibility, size and type (e.g. Termi-
nal, Debugger, etc.),

• sidebar visibility, location, size and type (toggling
sidebar options),

• menubar visibility (classic, compact, hidden, vis-
ible),

CodeSCAN: ScreenCast ANalysis for Video Programming Tutorials

271



• activity bar visibility,

• status bar visibility,

• breadcrumbs visibility,

• minimap visibility, and

• control characters and white spaces rendering vis-
ibility

and realistic user interactions

• highlighting multiple lines of code,

• right clicking at random positions in the code,

• adding or removing characters from the source
code,

• search within the opened file,

• search within the project, and

• open a random number of other tabs.

The automation of all these appearance changes
was implemented using the framework Selenium1.
We refer to one such final IDE configuration (i.e. the
full visual appearance of the IDE with the current ac-
tive source code file and its appearance characteris-
tics) as scene in the following. To persist the cur-
rent scene, we export the scene webpage using Sin-
gleFile2. In addition, we save the full source code of
the currently visible file as reference. Thus, at the end
of the dataset acquisition phase, we have a source.txt
and page.html file for each of the 12,000 code files.

Note, that especially selecting random IDE
themes is challenging to automate3 and thus, not al-
ways the desired theme was applied correctly for each
scene. Since each scene is represented in a single
HTML file, however, we are able to leverage the CSS
specifications (background and font color) to perform
theme-wise clustering after the data acquisition for
quality assurance.

3.2 Annotation Generation

We utilize the HTML and source code file to automat-
ically generate all annotations. The bounding box of
any IDE element can be retrieved by manually iden-
tifying the CSS selector for the relevant element in-
side the HTML and accessing its bounding box in-
formation. Since the naming is consistent across all
HTML files, this process is necessary only once per
element. We annotate numerous IDE elements (e.g.
coding area, active tab, status bar etc.) and refer to

1See https://www.selenium.dev/documentation/.
2 https://github.com/gildas-lormeau/SingleFile.
3This is due to strongly varying loading times of the

theme and since themes frequently have multiple available
color schemes.

Tab. 1 for a full list and to Fig. 2b for a visualization.
Note, that arbitrary additional annotations for other
IDE elements can be added any time to our dataset.
By taking an automated screenshot of the scene using
the original resolution, we get the underlying image to
which the annotations can be applied directly without
any offsets.

Moreover, we extract annotations for text detec-
tion and recognition for the source code of the active
file visible in the coding area. This is done on a per-
line and per-word basis. Additionally, we provide an-
notations for the coding grid, i.e. the tight bounding
box around the visible code including the character
height and width. These annotations of only six num-
bers (four for the bounding box and character width
and height) enables the computation of the coding
grid as visualized in Fig. 2c. The coding grid can be
used to retrieve line and character-based text bound-
ing boxes and brings the additional benefit, that it is
much easier to accurately retrieve indentation, which
is crucial for languages such as Python.

Since we additionally analyze the influence of bi-
narization, i.e. conversion to a clean black-and-white
version of the screenshot, we automatically generate
annotations for this use case. This is done by creating
a binarized HTML version of the scene by identifying
the relevant CSS selectors for source code text. We
enforce black color for all source code text and white
for everything else by adjusting the CSS parameters.
See Fig. 2d for an example.

The dataset is split into a training, validation and
test set of sizes 7,561, 1,921, and 2,518, respectively.
There is no overlap of fonts across the splits, and only
a minor overlap across themes, which was inevitable
due to the previously mentioned issues in automating
the theme selection process.

4 EVALUATION

Coding screen cast analysis comprises several parts.
For our evaluations, we assume videos are processed
frame-by-frame and thus, consider only single frames
as input for the respective components. We evaluate
IDE element detection in Sec. 4.1. Next, we evalu-
ate image binarization in Sec. 4.2, which can help to
improve text recognition performance as analyzed in
Sec. 4.3. In addition to the influence of binarization,
we also compare different OCR engines and inves-
tigate how they are affected by changes in the input
image quality.

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

272



(a) Color Image of Scene

(b) Bounding Box Annotations

(c) Coding Grid Annotation

(d) Black-and-white Image of Scene

Figure 2: Example of the different available
annotation and data types showing the Github
repository rrousselGit/flutter_hooks with file
use_automatic_keep_alive_test.dart. Note that we
omit line, word and character annotations in (b) for better
readability.

