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Abstract: Topological maps are increasingly favored in robotics for their cognitive relevance, compact storage, and ease

of transferability to human users. While these maps provide scalable solutions for navigation and action plan-

ning, they present challenges for tasks requiring fine-grained self-localization, such as object goal navigation.

This paper investigates the action planning problem of active self-localization from a novel perspective: can

an action planner be trained to achieve fine-grained self-localization using coarse topological maps? Our

approach acknowledges the inherent limitations of topological maps; overly coarse maps lack essential infor-

mation for action planning, while excessively high-resolution maps diminish the need for an action planner.

To address these challenges, we propose the use of egocentric topological maps to capture fine scene varia-

tions. This representation enhances self-localization accuracy by integrating an output probability map as a

place-specific score vector into the action planner as a fixed-length state vector. By leveraging sensor data

and action feedback, our system optimizes self-localization performance. For the experiments, the de facto

standard particle filter-based sequential self-localization framework was slightly modified to enable the trans-

formation of ranking results from a graph convolutional network (GCN)-based topological map classifier into

real-valued vector state inputs by utilizing bag-of-place-words and reciprocal rank embeddings. Experimental

validation of our method was conducted in the Habitat workspace, demonstrating the potential for effective

action planning using coarse maps.

1 INTRODUCTION

Topological maps are widely utilized in robotics due

to their higher cognitive relevance compared to ge-

ometric maps, compact storage requirements, and

ease of transferability to human users. Numerous

researchers have investigated methods for creating

topological maps and applying them to navigation and

action planning. These maps offer lightweight, scal-

able solutions that are simpler than geometric maps

and require significantly less storage. A topological

map typically consists of coarsely quantized region

nodes and a set of edges representing relationship be-

tween these regions, providing a concise representa-

tion of the workspace. This region-based representa-

tion is robust against minor errors in self-localization,

and as long as the estimation remains within the same

region node, the impact on navigation performance is

minimal (Ulrich and Nourbakhsh, 2000; Ranganathan

and Dellaert, 2008; Lui and Jarvis, 2010). However,

this error tolerance poses challenges for tasks requir-

ing fine-grained self-localization, such as safe driv-

Figure 1: Topological navigation using ego-centric topolog-
ical maps. Left: Conventional world-centric map. Right:
The proposed ego-centric map.

ing. In fact, much of the past research on topological

navigation has relied on the combined use of accurate

metric maps or assumed the availability of infrastruc-

ture such as Global Positioning Systems (GPS). Lit-

tle progress has been made in achieving fine-grained

self-localization using only coarse topological maps,

with (Chaplot et al., 2020) being a notable exception,

though its active vision does not primarily focus on

active localization.

In this paper, we focus on the action planning

problem active self-localization from the novel per-
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spective of topological map-based self-localization,

specifically exploring the research question: “Can an

action planner be trained to achieve fine-grained self-

localization using coarse topological maps?” This ap-

proach is not universally applicable, as the effec-

tive range of the given topological map has its lim-

its: On one hand, overly coarse topological maps fail

to provide useful information for the action planner.

Conversely, when the resolution is already fine, self-

localization becomes accurate enough to make action

planning trivial.

Thus, we aim to develop an excellent action plan-

ner while also investigating its limitations. Regard-

ing the development, our key insight is to use egocen-

tric topological maps—rather than traditional world-

coordinate-based maps—to capture fine scene varia-

tions and achieve fine-grained self-localization (Fig.

1). Then, the output probability map in the form of a

place-specific score vector is integrated into the action

planner as a fixed-length state vector. By leveraging

sensor data and action feedback, the system improves

self-localization accuracy and converges toward an

optimal estimation.

As a technical contribution, we present a novel

self-localization framework that employs a classifier

as the front-end and a sequential state estimator as the

back-end. This approach enables the integration of

graph convolutional network (GCN) classifiers, typi-

cally used for topological map recognition, with the

de facto standard particle filter for sequential self-

localization into a unified pipeline. This integration is

achieved by utilizing bag-of-place-words and recipro-

cal rank vectors as intermediate representations. The

experimental investigation has been validated in the

Habitat workspace (Szot et al., 2021).

