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Abstract: Motivated by the interest in elliptic curves both from a theoretical (algebraic geometry) and applied (cryp-
tography) perspective, we conduct a preliminary study on the underlying mathematical structure of these
mathematical structures. Hence, this paper mainly focuses on investigating artificial intelligence techniques
to enhance the efficiency of Schoof’s algorithm for point counting across various elliptic curve distributions,
achieving varying levels of success.

1 INTRODUCTION

Dating back to ancient Greece with the study of
Diophantine equations, elliptic curves have become
very interesting objects in modern mathematics1 due
to their intriguing underlying mathematical structure
and the wide range of applications. Elliptic curves
have been around from the foundations of geometry
to the proof of Fermat’s last theorem2 and further on,
often being defined as the solution set of a polynomial
system.

We further present two possible applications of
our current work, reflecting our dual focus on real
world scenarios and fundamental research related to
the mathematical description of elliptic curves.

Elliptic Curve Cryptography. Elliptic curve cryp-
tography (ECC) was originally introduced in (Miller,
1986; Koblitz, 1987) as a new public key cryptogra-
phy paradigm, while Lenstra’s factorization algorithm
(Lenstra, 1987) was the first reported use of elliptic
curves for cryptanalysis. Throughout the years, ECC
has drawn more and more attention due to its high
level security and an appealing characteristic related
to implementation efficiency: keys are shorter than
those used in other cryptographic algorithms.

On the other side, elliptic curves are of interest in
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the context of quantum safe algorithms, which have
attracted researchers’ attention during the last years.
We refer the reader to (NIS, ) for specific details.
Recently, vulnerabilities of post-quantum ECC algo-
rithms have been reported in the literature (Castryck
and Decru, 2023). Given this, we believe it is of great
interest to conduct a detailed analysis of the underly-
ing mathematical structure of elliptic curves to iden-
tify future proposals that could be suitable candidates
for replacing vulnerable schemes.

BSD Conjecture. We further delve into the theo-
retical side of our motivation. Let E(Q) and E(Fq)
be an elliptic curve over Q and Fq, respectively. The
Birch and Swinnerton-Dyer (BSD) conjecture (Birch
and Swinnerton-Dyer, 1965) establishes a connection
between the rank of E(Q), which reflects its alge-
braic characteristics, and an analytic feature of its L-
function. The authors used a computer to study the
values of the L-function at Re(s) = 1,

L(E,1) = ∏
q prime

q
|E(Fq)|

and observed that as the algebraic rank of E(Q) in-
creases, the number of points on E(Fq) also tends to
increase. More generally (He et al., 2022b), the L-
function of E(Q) can be expressed as an Euler prod-
uct for Re(s)≫ 0,

L(E,s) = ∏
q prime

Lq(E,s)−1,

where Lq(E,s) = 1−aq(E) ·q−1+q1−2s and aq(E) =
q+1−|E(Fq)|.
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Motivated by the BSD conjecture, Mestre
(Mestre, 1982) and Nagao (Nagao, 1992), followed
by subsequent researchers Elkies and Koblitz (Elkies
and Klagsbrun, 2020), and Bobba (Bober, 2013), in-
troduced certain sums (see (Kazalicki and Vlah, 2023,
Section 2) for a list of Mestre-Nagao sums) that are
heuristically expected to detect curves of high ana-
lytic rank. One such example is the following

S0(t) =
1

log t ∑
q<t

good reduction

aq(E) · logq
q

.

Given the above, it is of clear scientific interest to
study the cardinality of E(Fq) as the curve’s coeffi-
cients3 A and B are fixed and the prime varies.

Motivation. An AI-based method aiming at en-
hancing Schoof’s algorithm for finding the number of
points of an elliptic curve is proposed in (Maimuţ and
Matei, 2022). The authors focus on elliptic curves
of prime order. The obtained results can be of gen-
eral interest in terms of ECC algorithms and may also
be combined with already established algorithmic im-
provements to obtain better software implementation
timings.