4.1 Object Detection

Since the focus of this work is not to improve object
detection algorithms, we benchmark our dataset on
a well-established baseline. We use a Mask R-CNN
(He et al., 2017) with a ResNet-50-FPN (He et al.,
2016; Lin et al., 2017) backbone that was pre-trained
on MS COCO (Lin et al., 2014) for our experiments.
We freeze the weights at stage four and use stochas-
tic gradient descent with momentum, a batch size of
16 and a cosine learning rate schedule (Loshchilov
& Hutter, 2017). For the learning rate schedule, we
set the initial learning rate to 0.001, the final learn-
ing rate to 0 after 10,000 and use a linear warm-up
during the first 1,000 iterations. The results are sum-
marized in Tab. 1. Some elements, such as sidebar,
tabs and actions container, minimap and output panel
achieve a Box AP above 80. Other elements, such as
title bar, notifications, last code line number, sugges-
tion widget, tabs breadcrumbs are harder to detect and
the Box AP lies below 50. The bounding box of the
coding grid and the ones for source code text lines are
most important for text detection and recognition, and
achieve a Box AP of 69.9 and 71.9, respectively.

Table 1: Quantitative object detection performance per class
using Box AP.

Bounding Box
Class name AP AP50 AP75

sidebar 92.0 99.8 98.7
minimap 84.6 99.0 97.6
tabs_and_actions_container 82.9 98.2 96.4
output_panel 82.4 97.6 93.9
status_bar 79.5 99.0 95.4
activity_bar 76.8 95.6 82.0
editor_container 72.5 92.4 84.7
line 71.9 93.3 87.4
code_container 71.9 90.9 82.9
coding_grid 69.9 96.7 78.6
code_line_number_bar 62.1 88.3 66.9
scrollbar 56.3 80.0 70.1
active_tab 53.1 70.0 60.0
find_widget 53.1 69.6 63.8
last_code_line_number 48.7 80.7 56.2
notifications 48.4 89.2 40.6
suggestion_widget 48.2 68.9 57.4
tabs_breadcrumbs 45.4 71.7 53.0
title_bar 31.6 44.5 40.2

4.2 Binarization

We investigate the performance of image binarization
approaches for converting a screenshot from a cod-
ing screencast to a binarized black-and-white version.
For our experiments, we train Pix2PixHD (Wang et
al., 2018), the successor of the very popular Pix2Pix
(Isola et al., 2017) architecture for image-to-image
translation. We train for 40 epochs and leave the
remaining original training configuration unchanged.
The results are summarized in Tab. 2 and we provide
qualitative samples in Figs. 3 and 4. Overall, bina-
rization works well as indicated by the mean Peak

CodeSCAN: ScreenCast ANalysis for Video Programming Tutorials

273



Signal-to-Noise Ratio (PSNR) of 5.49 in Tab. 2 and
the qualitative example in Fig. 3. The model seems to
have difficulties especially with rare strong contrasts
and very low contrast as indicated by the examples in
Fig. 4.

Figure 3: Qualitative examples of the binarization showing
the input image on the top and the predicted binarization on
the bottom.

Table 2: Quantitative binarization performance.

Accuracy ↑ PSNR ↑ DRDM ↓
Median 72.07 5.54 67.52
25% Quant. 67.09 4.82 62.74
75% Quant. 76.01 6.20 73.46
Mean 70.81 5.49 165.70
Std. 7.77 1.08 1699.39

4.3 Optical Character Recognition

We benchmark five different approaches for text
recognition in the following. For the evaluation, we
create a subset of our test split by randomly sampling
10 words from each of the 2,518 test images to re-
duce the computational workload while maintaining
statistical significance. To eliminate the influence of

text detection performance, we use the ground truth
bounding boxes. We investigate the influence of bina-
rization (color image vs. ground truth binarization vs.
predicted binarization) and image quality (20%-100%
of original image size as input) on text recognition
performance. The state-of-the-art text recognizers we
benchmark are:

• Tesseract (Smith, 2007) (common baseline)

• SAR (Li et al., 2019) pre-trained mainly on
MJSynth (Jaderberg et al., 2014, 2016), Synth-
Text (Gupta et al., 2016) and SynthAdd (Li et al.,
2019)