The contributions of this paper are summarized

as follows: (1) We formalize the active localiza-

tion problem based on a novel egocentric topologi-

cal map that does not require pre-computation and

maintenance of world-centric maps. (2) This ap-

proach enables fully incremental real-time active lo-

calization, allowing localization, planning, and plan-

ner training to be completed within the real-time bud-

get of each viewpoint. (3) By utilizing coarse, region-

based topological maps, we achieve fine-grained self-

localization beyond the region level, demonstrating

state-of-the-art self-localization performance as val-

idated through experiments.

2 RELATED WORK

Topological navigation is a behavior adopted by var-

ious animal species, including humans (Leonard and

Durrant-Whyte, 1991)(Thrun et al., 2002). A topo-

logical map models the environment as a graph,

where only characteristic scene parts are encoded;

thus, it provides a much more compact representation

than metric maps. This is in contrast to geometric

map models, such as grid maps, where raw data and

geometric features (lines, edges, etc.) are used to rep-

resent the environment as a set of coordinates of ob-

jects or obstacles. Furthermore, topological maps are

one of the most effective means of dealing with uncer-

tainties in visual robot navigation (Brooks, 1985), and

various frameworks have been proposed, including

geometric features (Stankiewicz and Kalia, 2007)(Ta-

pus and Siegwart, 2008)(Nüchter and Hertzberg,

2008)(Tapus and Siegwart, 2008), appearance fea-

tures (Lui and Jarvis, 2010)(Lowe, 1999)(Ulrich and

Nourbakhsh, 2000)(Mikolajczyk et al., 2005), vi-

sual pedestrian localization (Zha and Yilmaz, 2021),

and matching techniques (Li and Olson, 2012)(Cum-

mins and Newman, 2008)(Ranganathan and Dellaert,

2008)(Aguilar et al., 2009)(Neira and Tardós, 2001).

However, most rely on globally consistent world-

centric maps; thus, they are not applicable to egocen-

tric maps. Recently, impressive methods for active

localization have been proposed for cases using grid

data, such as images (Chaplot et al., 2018); however,

active localization for non-grid data, such as topologi-

cal maps, is still largely unexplored. To the best of our

knowledge, this is the first study to develop a fully

incremental, real-time active localization framework

that does not rely on any globally consistent world-

centric models to be pre-computed or maintained.

The localization applications considered in this

study pertain primarily to semantic localization, a re-

cently emerging domain-invariant localization appli-

cation (Schönberger et al., 2018). In (Schönberger

et al., 2018), 3D point clouds and semantic features

were used for highly robust and accurate semantic

localization, and novel deep neural networks were

employed to embed the geometric and semantic fea-

tures. In contrast, we explored a purely monocular

localization problem that did not rely on 3D mod-

els/measurements. In (Yu et al., 2018), the seman-

tic region edges provided by semantic segmentation

were used as features. In contrast, we do not rely

on the availability of precise semantic segmentation;

instead, we use only the coarse semantic, size, and

location attributes of the scene parts. In (Gawel

et al., 2018), a semantic graph was employed as a

scene model to achieve accurate localization via graph

matching in outdoor scenes. However, this method as-

sumes perfect semantic segmentation. Furthermore,

they rely on costly graph matching, and their con-

siderable computational burden may limit their scal-
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ability. In (Guo et al., 2021a), semantic histograms

were extracted from a semantic graph map to achieve

a highly efficient topological localization. However,

this method assumes the availability of discrimina-

tive scene graphs and may encounter difficulties in se-

mantically poor domains (also known as bucolic en-

vironments (Benbihi et al., 2020)). In contrast, our

active localization approach relies only on very sim-

ple semantic and spatial features, and therefore robust

against segmentation noise and has good generaliza-

tion performance. Importantly, egocentric topologi-

cal maps do not require the management of maps in a

world-centered coordinate system, making them nat-

urally compatible with map-less navigation (e.g., ob-

ject goal navigation) (Chaplot et al., 2020).

3 APPROACH

3.1 System Overview

Active localization typically comprises two main

modules: passive localization and action planning.

