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Abstract: Cross-view image localization, which involves predicting the view of a robot with respect to a single-view

landmark image, is important in landmark-sparse and mapless navigation scenarios such as image-goal nav-

igation. Typical scene graph-based methods assume that all objects in a landmark image are visible in the

query image and cannot address view inconsistencies between the query and landmark images. We observed

that scene graph augmentation (SGA), a technique that has recently emerged to address scene graph-specific

data augmentation, is particularly relevant to our problem. However, the existing SGA methods rely on the

availability of rich multi-view training images and are not suitable for single-view setups. In this study, we

introduce a new SGA method tailored for cross-view scenarios where scene graph generation and scene syn-

thesis are intertwined. We begin with the fundamental pipeline of cross-view self-localization, and without

loss of generality, identify several pipeline variants. These pipeline variants are used as supervision cues to

improve robustness and discriminability. Evaluation in an image-goal navigation scenario demonstrates that

the proposed approach yields significant and consistent improvements in accuracy and robustness.

1 INTRODUCTION

Neural radiance field (NeRF) and other view synthe-

sis methods have made rapid progress in recent years

(Zhan et al., 2023), becoming dominant approaches in

the field of robot self-localization. These approaches

are particularly powerful in the context of cross-view

localization, which involves large viewpoint changes,

because they can generate synthetic images that show

unfamiliar scenes from different viewpoints. Such

cross-view localization is particularly relevant for em-

bodied AI scenarios, such as the recently emerged im-

age goal navigation. For example, in (Mezghani et al.,

2022), only one landmark image (i.e., the goal) is pro-

vided at the start of navigation, and the goal is to find

the desired goal pose based on that landmark image.

Thus, the final stage of navigation requires the robot

to identify a landmark view and localize its viewpoint

relative to the landmark.

An alternative state-of-the-art approach to cross-

view self-localization is the scene graph approach.

Graph-based scene representations have recently

proven effective in such challenging cross-view set-

tings. In the field of robot self-localization, several

prior studies have reported that describing a scene

using a collection of scene parts rather than a sin-

gle scene-wide feature is more robust to viewpoint

changes, and scene graphs can be seen as an exten-

sion of the former approach to describe the relation-

ships between scene parts. For example, in (Parihar

et al., 2021), the authors studied self-localization from

opposite viewing directions as a typical cross-view

self-localization scenario in robot car applications and

proved that scene graph-like descriptors are effective

in dealing with such challenging cross-view settings.

NeRF and scene graphs have developed indepen-

dently, and approaches that integrate both to tackle the

unified problem of cross-view localization have been

largely overlooked. Although these two approaches

have conceptually complementary attributes, namely

view synthesis and part-based representation, fusing

the two is not a simple problem. Common scene

graph-based methods assume that all objects in the

landmark image are visible in the query image. How-

ever, it is not uncommon for certain objects to be

missing in the query image, leading to mismatches

in scene parsing between training and test images.

For example, (Gawel et al., 2018) formulated scene

graph recognition as a graph matching problem and

presented an approach that is robust to missing ob-

jects. However, the proposed method is based on a

random walk on the scene graph, and as the authors
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also point out, the computational complexity grows

infinitely with the environment scale. In contrast, we

considered a scalable formulation, scene graph clas-

sification, that is computationally efficient and main-

tains robustness.

In this study, we consider the scene graph ap-

proach from a new perspective, namely graph data

augmentation (GDA). GDA is a variant of data aug-

mentation techniques that have emerged in recent

years to improve the generalization ability of graph

machine learning under uncertainty. Recently, in

(Knyazev et al., 2021), scene graph specific augmen-

tation (SGA) was first explored for the task of per-

turbing real scene graphs to increase the diversity of

training distributions and improve the generalization

of scene graph inference. However, training their gen-

erative adversarial network (GAN)-based models may

require expensive annotated datasets. Moreover, their

application is limited to two-dimensional (2D) scene

understanding, and cross-view settings with 3D view-

point changes remain unsolved. In contrast, cross-

view image localization requires considering the in-

teractions between multiple components, including

scene parsing, scene description, and scene classifica-

tion. This makes existing GDA/SGA techniques in-

applicable directly.

To address this challenge, we extend SGA to in-

clude a mixed scenario of scene graph generation and

synthetic views. Starting from a basic pipeline con-

sisting of scene parsing (P), scene description (D),

and scene synthesis (S), we investigate potential mis-

alignments of each pipeline component (P/D/S). We

address potential failure modes of individual com-

ponents and explore different subsets and permuta-

tions of pipeline components to create a diverse set

of pipeline variants, as indicated by the colored lines

with arrows in Figure 1. Specifically, we start with

a basic pipeline for cross-view image localization.