• MASTER (Lu et al., 2021) pre-trained on
MJSynth (Jaderberg et al., 2014, 2016), Synth-
Text (Gupta et al., 2016) and SynthAdd (Li et al.,
2019)

• ABINet (Fang et al., 2021) pre-trained on
MJSynth (Jaderberg et al., 2014, 2016) and Syn-
thText (Gupta et al., 2016)

• TrOCR (Li et al., 2023) fine-tuned on the SROIE
dataset (Huang et al., 2019)4

Note, that TrOCR does not distinguish lowercase
and capital letters. Thus, we convert the ground truth
to lowercase for computing the mean Character Error
Rate (CER) in only this case. This obviously sim-
plifies the task, which is why these results cannot be
fairly compared with the other approaches.

On the full image resolution, we can observe from
Tab. 3 that TrOCR and Tesseract benefit most from
having access to the ground truth or predicted bina-
rized version of the input image. Overall best perfor-
mance is 0.08 mean CER for TrOCR and the ground
truth binarized input images. The performance of
SAR, MASTER and ABINet is more robust on color
images which means those approaches do not bene-
fit from a prior conversion to a black-and-white im-
age using Pix2PixHD. We argue that these differences
stem from the differences in training data. In sce-
narios where mostly binarized training data is avail-
able, using image-to-image translation approaches is
a valid and helpful way to boost performance on the
final task.

All approaches show robust performance when
the image quality is degraded slightly, i.e. when it is
reduced to 60%-70% of the original image size. This
effect is constant across image types as seen in Fig. 5.

4See https://rrc.cvc.uab.es/?ch=13

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

274



Figure 4: Challenging qualitative examples of the binarization showing the input image on the left and the predicted binariza-
tion on the right.

Table 3: Quantitative results at full image resolution using the binarized, converted (from Sec. 4.2) and color image. We report
the mean (standard deviation) for the Character Error Rate (CER). (∗ CER is computed ignoring capitalization).

CER ↓ Binarized (GT) Binarized (Pred.) Color

ABINet (Fang et al., 2021) 0.37 (0.59) 0.43 (0.78) 0.43 (0.94)
Tesseract (Smith, 2007) 0.32 (0.45) 0.41 (0.46) 0.67 (0.51)
SAR (Li et al., 2019) 0.26 (0.73) 0.35 (0.97) 0.28 (0.86)
MASTER (Lu et al., 2021) 0.24 (0.95) 0.35 (0.97) 0.25 (0.99)

TrOCR∗ (Li et al., 2023) 0.08 (0.27) 0.14 (0.33) 0.25 (0.93)

5 CONCLUSION

Coding screencasts have emerged as powerful tools
for programming education of novices as well as ex-
perienced developers. In addition to the video con-
tent, having access to the full source code of the
project at any given time of the programming tuto-
rial brings two major benefits: (1) platform-wide and
tutorial-based search can leverage the full source code
to enhance the precision and relevance of search re-
sults and (2) it empowers learners to engage in hands-
on experimentation with the source code seamlessly.
In this work, we work towards enabling detailed in-
formation retrieval from such coding screencasts. We

present a novel high-quality dataset called CodeS-
CAN, comprising 12,000 fully annotated IDE screen-
shots. CodeSCAN is highly diverse and contains 24
programming languages, over 90 different themes of
Visual Studio Code, and 25 fonts while at the same
time varying the IDE appearance through changing
the visibility, position and size of different IDE ele-
ments (e.g. sidebar, output panel). Our evaluations
show that baseline object detectors are suitable for
text recognition and achieve a Box AP for source
code line detection of 71.9. Moreover, we showed
that baseline image-to-image translation architectures
are well suited for coding screencast image binariza-
tion. Since we used baseline architectures for object

CodeSCAN: ScreenCast ANalysis for Video Programming Tutorials

275



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Image Quality

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
Ch

ar
ac

te
r E

rro
r R

at
e

ABINet
Tesseract
TrOCR
SAR
MASTER

(a) Binarized (GT) Images

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Image Quality

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ea

n 
Ch

ar
ac

te
r E

rro
r R

at
e

ABINet
Tesseract
TrOCR
SAR
MASTER

(b) Binarized (Pred.) Images

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Image Quality

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
Ch

ar
ac

te
r E

rro
r R

at
e

ABINet
Tesseract
TrOCR
SAR
MASTER

(c) Color Images

Figure 5: Quantitative evaluation of OCR performance for
different image qualities.