Passive localization is responsible for estimating the

robot’s state (e.g., viewpoint) given the latest ego-

motion and perceptual measurements. The action

planner is responsible for determining the optimal

next-best-view action, given the latest state estimate,

by simulating possible future robot-environment in-

teractions. These two submodules are described as

follows:

We formulate passive localization as a place clas-

sification problem to classify a given egocentric topo-

logical map into predefined place classes. Note that

this is one of the most scalable formulations of the

self-localization problem (Lowry et al., 2015), among

other formulations such as image retrieval, multiple

hypothesis tracking, geometric matching, and view-

point regression. For example, in (Weyand et al.,

2016), a planet-scale place classification problem was

considered using adaptive partitioning of a large-scale

workspace (i.e., planet) into place classes. For sim-

plicity, in this study, the grid-based place partition-

ing in (Kim et al., 2019) is adopted, as it allows the

incremental addition/deletion of place classes and is

thus more suitable for autonomous robotics applica-

tions. As the input modality for the robot, (Kim et al.,

2019) assumes the use of 3D LiDAR, whereas we use

an RGB camera. Nevertheless, the movement of the

robot on a two-dimensional plane in a top-down view

coordinate system is common to both, and thus the

2D grid partitioning from (Kim et al., 2019) can be

directly applied to our grid partitioning.

Action planning is formulated as a discrete time-

Figure 2: Scene parsing. Left: SGB (Tang et al., 2020).
Right: Ours.

discounted Markov decision process (MDP) (Sutton

and Barto, 1998). A discrete time-discounted MDP is

a general formulation consisting of a set of states S,

a set of actions A, a state-transition distribution P, a

reward function R, and a discount rate γ. In our par-

ticular scenario, the state s ∈ S was estimated using

a passive localization module. An action consists of

turns with a rotation angle r and forward movements

by a distance f . A reward was provided for success-

ful localization at the end of each training episode.

Specifically, an episode consists of L=4 repetitions of

sense-plan-action cycles, and the agent receives at the

final viewpoint in each episode, a reward value of r=1

if the top-1 ranked place class is consistent with the

ground truth or r=-1 otherwise.

3.2 Active Localization with

Ego-Centric Topological Maps

Similarity-preserving mapping from an image to a

scene description is an important requirement for ac-

tive localization. For our egocentric topological map,

graphs with similar node/edge attributes must be re-

produced from similar viewpoints.

This issue is most relevant to scene-graph gener-

ation (Tang et al., 2020), which aims to parse an im-

age into a scene graph. However, most of these exist-

ing approaches are optimized for scene understanding

and related applications and not for localization appli-

cations. In fact, our preliminary experiments revealed

that their performance in localization applications is

often extremely limited.

Figure 2 shows the results of our evaluation of

the state-of-the-art scene parsing in (Tang et al., 2020)

and the results of our three-step approach. Although

the former method can precisely describe the causal

relationships between parts, it is often not invariant

across different viewpoints. By contrast, our ap-

proach is designed to increase invariance at the ex-

pense of distinctiveness.

We focused on invariance rather than translation

accuracy to cross-view domain changes, and we fol-
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lowed a conservative three-step heuristic method (Zhu

et al., 2022), including (1) image segmentation into

part regions (i.e., nodes), (2) part region descriptions,

and (3) inter-part relationship inferences (i.e., edges),

as detailed below.

The part segmentation step segments an input im-

age of size 256×256 pixels into subregions using the

semantic segmentation model in (Zhou et al., 2017).

This model consisted of a ResNet module (Cao et al.,

2010) and a pyramid pooling module (Zhao et al.,

2017) trained on the ADE20K dataset.

The part description step describes each part of

a region using a combination of semantic and spa-

tial descriptors. Then, we further categorize the se-

mantic labels output using the semantic segmentation

method in (Zhou et al., 2017) into 10 coarser meta cat-

egories, including “wall, ” “floor, ” “ceiling, ” “bed,

” “door, ” “table, ” “sofa, ” “refrigerator”, “TV, ”

and “Other.” Regions smaller than 100 pixels in area

were considered dummy objects and were not used

as graph nodes. For the spatial descriptor, the spatial

attributes of a part region are compactly represented

by a “size/location” category (Cao et al., 2010). First,

each part was categorized into one of three categories

with respect to the “size” category. A size category

is determined according to the area of the bound-

ing box, including “small (0)” S < So, “medium (1)”

So ≤ S < 6So, and “large (2)” 6So ≤ S.” So is a con-

stant corresponding to 1/16 of the image area, set

based on the simple idea of dividing the image into a

4x4 grid. Then, the bounding box center location was

discretized using a grid of 3×3=9 cells, and we used

the cell ID (∈ [0,8]) as the location category. Note

that the above attributes are all human-interpretable

semantic categories and do not introduce complex ap-

pearances or spatial attributes, such as real-valued de-

scriptors. Finally, a node feature is defined as a one-

hot vector of dimensions 10×3×9= 270 in the com-

bined space of the semantic, size, and location cate-

gories.