Our method is based on the one presented in
(Maimuţ and Matei, 2022), while the main difference
between the two methods is given by the way we con-
structed our datasets. In (Maimuţ and Matei, 2022),
the dataset is composed of various triplets of the form
(p,A,B). In other words, both the prime p and the el-
liptic curve E(A,B) vary, whereas in the present work
we consider two separate situations. Firstly, we fix an
elliptic curve and then we study the behaviour of the
normalized Frobenius trace δ̃ of E(A,B) as the prime
p varies. Secondly, we fix the prime p and we ana-
lyze the value of δ̃ when the pair (A,B) takes various
values.

We choose this approach because, from a theo-
retical point of view, it should produce better results
than the more general setting found in (Maimuţ and
Matei, 2022). Also, we further divide the curves con-
sidered in two classes, namely the CM curves and
non-CM curves, as the distribution of the values of
|E(A,B| varies greatly for each class. The main ob-
jective of this paper is to improve the results found in
(Maimuţ and Matei, 2022) by considering particular
cases. The use of Machine Learning (ML) models is
motivated by the connection between Hasse’s bound
for δ̃ and the range of the activation functions used for
ML models.

3E(Fq) : y2 = x3 +Ax+B

Further Motivation. For the negative results we
present in some of our experiments, we provide the
reader with a twofold explanation.
1. Impossibility results, as well as unsuccessful di-

rections are often underestimated or rarely re-
ported in the literature (Howitt and Wilson, 2014;
Truran, 2013), leading to the risk of repeated er-
rors. We strongly believe that by sharing our out-
comes we can contribute to a collective learning
process. Our approach is in accordance with the
recommendation in (Tao, b) to document mistakes
in order to prevent their recurrence in the future.

2. In the majority of scientific reports and papers,
authors often depict their results as if they were
achieved in a straightforward manner. This
paradigm contributes to a distorted perception of
research (Medawar, 1963; Howitt and Wilson,
2014; Tao, a; Weidman, 1965), promoting the
misconception that failure and unexpected out-
comes might not be considered natural directions
of scientific attempts (Howitt and Wilson, 2014;
Schwartz, 2008). On the practical side, we aim
at providing readers with meaningful insights into
the design phase of elliptic curve-based crypto-
graphic primitives or protocols.

Related Work. A machine learning (ML) classifier
was used in (He et al., 2023) to predict the rank and
torsion order of an elliptic curve or a genus 2 curve.
In the case of elliptic curves over Q, rank 0 curves
were distinguished from those with rank 1 by logis-
tic regression with accuracy > 97%. Based on their
torsion order, E(Q) with order 1 where distinguished
from ones with order 2 with precision 99.9%. For
other classifications we refer the reader to (He et al.,
2023).

In (He et al., 2022a), the authors develop a ML
model that distinguishes between complex multiplica-
tion (CM) elliptic curves and non-CM elliptic curves
with a reported accuracy of 100%. This model takes
as input vectors containing the values of the Frobe-
nius trace δ for primes p up to 10000. This task is not
considered hard, since for a CM curve the probability
that δ = 0 is 50%, whereas for a non-CM curve it is
negligible.

The authors of (Alessandretti et al., 2023) con-
sider using ML models for predicting certain quan-
tities that appear in the BSD conjecture (Birch and
Swinnerton-Dyer, 1965), represented by the problem
of finding the number of points that have coordinates
in Q. When considering only the Weierstrass coeffi-
cients as input, the authors obtained unsatisfactory re-
sults. They also compare this task with the failure of
predicting prime numbers using ML. However, when
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also including the BSD quantities as input, the results
were more favourable.

In (He et al., 2022b), the authors uncovered an
intriguing oscillation pattern within the averages of
Frobenius traces among elliptic curves with consis-
tent rank and conductor values within a defined range.
This discovery emerged through the application of
ML and computational methods, yet it does not pro-
vide a mathematical explanation for the phenomenon,
dubbed “murmurations” for its resemblance to bird
flight patterns. Later, this bias was detected in more
general families of arithmetic L-fuctions (Sutherland,
2022; Lee et al., 2023). These discoveries lead to
the computations of a murmuration density, a notion
introduced in (Sarnak, 2023), for holomorphic new-
forms by Zubrilina (Zubrilina, 2023).