detection and image binarization, we expect that per-
formance can be increased significantly by resorting
to state-of-the-art models. Finally, we compared dif-
ferent OCR engines and analyzed their dependence on
image quality and image binarization. We found that
binarization can boost performance for some OCR
engines, while slight quality degradations in terms
of image resolution do not significantly affect the

text recognition quality. In future work, we plan to
tackle the full source code retrieval from program-
ming videos pipeline by leveraging the CodeSCAN
dataset.

Several future directions are very interesting.
Since we limit ourselves to screenshot analysis, the
tracking, composing and synchronizing files during a
video tutorial remains an open task. In addition, eval-
uation metrics could move from classical text recog-
nition towards evaluating code executability and the
tree distance to the original abstract syntax tree. Fi-
nally, the coding grid parameters could be estimated
using an additional coding grid head. Its availability
is expected to significantly simplify the identification
of the correct indentation.

REFERENCES

Alahmadi, M., Hassel, J., Parajuli, B., Haiduc, S., & Ku-
mar, P. (2018). Accurately Predicting the Location
of Code Fragments in Programming Video Tutorials
Using Deep Learning. Proceedings of the 14th Inter-
national Conference on Predictive Models and Data
Analytics in Software Engineering.

Alahmadi, M., Khormi, A., & Haiduc, S. (2020a). UI
Screens Identification and Extraction from Mobile
Programming Screencasts. 2020 IEEE/ACM 28th In-
ternational Conference on Program Comprehension
(ICPC).

Alahmadi, M., Khormi, A., Parajuli, B., Hassel, J., Haiduc,
S., & Kumar, P. (2020b). Code localization in pro-
gramming screencasts. Empirical Software Engineer-
ing, 25 (2).

Alahmadi, M. D. (2023). VID2XML: Automatic Extrac-
tion of a Complete XML Data From Mobile Program-
ming Screencasts. IEEE Transactions on Software En-
gineering, 49 (4).

Bao, L., Li, J., Xing, Z., Wang, X., Xia, X., & Zhou, B.
(2017). Extracting and analyzing time-series HCI data
from screencaptured task videos. Empirical Software
Engineering, 22 (1).

Bao, L., Li, J., Xing, Z., Wang, X., & Zhou, B. (2015).
Reverse engineering time-series interaction data from
screen-captured videos. 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution,
and Reengineering (SANER).

Bao, L., Pan, S., Xing, Z., Xia, X., Lo, D., & Yang, X.
(2020a). Enhancing developer interactions with pro-
gramming screencasts through accurate code extrac-
tion. Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering.

Bao, L., Xing, Z., Xia, X., & Lo, D. (2019). VT-Revolution:
Interactive Programming Video Tutorial Authoring
and Watching System. IEEE Transactions on Software
Engineering, 45 (8).

Bao, L., Xing, Z., Xia, X., Lo, D., Wu, M., & Yang,
X. (2020b). Psc2code: Denoising Code Extraction

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

276



from Programming Screencasts. ACM Transactions
on Software Engineering and Methodology, 29 (3).

Bergh, A., Harnack, P., Atchison, A., Ott, J., Eiroa-Lledo,
E., & Linstead, E. (2020). A Curated Set of Labeled
Code Tutorial Images for Deep Learning. 2020 19th
IEEE International Conference on Machine Learning
and Applications(ICMLA).

Fang, S., Xie, H., Wang, Y., Mao, Z., & Zhang, Y. (2021).
Read Like Humans: Autonomous, Bidirectional and
Iterative Language Modeling for Scene Text Recogni-
tion. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition.

Gupta, A., Vedaldi, A., & Zisserman, A. (2016). Syn-
thetic Data for Text Localisation in Natural Images.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017).
Mask R-CNN. IEEE International Conference on
Computer Vision (ICCV).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual
Learning for Image Recognition. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Huang, Z., Chen, K., He, J., Bai, X., Karatzas, D., Lu, S.,
& Jawahar, C. V. (2019). ICDAR2019 Competition
on Scanned Receipt OCR and Information Extraction.
2019 International Conference on Document Analysis
and Recognition (ICDAR).