The edge connection step connects node pairs that

are spatially close to each other with edges. Specifi-

cally, a part pair was considered to be in spatial prox-

imity if the bounding boxes overlapped. A training set

of ego-centric topological maps was then fed into the

training set of a graph neural network. For the net-

work architecture, a graph convolutional neural net-

work (GCN) in a deep graph library (Wang et al.,

2019) was employed. The number of layers of the

GCN was set to two. This GCN is specifically used to

classify input, place-specific ego-centric topological

maps into several prototype place classes. This clas-

sification task essentially follows the classical proto-

type method in the field of computer vision. However,

in our application, an explicit set of prototype classes

is not manually provided, so the robot must define

them in an unsupervised manner. The simple way

to define this is to perform unsupervised clustering

of the training ego-centric topological maps, sampled

from the target workspace, into K groups, treating

each cluster as a prototype class. Following this sim-

ple idea, we define K prototype place classes. As a re-

sult, the classification output from methods like GCN

is typically represented as class-specific rank vectors.

From the perspective of information fusion, it is com-

mon to express this as a class-specific reciprocal rank

vector. This can be considered as a score-based bag-

of-place-words representation, where the score values

in this case are reciprocal rank values. Specifically,

in our implementation, we generate place prototypes

by dividing the workspace into K coarse grid cells

in an overhead coordinate system. Figure 3 shows

the test view sequence and the classification results

of the graph neural network. It can be observed that

prototype places with similar scores are included for

spatially adjacent viewpoints, and they exhibit high

similarity. We exploit this fact to compress the in-

finitely growing ego-centric topological maps into a

graph neural network.

It can be seen that prototypes with similar score

values are included for spatially adjacent viewpoints,

and have high similarity. We exploit this fact to com-

press an infinitely increasing egocentric topological

map into a graph neural network. Nevertheless, it can

be also seen that there are subtle differences in the

relative strengths of the scores between the different

views. We utilize such subtle differences as cues to

discriminate between different scenes.

Another issue is that the outputs of the graph neu-

ral network are usually not calibrated as a proper

probability function. Here, we propose a graph neu-

ral model as the ranking function. This is motivated

by the fact that it is common to use a neural network

as a classifier or ranking function rather than a proba-

bility regressor, and there is considerable experimen-

tal evidence for its effectiveness (Krizhevsky et al.,

2012). Specifically, we interpret the class-specific

probability map output from the graph neural network

as a class-specific reciprocal rank (RR) vector derived

from the field of multimodal information fusion (Cor-

mack et al., 2009). The RR vector is a class-specific

score vector and can be used as a state vector of the

given input graph. Note that the time cost for trans-

forming a class-specific probability vector into a re-

ciprocal rank vector is on the order of the number of

place classes and is very low.

A particle filter-based sequential passive localiza-

tion method was employed to update the belief of
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Figure 3: Seven spatially adjacent input images along the
robot trajectory and their bag-of-words representation: The
graph shows the time difference of bag-of-words histogram
h[t](t = 1,2,3,4,5,6,7) of viewpoint sequence of length 7.
∆h[t]=h[t +1]−h[t](t=1,2,3,4,5,6). Among the elements of
∆h[t], three visual words with small absolute values of time
difference are chosen, and their prototype ego-centric topo-
logical maps are shown in the figure.

the robot’s state (i.e., 3dof pose) incrementally in real

time, given the latest observations and actions at each

viewpoint. We slightly modified the standard imple-

mentation of the particle filter localization (Dellaert

et al., 1999) for our application. First, because the

measurement is a class-specific reciprocal rank vec-

tor and not a likelihood vector, the weight of each

particle was updated using the reciprocal rank fusion

rule (Cormack et al., 2009) rather than the Bayesian

rule. Next, the classification results were obtained for

each class by max pooling the weights of the particles

belonging to that class, regardless of their bearing at-

tributes. The number of particles was set to 10,000

for every Habitat workspace. The detailed algorithm

of reciprocak rank-based particle filter (RRPF) is pro-

vided in Algorithm 1.