The classification of the rank of an elliptic curve
based on the trace of Frobenius endomorphism and its
conductor was studied in (Kazalicki and Vlah, 2023).
For this purpose the authors trained a deep convo-
lutional neural network (CNN). For comparison they
also trained a simple fully connected neural networks
Ω using the value of one of the six Mestre-Nagao
sums. According to (Kazalicki and Vlah, 2023) the
classifiers based on the first three Mestre-Nagao sums
have the best performance of all considered Mestre-
Nagao sums. Also, CNN-based classifiers were sig-
nificantly better than Ω. Inspired by this approach,
(Bujanović et al., 2024) investigates the detection of
elliptic curve ranks, for values 0 and 1 using S0(B)
and their conductor.

Structure of the Paper. In Section 2, we introduce
various notations and discuss elliptic curve prelimi-
naries. Our main results and related experiments are
discussed in Section 3: we tackle both the cases of
prime number variation over a fixed elliptic curve
and elliptic curve variation over a fixed prime num-
ber with an AI-based setup. We conclude and provide
the reader with future work ideas in Section 4.

2 ELLIPTIC CURVES
PRELIMINARIES

2.1 Notations

We further consider elliptic curves E in their reduced
Weierstrass form, i.e.:

y2 = x3 +Ax+B, (1)

defined over a finite field Fp, where p is prime. We
denote by E(A,B) the elliptic curve defined by the

pair (A,B). The notation |E(A,B)| refers to the car-
dinality of the elliptic curve E(A,B). For simplicity,
we further use δ instead of the well established aq(E)
in the literature.

A point (x,y) ∈ E(A,B) with coordinates in the
algebraic closure of Fp is called a torsion point if it
has finite order. We further denote by EA,B[ℓ] the ℓ-
torsion points of E(A,B).

The Jacobi symbol of an integer a modulo an in-
teger N is represented by JN(a).

The mean is denoted by µ, while the average ab-
solute deviation by AAD.

2.2 Group Order

We first recall Hasse’s theorem which we use through-
out the paper.
Theorem 2.1 (Hasse). The number of points n of an
elliptic curve defined over a finite field of size p satis-
fies the inequality

|n− p−1| ≤ 2
√

p. (2)

In (Schoof, 1985), Schoof published the first de-
terministic and polynomial-time algorithm that com-
putes the order of an elliptic curve defined over a finite
field. The algorithm starts off by using Theorem 2.1,
which provides an interval of possible values for the
order of the elliptic curve. That specific interval has
the width 4

√
p.

Since the order can be written as n = p+ 1− δ,
where δ is the trace of the Frobenius endomorphism
(Washington, 2008), the problem of finding the order
reduces to that of finding the value of δ. The next step
involves computing the value of δ modulo for some
primes, such that their product is greater than 4

√
p.

Finally, the Chinese Remainder Theorem (Washing-
ton, 2008) produces the value of δ, which is needed
for finding the order.

2.3 Complex Multiplication of Elliptic
Curves

Elliptic curves fall into two categories: with or with-
out complex multiplication. This classification has
important consequences for determining the cardinal-
ity of a given elliptic curve.
Definition 2.1. An elliptic curve defined over C has
complex multiplication (CM) if its endomorphism
ring satisfies the condition that End(E)⊋ Z.
Example. Consider the elliptic curve E1 defined over
C given by the equation y2 = x3 + x. The endo-
morhism φ : E1 −→ E1 given by φ(x,y) = (−x, iy)
is not a multiply-by-n map (i.e. the map that sends
P ∈ E1 to nP ∈ E1). Hence, E1 does have CM.
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(a) the error rate.
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(b) the reduced Hasse interval.
Figure 1: The relationship between the number of neural
network layers and the error rate/the reduced Hasse interval.