We then argue, without loss of generality, that differ-

ent pipeline variants exist and propose to use these

pipeline variants as supervision cues to improve ro-

bustness and discriminability. The final localization

decision is made by consensus of the pipeline ensem-

ble. Our approach achieves significant and consistent

improvements in accuracy and robustness when eval-

uated on the photorealistic Habitat-Sim workspace

(Szot et al., 2021).

The main contributions of this work are: (1) We

consider a novel approach, called Synthetic Scene

Graph (SSG), which extends scene graph descrip-

tors, which have proven effective for cross-view self-

localization, with view synthesis techniques. (2)

Starting from the base pipeline of SSG, we argue

that diverse pipeline variants exist and propose to use

Figure 1: Starting from P-D-S, a basic pipeline for cross-
view self-localization, we argue that a variety of pipeline
variants exist and propose to use these pipeline variants as
supervision cues to improve robustness and discriminabil-
ity. Throughout this manuscript, P, D, and S are used to
represent parsing, descriptor, and synthesis.

these pipeline variants as clues to improve robustness

and discriminability. (3) We validate the effective-

ness of the proposed method through thorough per-

formance comparison and ablation studies.

2 RELATED WORK

2.1 Cross-View Robot Localization

Cross-view robot localization involves predicting the

robot’s pose relative to a landmark image under sig-

nificant viewpoint variations (Zhang et al., 2021).

Most localization frameworks, including image re-

trieval, fail due to assuming that a landmark image

similar to the query exists in training. Recent view

synthesis methods like neural radiance fields (NeRF)

and structure-from-motion have advanced cross-view

localization but require spatially dense multi-view

training images, making them unsuitable for single-

view landmark images. In (Tourani et al., 2021), a

typical cross-view robot car scenario was studied, us-

ing only training images with opposite orientations to

the query. While their scene description is robust, it

assumes a fixed 180 deg orientation difference, lim-

iting generality. By contrast, this study introduces a

generic cross-view scene-graph setup using multiple

landmark images, which need not be spatially dense

and may have arbitrary viewing directions.
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2.2 Graph Data Augmentation (GDA)

Recently, interest in graph machine learning has

grown, leading to the emergence of a new data aug-

mentation field called GDA (Ding et al., 2022). GDA

aims to address the gap between observed and ac-

tual graphs by perturbing available training samples

to create a diverse training set. The non-Euclidean na-

ture of graph data makes this more challenging than

data augmentation for image and other data types.

Since the process of observing graphs varies widely

across applications (e.g., molecular graphs and so-

cial networks), there is no universal solution, and

application-specific methods have been explored. The

most relevant study is the SGA reported in (Knyazev

et al., 2021), which considered pipeline processing

with a graph neural network and formulated data aug-

mentation as a sampling process using GANs by per-

turbing intermediate results. However, their work

focused on 2D scene understanding, not cross-view

scenarios. Additionally, their GAN training requires

large annotated datasets, making it unsuitable for sev-

eral applications, including the sparse training image

setup in this study. In contrast, applications involv-

ing 3D scene understanding, like the cross-view setup

used here, are largely unexplored. To address this, we

propose a new SGA method specifically designed for

a cross-view robot localization pipeline that includes

scene parsing, synthesis, and description.

3 APPROACH

The cross-view image localization framework con-

sists of two independent but interacting modules:

scene graph generation (parsing ’P’ and description

’D’) and scene graph synthesis (synthesis ’S’). The

scene graph generation module includes a scene pars-

ing step, which converts the scene into a set of nodes

and edges, and a scene description step, which gen-

erates node attribute descriptors from the nodes. The

scene synthesis module transforms the original view

into a synthetic view from a given viewpoint. With the

synthetic scene graph descriptors produced by these

two modules, cross-view image localization can be

treated as an image retrieval problem in the space of

synthetic scene graph descriptors. In this section, we

begin with a base pipeline (3.1) and extend it to intro-

duce a scene-graph augmentation framework (3.2).

3.1 Base Pipeline

The base pipeline (PDS) performs these steps in the

following order: parsing (P) - description (D) - syn-

thesis (S). For brevity, each submodule will be abbre-

viated using its respective symbol (i.e., ’P’, ’D’, and

’S’) and the pipeline using the string of symbols (e.g.,

PDS).