3.3 Incremental Training of Action

Planner

In this section, the integration of incremental plan-

ner training into an active localization pipeline is

described. First, we extended the BoW concept

such that the output of the graph neural network

can be interpreted as a BoW descriptor. Subse-

quently, we reformulated the planner training task

as nearest-neighbor-based Q-learning in (Sutton and

Barto, 1998), and further extended it to an incre-

mental training scheme by introducing an incremen-

tal BoW-based nearest-neighbor engine. As a result,

we obtain a novel fully-incremental framework that is

able to complete not only visual recognition and ac-

tion planning, but also planner training can also be

completed within each viewpoint’s real-time budget.

BoW is a popular scene descriptor in robotics. It

describes a given input scene using an unordered col-

lection of visual words {(wi,si)}
N
i=1. A vocabulary

function f , typically a k-means dictionary (Sivic and

Zisserman, 2003), should be pretrained to map an

ego-centric topological map to visual words {wi}
N
i=1

with its importance score si representing how much

each word wi contributes to the scene representation.

However, applying a BoW descriptor to structured

scene models like ego-centric topological maps is not

a trivial task, as the BoW descriptors always ignore

the relationship between scene parts. Typical vocab-

ularies such as the k-means dictionary (Cummins and

Newman, 2008) assume one-to-one mapping from a

scene part to a visual word and are thus not applica-

ble to structured data. Here, we propose to reuse the

graph neural network as the vocabulary. Specifically,

we viewed a collection of N place classes {wi}
N
i=1,

with class-specific reciprocal rank scores {si}
N
i=1 pro-

vided by the graph neural network as a collection of

visual words. Note that the resulting BoW descriptor

is now a fixed-length vector and transferable to many

other machine learning frameworks.

Q-learning is a standard RL framework for rein-

forcement learning (Sutton and Barto, 1998). It aims

to learn an optimal state-action map through robot-

environment interactions with delayed rewards. The

naive implementation of the state-action-value func-

tion requires unacceptable spatial costs, particularly

when the state space becomes high dimensional. To

address this issue, researchers have developed fast ap-

proximation variants for Q-function. Nearest neigh-

bor Q-learning (NNQL) (Shah and Xie, 2018) is a re-

cent example of such a variant. It approximates the

state-action value function using the nearest neighbor

search. Recall that the Q-function is updated in the

following formula (Sutton and Barto, 1998): Q(st ,a)
← Q(st ,a) + α [rt+1 + γmaxp∈A Q(st+1, p) - Q(st ,a)].
In this updated formula, the number of times that

the Q function is referenced is once for calculat-

ing Q(st ,a) and |A| times for calculating Q(st+1, p).
Therefore, the nearest-neighbor search must be per-

formed (|A|+ 1) times for each viewpoint.

We replaced the nearest neighbor search in NNQL
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Algorithm 1: Reciprocal Rank-based Particle Filter Algorithm.

1: Initialization:

2: Randomly generate particles from a uniform distribution (e.g., 10,000 particles).

3: Initialize each particle’s pose as (location,orientation), and set the initial score to 0.

4: Motion Model Application:

5: Update the origin pose based on the action index.

6: Apply the same transformation to each particle to generate new pose hypotheses.

7: Convert rotation angles to radians.

8: Compute the new positions using trigonometric functions.

9: Observation Model Application:

10: For each particle, determine the class ID within the environment based on the particle’s new

pose (location and orientation).

11: Update the particle’s score based on the observations.

12: Score Update:

13: For each class, update the score using the Reciprocal Rank Fusion (RRF) formula:

score +=
1

RANK+ 1

14: Where RANK is the ranking position of the class.

15: Reflect the updated scores in the reciprocal rank vector.

16: Resampling:

17: Generate a new set of particles based on the updated scores.

with BoW retrieval. Specifically, each database ele-

ment is represented by a triplet consisting of state s,

action a, and value q. Then, the Q-value for a given

state-action pair (s,a) is stored in an inverted index,

which is built independently for each possible action

a, using each word w that makes up the state s as

an index. The optimal next-best-view action a∗ for

some state s is chosen in the following steps. First,

the database for each action a was retrieved using s as

a query, yielding a shortlist of the most relevant k = 4

database items. The value of each state-action pair

(s,a) was then computed by averaging the k Q-values.

As mentioned above, the Q-value is obtained for each

candidate of the state-action pair (s,a). Note that by

building a temporary hash table that maps score val-

ues to items given a search result, the shortlist length

and cost for finding the top-k nearest neighbor items

can be made independent of the database size and

very small, respectively.