Definition 2.2. Let E be an elliptic curve given by
Equation (1), with A,B∈K, where K is a field of char-
acteristic not equal to 2 or 3. The j-invariant of E is
defined as

j(E) = 1728 · 4A3

4A3 +27B2 .

The j-invariant of an elliptic curve is a useful tool
that can also be used to decide whether a curve has
CM or not. In (He et al., 2022a), the authors list all
the values of the j-invariant over C that correspond to
elliptic curves that have CM, namely

0, 24 33 53, −215 3 53, 26 33, 23 33 113, −33 53,

33 53 173, 26 53,−215,−215 33, −218 33 53,

−215 33 53 113, −218 33 53 233 293.

Thus, one can instantly check this just by performing
an easy calculation.
Example. The elliptic curve E1(C) : y2 = x3 + x has
the j-invariant equal to 1728 and this value appears
in the previously mentioned list. This implies that E1
does have CM.
Example. The elliptic curve E2(C) : y2 = x3 + x+ 2
has the j-invariant equal to 432/7 and this value does
not appear in the list discussed above. This implies
that E2 does not have CM.
Remark. Consider a fixed elliptic curve E, defined
over Fp for some p, given by Equation (1). As the
value of the prime number p varies, different values

of n = |E(A,B)| will be obtained. Let δ = p+ 1− n
and δ̃ = δ/(2√p). Using Equation (2), the value of δ̃
must lie in the interval (−1,1), for any p.

The distribution of the values of δ̃ is significantly
different in the CM case compared to the non-CM
case. The theorem describing the distribution in the
CM case is due to Hecke (Hecke, 1918; Hecke, 1920)
and Deuring (Deuring, 1953; Deuring, 1955; Deur-
ing, 1956; Deuring, 1957).
Theorem 2.2. We define the set

P1 = {p ≤ x : δ̃ ∈ [α,β]\{0}}.
If E does have CM, then for asymptotically half of
the primes p we have δ̃ = 0. Also, for any interval
[α,β]⊂ [−1,1] we have

lim
x→∞

|P1|
π(x)

=
1

2π

∫ β

α

du√
1−u2

.

The result describing the distribution in the non-
CM case is known as the Sato-Tate conjecture (Tate,
1965) and was proven by Clozel, Harris, Shepherd-
Barron, Taylor (Barnet-Lamb et al., 2011).
Theorem 2.3. We define the set

P2 = {p ≤ x : δ̃ ∈ [α,β]}.
If E does not have CM, then for any interval [α,β] ⊂
[−1,1] we have

lim
x→∞

|P2|
π(x)

=
2
π

∫ β

α

√
1−u2 du.

2.4 Quadratic Twist

Let d ∈ F∗
p be a quadratic non-residue. The quadratic

twist of the curve E(A,B), denoted by Ed(A,B), is
defined as Ed(A,B) = E(Ad2,Bd3). We further state
two results that link the cardinalities of E(A,B) and
Ed(A,B).
Theorem 2.4. The number of points on E(A,B) over
Fp can be computed using the following formula

n = p+1+ ∑
x∈Fp

Jp(x3 +Ax+B).

Corollary 2.4.1. Let E be an elliptic curve over Fp
such that |E(A,B)|= p+1−δ and d ∈ F∗

p. Then the
number of points on the quadratic twist of E is given
by

|Ed(A,B)|= p+1− Jp(d) ·δ.
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Figure 2: The distribution of the δ̃ values for 5000 primes.

3 MAIN RESULTS

3.1 Our AI Setup

To achieve our proof of concept goal, in our imple-
mentation we initially generated the required elliptic
curves by means of Schoof’s algorithm. Based on
these examples, we trained, validated, and tested the
neural network model we chose. This network was
composed of 10 dense hidden layers with the number
of units decreasing from 512 to 8. Note that decreas-
ing the number of units, as stated before, is a straight-
forward technique used in AI algorithms. We used
70% of the data for training our model, 15% for val-
idation and 15% for testing. These values are the de-
fault ones used in practice when the size of the dataset
is relatively small (Burkov, 2019).