3.1.1 Scene Parsing

Specifically, if rectangles overlap, they are considered

close. In addition, even if they do not overlap, if the

distance between the pixels (for input images with

size 256×256) of the rectangles is within 20 pixels,

the rectangles are considered to be close. For scene

parsing, we employed a traditional two-step method

for scene graph generation. First, scene parts (i.e.,

nodes) were extracted from the input image. Then,

these nodes were connected via edges. Three meth-

ods?cascade segmentation (Zhou et al., 2017), SLICO

(Lei et al., 2021), and Detic (Zhou et al., 2022), which

will be described later?were considered for node de-

tection. Spatial proximity was used for edge connec-

tions, determined by bounding box proximity. Specif-

ically, rectangles were considered close if they over-

lapped. Additionally, even if they did not overlap,

rectangles were deemed close if the distance between

their pixels (for input images of size 256×256) was

within 20 pixels.

Cascade segmentation (Zhou et al., 2017) is used

for semantic segmentation because it predicts pixel-

wise semantic labels and exhibits view invariance,

making it effective for cross-view image localization.

This method takes a 256×256 RGB image as input,

with ResNet50 as the encoder and a Pyramid Pooling

Module-based model for the decoder.

SLICO (Lei et al., 2021) was used for appearance-

based segmentation, as it provides useful cues inde-

pendent of semantic segmentation, particularly with

region decomposition resembling regular grids that

are view-independent.

Detic (Zhou et al., 2022) (model ”lvis”) was em-

ployed for object-level region segmentation, provid-

ing area boundaries independent of the other two

methods. Trained on a large dataset detecting over

20,000 objects, Detic may be affected by errors due

to bounding box shape approximation.

3.1.2 Scene Description

The scene description step aims to describe each node

region of a scene graph using image descriptors with

discriminability and invariance. We used two types

of image descriptors: PatchNetVLAD (PNV) local

feature descriptors and convolutional neural network

(CNN) global features.

PNV (Hausler et al., 2021) was used as a lo-

cal feature descriptor because it extracts patch-level
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Figure 2: Scene synthesis based on monocular depth esti-
mation and pinhole camera model.

features from NetVLAD residuals and combines the

global feature’s conditional invariance with the local

feature’s view invariance. Specifically, 144 PNV fea-

tures of 512 dimensions were extracted per 256×256

image. For each region (node), the PNV features

are aggregated into a bag-of-words (BoW) histogram

(i.e., a node feature). BoW uses a prototype dictio-

nary of size k = 100, reciprocal rank (RR)-weighted

(Cormack et al., 2009), and a naive Bayes nearest-

neighbor (NBNN) (Tommasi and Caputo, 2013) sim-

ilarity measure.

CNN was used as the global feature descriptor be-

cause it provides information about scene layout and

image regions. Existing CNN-based approaches in

visual self-localization generally use either the fully

connected layer of CNN as an image feature or the fi-

nal CNN layer for image classification. We use a hy-

brid approach. After training an image classifier with

the Vgg16 CNN model, we translate the output classi-

fication results into class-specific reciprocal rank fea-

tures (RRF) and use RRF features as graph node fea-

tures.

3.1.3 Scene Synthesis

The scene synthesis step converts a real image into a

3D point cloud and generates a synthetic scene image

for a given virtual viewpoint from any point in the 3D

point cloud. The virtual-viewpoint image generation

process is shown in Fig. 2. First, the RGB image

(256×256) is converted into a depth image using Mi-

DaS (Ranftl et al., 2022), a monocular depth estima-

tion model. The depth image is then converted into

a 3D point cloud using a pinhole camera model. The

calibration parameters for this model were learned us-

ing independent training data with public parameter

values1 and internal parameters provided in Habitat’s

API (Szot et al., 2021). While recent studies show the

effectiveness of instant calibration adaptation through

few-shot learning, this supervised method is not ap-

plicable in our self-supervised setup, requiring offline

1https://aihabitat.org/docs/habitat-api/view-transform-
warp.html

Figure 3: View synthesis results by SynSin (Wiles et al.,
2020) (left) and the proposed view-synthesis (right).

00800-TEEsavR23oF

00801-HaxA7YrQdEC

00802-wcojb4TFT35

Figure 4: Experimental environments.

calibration. As a result, depth prediction is less reli-

able compared to few-shot adaptation. MiDaS (Ran-

ftl et al., 2022) was used because it is one of the few

monocular depth estimation models designed for gen-

eralization across domains.