4 EXPERIMENTS

In this section, we describe the experiments we per-

formed and report and analyze the results. In sum-

mary, we evaluated active localization frameworks in

a variety of challenging and crowded indoor environ-

ments and found that the proposed method with the

simplest ego-centric topological maps already signif-

icantly outperformed state-of-the-art techniques for

semantic localization.

Figure 4: Experimental environments.

Experiments were performed using the 3D pho-

torealistic simulator Habitat-Sim (Szot et al., 2021).

Five workspaces, “00800-TEEsavR23oF,” “00801-

HaxA7YrQdEC,” “00802-wcojb4TFT35,” “00806-

tQ5s4ShP627,” and “00808-y9hTuugGdiq,” from the

Habitat-Matterport3D Research Dataset (HM3D) was

imported into Habitat-Sim. The robot workspace is

partitioned by a grid-based partitioning method with

spatial resolution of 2 [m] and 30 [deg]. As a results,

the above workspaces are partitioned into 576, 648,

720, 336, and 576 place classes, respectively. A bird’s

eye view of the robot workspaces are shown in Fig. 4.

The localization performance was evaluated using

top-1 accuracy. Recall that the particle filter is em-

ployed to extend the single-view GCN-based place

classification to sequential localization (III-C). The

top-1 accuracy was calculated by evaluating whether

the top-1 classes of the class-specific rank values out-

put by the particle filter were consistent with the

ground-truth class for each test sample.

The number of epochs was set to 5. The batch size

was 32. The learning rate was 0.001. For each dataset,
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the GCN classifier was trained using a training set

consisting of ego-centric topological maps with class

labels as supervision. In reinforcement learning, the

planner is trained using 10,000 training episodes by

default. The number of sense-plan-action cycles per

episode was L=4. At the final viewpoint in each

episode, the reward function returns a reward of +1

if the class top-1 ranked by the particle filter is con-

sistent with the ground truth; otherwise it returns a re-

ward of -1. The hyperparameters for the NNQL train-

ing were set as follows: The number of iterations is

10,000. The learning rate α is 0.1. The discount fac-

tor γ is 0.9. During action planning, the action with

the highest Q value is usually selected, but actions are

randomly selected until the 25th episode, and there-

after, actions are determined by the ε-greedy algo-

rithm, where ε = 1/(0.1 ∗ ([episodeID]+ 1)+1).
The proposed method was compared with the

baseline and ablation methods. To date, active lo-

calization using first-person-view scene graphs like

ego-centric topological maps has not been explored.

To address this, the baseline method was built by re-

placing an essential module of the proposed frame-

work, the GCN with ego-centric topological map,

with a state-of-the-art semantic histogram embedding

in (Guo et al., 2021b). In the semantic histogram

method, each graph node votes to generate a his-

togram of length D3, where D = 10 denotes the num-

ber of semantic labels. The histogram bin ID is deter-

mined by concatenating the length three sequence of

semantic labels from three graph nodes: the node of

interest, an adjacent node (a child), and the child’s

adjacent node (a grandchild). Our own implemen-

tation of the Python code was used. Two ablation

methods, single-view localization and passive multi-

view localization frameworks, were compared with

the proposed active localization (i.e., active multi-

view frameworks). The passive multi-view frame-

work differs from the proposed framework in that it

does not perform action planning but determines ac-

tions randomly. The single-view framework termi-

nated the localization task from the first viewpoint for

each episode.

The performance results are summarized in Ta-

ble 1. As expected, the proposed active localiza-

tion framework clearly outperformed the two abla-

tion methods in all Habitat workspaces. The pro-

posed method is competitive and outperforms state-

of-the-art passive localization, although it uses a sim-

ple topological map as the input modality. Further-

more, the proposed method exhibits a more stable

active localization performance than the baseline se-

mantic histogram framework. This may be because

the combination of graph neural networks and ego-

Table 1: Performance results.

800 801 802 806 808

GCN

active (Ours.) 67.8 69.2 68.3 68.8 61.6

passive 58.7 57.0 51.5 62.3 52.4

single-view 50.6 50.2 39.1 50.9 38.4

sem. histo.

(Guo et al.,

2021b)

active N/A 40.4 39.3 54.3 N/A

passive N/A 34.4 32.7 48.6 N/A

single-view N/A 26.0 19.0 31.6 N/A
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Figure 5: Time cost per sense-plan-acition cycle. A: Prepro-
cessing. B: Particle filter. C: Action planning. D: Planner
retraining.

centric topological maps captures better contextual

information from simple semantic scene graphs.