The reason we decided to have 10 hidden layers
was to obtain the best compromise in terms of error
rate and code optimization (especially with respect to
time complexity). In Figure 1a we provide the reader
with a graphical representation of the relationship be-
tween the number of neural network layers and the
error rate of the algorithm proposed in (Maimuţ and
Matei, 2022). Moreover, in Figure 1b we offer a
graphical representation of the relation between the
number of layers and the width reduction of Hasse’s
interval. Note that for 10 hidden layers, in (Maimuţ
and Matei, 2022) the authors obtain an interval re-

duction of 16% compared with the classical Schoof
algorithm. Therefore, 16% is our baseline for our ex-
periments.
Remark. We have also considered the use of Recur-
rent Neural Networks (RNNs), for which we have
provided as input the previous 100 values in the se-
quence of δ-values. The results obtained were very
similar to the ones presented, so we decided not to
further investigate this option.

3.2 Prime Number Variation over a
Fixed Elliptic Curve

Let (A,B) ∈ Fp × Fp be fixed and consider prime
numbers p ≥ 5 that define an elliptic curve E over
Fp. As stated in Section 2.3, we have two categories:
CM and non-CM curves.

In order to visualize these two different distri-
butions, we generated the δ̃ values of two different
curves, one that has CM (A = 1 and B = 0, see Sec-
tion 2.3) and another that does not have CM (A = 1
and B = 2, see Section 2.3), for 5000 primes p in Fig-
ure 2. Before plotting the results, we have also sorted
the δ̃ values in ascending order.

Remark. If E has CM, then we know that P(δ̃ = 0) =
P(n = p+1) = 50%. Also, if δ̃ = 0, then E is a super-
singular elliptic curve, which means that solving the
Discrete Logarithm Problem becomes an easier task.

3.2.1 Implementation

We ran the code for our algorithms on a workstation
using Windows 10 OS, with the following specifica-
tions: Intel(R) Core(TM) i9-7920X CPU 2.90GHz
with 24 cores and 64 Gigabytes of RAM. The pro-
gramming language we used for implementing our al-
gorithms was Python, and the AI library we chose was
TensorFlow.

20,000 40,000 60,000 80,000

0.5

0.6

0.7

0.8

0.9

Figure 3: Error rate versus data size.

The most time consuming part of our setup was
data generation. Therefore, to lower the time needed
to perform our experiments we tested the influence of
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the data size on the error rate of our proposal for a
non-CM curve with A = 1 and B = 2 using the neu-
ral network described in Section 3.1. We provide the
reader with a graphical representation of the relation-
ship between the data size and the error rate in Fig-
ure 3. It is easy to see that the error rate for the first
70000 primes (15%) is not significantly different from
the one for the first 80000 primes (15.2%). Regarding
the data generation running time, we have 7 days for
70000 primes and 9 days for 80000 primes. Hence,
we selected a data size of 70000 for our further exper-
iments.

The results of our experiments are graphically rep-
resented in Figure 6a. The experimental data is pro-
vided in the full version of the paper. In the case of
non-CM curves we obtain a reduction of Hasse’s in-
terval of 14.88%. Unfortunately, in this case the pro-
posal of (Maimuţ and Matei, 2022) (denoted by base-
line) has a better reduction (of 1.08% less). Also, we
report a running time of around 7-8 days.

For CM curves, the reduction is approximately
equal to 17.85%. Therefore, we obtain a better reduc-
tion (of 1.86% more) than the baseline. In this case,
we report an execution time of 4-5 days.

In these two cases, the probability that the order
|E(A,B)| satisfies the AI computed Hasse interval is
approximately 90%, which is also the success rate of
our probabilistic algorithm. The obtained probability
was computed by finding the number of testing exam-
ples, which satisfied this reduced interval.
Remark. Our experiments were ran in parallel, which
lead to an increased execution time of all the in-
stances. Moreover, our source code is unoptimized.
Hence, we expect better running times than the ones
reported in the current work.