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017).
Image-to-Image Translation with Conditional Adver-
sarial Networks. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Jaderberg, M., Simonyan, K., Vedaldi, A., & Zisserman, A.
(2016). Reading Text in the Wild with Convolutional
Neural Networks. International Journal of Computer
Vision, 116 (1).

Jaderberg et al., 2014). Deep Features for Text Spotting.
Computer Vision – ECCV 2014.

Li, H., Wang, P., Shen, C., & Zhang, G. (2019). Show,
Attend and Read: A Simple and Strong Baseline for
Irregular Text Recognition. Proceedings of the AAAI
Conference on Artificial Intelligence, 33 (01).

Li, M., Lv, T., Chen, J., Cui, L., Lu, Y., Floren-
cio, D., Zhang, C., Li, Z., & Wei, F. (2023).
TrOCR: Transformer-Based Optical Character Recog-
nition with Pre-trained Models. Proceedings of the
AAAI Conference on Artificial Intelligence, 37 (11).

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
& Belongie, S. (2017). Feature Pyramid Networks
for Object Detection. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Mi-
crosoft COCO: Common Objects in Context. Com-
puter Vision – ECCV 2014.

Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic gra-
dient descent with warm restarts. 5th International
Conference on Learning Representations (ICLR).

Lu, N., Yu, W., Qi, X., Chen, Y., Gong, P., Xiao, R., & Bai,
X. (2021). MASTER: Multiaspect non-local network
for scene text recognition. Pattern Recognition, 117.

Malkadi, A., Alahmadi, M., & Haiduc, S. (2020). A Study
on the Accuracy of OCR Engines for Source Code
Transcription from Programming Screencasts. Pro-
ceedings of the 17th International Conference on Min-
ing Software Repositories.

Ott, J., Atchison, A., Harnack, P., Bergh, A., & Linstead,
E. (2018a). A deep learning approach to identify-
ing source code in images and video. Proceedings of
the 15th International Conference on Mining Software
Repositories.

Ott, J., Atchison, A., Harnack, P., Best, N., Anderson, H.,
Firmani, C., & Linstead, E. (2018b). Learning lexical
features of programming languages from imagery us-
ing convolutional neural networks. Proceedings of the
26th Conference on Program Comprehension.

Ponzanelli, L., Bavota, G., Mocci, A., Di Penta, M.,
Oliveto, R., Hasan, M., Russo, B., Haiduc, S., &
Lanza, M. (2016a). Too Long; Didn’t Watch! Extract-
ing Relevant Fragments from Software Development
Video Tutorials. 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE).

Ponzanelli, L., Bavota, G., Mocci, A., Di Penta, M.,
Oliveto, R., Russo, B., Haiduc, S., & Lanza, M.
(2016b). CodeTube: Extracting relevant fragments
from software development video tutorials. Proceed-
ings of the 38th International Conference on Software
Engineering Companion.

Ponzanelli, L., Bavota, G., Mocci, A., Oliveto, R., Penta, M.
D., Haiduc, S., Russo, B., & Lanza, M. (2019). Au-
tomatic Identification and Classification of Software
Development Video Tutorial Fragments. IEEE Trans-
actions on Software Engineering, 45 (5).

Smith, R. (2007). An Overview of the Tesseract OCR En-
gine. Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), 2.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., &
Catanzaro, B. (2018). High-Resolution Image Syn-
thesis and Semantic Manipulation with Conditional
GANs. 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR).

Yadid, S., & Yahav, E. (2016). Extracting code from
programming tutorial videos. Proceedings of the
2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and
Software.

Yang, C., Thung, F., & Lo, D. (2022). Efficient Search of
Live-Coding Screencasts from Online Videos. 2022
IEEE International Conference on Software Analysis,
Evolution and Reengineering.

Zhao, D., Xing, Z., Chen, C., Xia, X., & Li, G. (2019). Ac-
tionNet: Vision-Based Workflow Action Recognition
From Programming Screencasts. 2019 IEEE/ACM
41st International Conference on Software Engineer-
ing (ICSE).

CodeSCAN: ScreenCast ANalysis for Video Programming Tutorials

277