Figure 5 shows timing performance. perfor-

mance (CPU: Core i7-11700K, programming lan-

guage: C++) As can be seen, the computational cost

of the proposed method is sub-constant and real-time,

at least up to 10000 episodes. As expected, fully-

incremental and real-time processing is achieved.

Figure 6 shows examples of success and failure.

As shown in the figure, the robot’s movement to-

ward viewpoints with a high concentration of natu-

ral landmark objects often improves the localization

performance. For example, from the first viewpoint,

the robot was facing a wall and could not observe

any valid landmarks, but from the next viewpoint, by

changing the direction of travel, it was able to detect

a door, improving the self-localization accuracy using

this landmark object. A typical example of a failure

is shown in Fig. 6. In this case, the majority of view-

points in the episode faced nondescript objects, such

as walls and windows. Notably, the recognition suc-

cess rate tended to decrease when the viewpoint was

too close to the object and the field of view was nar-

rowed.

One of the novelties of the proposed framework

is that it allows not only visual recognition and ac-

tion planning but also planner training to be com-

pleted within the real-time budget of each viewpoint.

We conducted additional experiments to demonstrate

this performance. In this additional experiment, plan-

ner training is performed while the robot performs

long-term navigation using a random environment ex-

ploration algorithm. At that time, as in the previ-

ous experiments, we will repeat an episode consist-
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(a) success examples.

(b) failure examples.

Figure 6: Examples of L repetitions of sense-plan-action
cycles.

ing of L = 4 sense-plan-action cycles. Also, at the

beginning of the episode, the particle filter is initial-

ized. Note that, unlike the previous experiments, the

final robot pose of one i-th episode becomes the initial

robot pose of the next (i+1)-th episode. After devel-

oping the first version of the long-term exploration al-

gorithm, it was observed that the robot frequently gets

stuck in a narrow depression formed by an obstacle in

the workspace, and wasted many training episodes.

Therefore, we modified the exploration algorithm so

as to reduce the chance of getting stuck. Specifically,

we modified the action set to include more translation

actions among the nine actions, by replacing some ro-

tate actions with translation actions. The modified ac-

tion set consists of the following pairing of rotate r

[deg] and forward f [m]: (r, f )∈{ (0, 0.5), (0, 1.5),

(30, 0.3), (-35, 0.3), (80, 1), (-85, 1), (140, 0), (-145,

0), (180, 0)}. We trained over 10,000 episodes and

evaluated over 1000 episodes, using the workspace

“00801-HaxA7YrQdEC”. The top-1 accuracy result

was 69.2. By modifying the action set, we were able

to explore the map evenly, which resulted in high re-

sults. A closer look at the results shows that when

the test was performed only with coordinates that the

robot had experienced, the result was 78.2, and in all

other cases it was 65.1.

The total distance traveled by the robot during this

training was 4598.3 meters. This time, we have fine-

tuned the action set to get good results on the cur-

rent workspace, so it is not clear whether this method

generalizes to other environments and it is a subject

for future research. A future challenge is to develop

a general-purpose action set that can be generalized

to various environments. Another challenge is to de-

velop a method that allows the robot to successfully

pass through narrow passages. Ensemble learning is

a promising direction for further improving perfor-

mance (Islam et al., 2003).

In conclusion, the proposed method with fully

incremental real-time planner training outperforms

state-of-the-art approaches despite the fact that it uses

simple semantic features.

5 CONCLUSIONS

In this paper, we proposed a practical solution for

trainable active localization using topological maps.

The key idea of the proposed method is to employ

a novel ego-centric topological map rather than re-

quiring precomputation and maintenance of a world-

centric map. The collection of ego-centric maps,

which increases incrementally and unlimitedly in

proportion to the robot’s travel distance, is com-

pressed to a fixed size using a graph neural net-

work, and then transferred to a novel incremental

action planner and planner training module. As a

result, fully-incremental real-time active localization

was achieved, allowing localization, planning, and

planner training to be completed within the real-time

budget of each viewpoint. We verified the scala-

bility, incrementality, real-time nature, and robust-

ness of our method through training scenarios involv-

ing many intermittent navigations and unprecedented

long-distance navigations.
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