An example of the resulting synthetic image is

shown in Fig. 3, comparing the proposed method with

SynSin (Wiles et al., 2020). Unlike NeRF and its vari-

ants, which require many training images with dense

viewpoints, SynSin only requires one viewpoint im-

age for training, making it suitable for our single-view

training setup. However, SynSin’s synthetic images

exhibit GAN-specific artifacts, as shown in the figure.

In contrast, the proposed view synthesis method gen-

erates artifact-free virtual viewpoint images.

3.2 Scene Graph Augmentation (SGA)

In this study, we argue that there is not only one domi-

nant pipeline (e.g., PDS), but also other multiple pos-

sible pipelines (e.g., PD) and their pipeline variants,

and that it is not necessarily obvious which of these

variants is optimal (Fig. 1). The center of gravity and

the endpoints of the bounding box of each scene part

in the synthetic scene graph are determined by the co-

ordinate transformation of the original scene graph.

Each pipeline comprises the following independent

modules: scene parsing (P), scene description (D),

and scene synthesis (S). For instance, pipeline vari-

ants that reorder the processing steps (SPD, PSD, and

PDS) and pipeline variants that remove some process-

ing steps (S and P) are also formally valid. We ob-

served that these pipeline variants are often not only

formally valid but also promising in terms of per-

formance. That is, in comparison with the original

pipeline PDS, a SPD pipeline variant with reordered

processing steps is attractive because scene parsing is
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Figure 5: Experimental setup. The workspace is first par-
titioned into a grid of location cells. Each location cell is
then further partitioned into 12 place classes with different
orientations.

performed in a synthetic view, and the scene parts can

reflect the layout of the synthetic view. DSP and SPD

differ in that the former uses descriptors derived from

the original image, whereas the latter uses descrip-

tors derived from the synthetic image. In contrast, the

pipeline variant PD that skips the scene synthesis step

S performs scene description based only on the origi-

nal view. Therefore, it is not susceptible to scene pars-

ing errors and may be a better choice for scenes with

complex layouts that are difficult to parse. In addition,

the pipeline variant DS, which skips the parsing step P

and describes the scene with only a single whole im-

age node without decomposing the scene into nodes

and edges, is attractive because by definition, it is not

affected by scene parsing errors.

Thus, we integrated the baseline PDS with other

possible pipeline variants: PSD, SPD, DSP, PD, DS,

SD, and D, using a graph convolutional neural net-

work (GCN) (Kipf and Welling, 2017). Similar use

of GCN as an integration tool was explored in previ-

ous work on SGA (Knyazev et al., 2021). However,

in the previous study, the scene synthesis problem

was not addressed. Consequently, the ensemble of

pipeline variants generated by the interaction of scene

synthesis and scene graph generation was not consid-

ered. Therefore, the proposed approach is different.

In the proposed approach, each pipeline-specific GCN

maps an input image onto a class-specific probability

map. Subsequently, a late fusion step is performed

to fuse the class-specific probability maps from all

pipeline-specific GCNs using the RR fusion in the

spirit of majority voting ensemble strategy. In this

framework, we observed that it is more effective to

assign higher weights to whole-image nodes than to

component nodes. For all K nodes, that is, part nodes,

excluding the whole image node, a weight adjustment

is performed such that the node feature vector is mul-

tiplied by 1/K. When a system is composed of mul-

tiple pipeline variants, the class-specific probability

map output from each pipeline variant is converted

into a class-specific reciprocal rank vector, and then a

single classification is created by reciprocal rank fu-

sion, which makes the final classification result of the

system.

4 EXPERIMENTS

We conducted evaluation experiments in a vir-

tual workspace constructed using Habitat-Sim (Szot

et al., 2021) and the Habitat-Matterport 3D Re-

search Dataset (HM3D) (Ramakrishnan et al., 2021).

This virtual workspace provides photo-realistic im-

ages unique to diverse viewpoints with ground-truth

annotations. The Habitat-Sim workspace is popular

and proven in recent embodied AI applications such

as image goal navigation (Mezghani et al., 2022) and

thus is considered an important application of cross-

view localization.