3.3 Elliptic Curve Variation over a
Fixed Prime Number

Since CM curves are rare, we will no longer split the
curves based on this criterion. Therefore, we fix a
prime number p≥ 5 and consider all the pairs (A,B)∈
Fp ×Fp that define an elliptic curve E over Fp.

In order to determine how many such pairs exist,
we consider the case in which ∆ = 4A3 + 27B2 = 0
(mod p). Put differently, we find the number of pairs
(A,B) that need to be excluded. If A = 0, then this is
equivalent to B = 0. If we assume that A ̸= 0, then
∆ = 0 can be rearranged as

9B2

4A2 =
A
−3

.

Hence, we can see that this relation holds whenever
the term −3−1A is a quadratic residue modulo p.

The function f : Z∗
p −→ Z∗

p given by f (x) =

−3−1x is a group isomorphism, which means that
there are (p− 1)/2 values of A which will produce
a quadratic residue and there exist exactly two values
of B for each such value of A. In conclusion, there
are p pairs (A,B)∈ Fp×Fp for which ∆= 0 (mod p)
and the remaining p2− p pairs define an elliptic curve
defined over Fp.

Let S1[δ] and S2[δ] be the following sets

S1[δ] = {(A,B) ∈ Fp ×Fp : ∆ ̸= 0 and n = p+1−δ}
and

S2[δ] = {(A,B) ∈ Fp ×Fp : ∆ ̸= 0 and n = p+1+δ},
where δ ∈ {1,2, . . . ,⌊2

√
p⌋}.

The following lemma tells us that the distribution
of the number of curves of a given cardinality is sym-
metric. A visual representation of Lemma 3.1 is pro-
vided in Figures 4 and 5.
Lemma 3.1. The sets S1[δ] and S2[δ] have the same
cardinality.

Proof. Let d ∈ F∗
p such that Jp(d) = −1. Using

Corollary 2.4.1 we obtain that for any curve E(A,B)∈
S1[δ], i.e |E(A,B)| = p + 1 − δ, its quadratic twist
Ed(A,B) has cardinality p+1−Jp(d) ·δ = p+1+δ,
and thus Ed(A,B) ∈ S2.

3.3.1 Implementation

The results of our experiments are graphically repre-
sented in Figure 6b. The experimental data is pro-
vided in the full version of the paper. We can see that
we obtain a negative result in this case. Namely, a
reduction of 14.55% for 3-digits, 14.85% for 4-digits
and 14.99% for 5-digits. This translates into 1.19%
less than the baseline. The success rate of our ap-
proach remains approximately 90%. Note that in the
case of 5 digits primes, we ran the code for 4-5 days.

4 CONCLUSIONS

In this work, we explored AI techniques to enhance
the efficiency of Schoof’s algorithm across various el-
liptic curve distributions. We presented experimental
results for two cases: prime number variation over a
fixed elliptic curve and elliptic curve variation over a
fixed prime number. We obtained different success
rates and reported them.
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Figure 4: The distribution of S1[δ] and S2[δ] for p = 389.
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Figure 5: The distribution of S1[δ] and S2[δ] for p = 397.
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Figure 6: Hasses’s interval reduction.

Future Work. A natural extension of the current
work is to try and adapt our methods to hyperelliptic
curve point counting algorithms for genus 2 (Gaudry
and Schost, 2012) or 3 (Abelard, 2018) curves.

An interesting research direction stated in (Batter-
man et al., 2023) is the use of machine learning tech-
niques to provide support (or not) for the Bias Con-
jecture4.

We consider applying more advanced AI tech-
niques for the mathematical computations inside
Schoof’s algorithm as another compelling future
work idea.

Finally, we believe that conducting timing com-
parisons between our improved Schoof algorithm and
the SEA algorithm5 (Dewaghe, 1998) is an intriguing
direction for future investigation.
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