4.1 Dataset

Habitat-Sim is a flexible high-performance 3D sim-

ulator with configurable agents, sensors, and gen-

eral 3D dataset processing. It prioritizes simu-

lation speed over the breadth of simulation capa-

bilities, achieving thousands of frames per second

(FPS) on a single thread and 10,000 FPS processes

on a single GPU when rendering scenes from the

HM3D dataset. HM3D is a large-scale 3D indoor

space dataset, generated from real-world environ-

ments, and there are 1000 types of scenes, such as

residences, commercial facilities, and public facili-

ties. We experimented using three environments with

workspace names “00800-TEEsavR23oF”, “00801-

HaxA7YrQdEC”, and “00802-wcojb4TFT35” from

the workspaces of the HM3D dataset. A bird’s eye

view of the workspace is shown in Fig. 4. The size of

the images acquired by the robot is set to 256×256.

Additionally, the dataset contains information on the

viewpoint’s location (x,y) and orientation θ associ-

ated with each image.

First, the workspace was partitioned into a grid of

location cells with dimensions of 2[m]×2[m]. Each

view image in the workspace was considered to be-

long to a location cell if the visibility cone, deter-

mined by its viewpoint, included the centroid of the

location cell. If multiple such location cells exist, the
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Figure 6: Example results. In the upper row, from left to
right, each panel is a training image, 2 level 2 test images,
and 2 level 3 test images. The bottom row is the correspond-
ing composite image of each virtual viewpoint.

cell with the center of gravity closest to its viewpoint

is selected. In this experiment, we randomly selected

ten location cells for each workspace. Furthermore, as

shown in Fig. 5, 12 place classes with different orien-

tations were defined for each location cell. Therefore,

the total number of place classes for each workspace

was 12×10 = 120.

To investigate cross-view localization perfor-

mance, only one training image was given for each of

the 10 location cells. That is, of the 12 place classes

belonging to one location cell, a training image is

available for one class, and is not available for the

remaining 11 classes. There is only one place class

for which a real training image is available, and in

addition, care is taken to ensure that different view-

points are sampled as the test images’ viewpoints for

this class. For classes for which there are no train-

ing images, methods with the ‘S’ (Synthesis) module

can synthesize pseudo-training images from available

training images, while methods without the ‘S’ mod-

ule have no choice but to simply use available training

images as they are. 1500 test images independent of

training images were sampled for each class.

4.2 Performance Index

In this experiment, we used Top-1 Accuracy, Top-5

Accuracy, and mean reciprocal rank (MRR) as per-

formance indicators. Top-1 accuracy is useful be-

cause it reflects the percentage of test data in which

both location and orientation are correct. Top-5 and

MRR are useful for determining the percentage of

test data in which only either location or orientation

is correct. This latter type of performance metric is

particularly important in the context of multi-view

self-localization, multi-hypothesis tracking, and map-

based navigation, where it is not always necessary to

uniquely refine both location and orientation from a

single-view observation.

Because the difficulty of cross-view image local-

ization is significantly affected by the difference in

viewpoint between the query and test images, we de-

fine three levels of difficulty and use them to inves-

tigate their relationship with the estimation accuracy.

Specifically, view overlap rate (VO) [%], the area of

the intersection of 2D visibility area on the bird’s-eye

view 2D plane between the query and test viewpoints,

was calculated from the ground-truth (provided by

Habitat-Sim) of the robot’s viewpoints and occluding

obstacles. Then, the difficulty levels were classified

as follows: level 1: VO>60, level 2: 30<VO≤60,

and level 3: VO≤30.

4.3 Results

Table 1 compares the performance of the proposed

method with that of several baseline and ablation

methods. From the table, it is evident that com-

pared to the baseline methods, the proposed method

(“ours”) exhibits superior performance overall across

most dataset levels. Cross-view image localization,

the primary focus of this research, operates under the

assumption of “level 2” and “level 3” difficulty lev-

els. In “level 2” and “level 3”, the proposed method

outperforms the baseline methods in the performance

index Top-1 Accuracy. In addition, the performance

indicators Top-5 Accuracy and MRR are significantly

higher. Therefore, the effectiveness of the proposed

method was confirmed.

When comparing the two descriptors, CNN (DS)

and PNV (DS, SD), it is observed that for Top-1 Ac-

curacy, the performance of CNN tends to be higher

than that of PNV, whereas for Top-5 Accuracy, the

performance of PNV tends to be higher than that

of CNN. This is because CNN, which is a global

feature descriptor (from the entire image), exhibits

strong characteristics for identifying the entire im-

age. Therefore, it can predict location classes with

higher accuracy than PNV. In contrast to global fea-

ture descriptors, PNV, which is a local feature de-

scriptor (with partial features), is resistant to changes

due to rotation and translation. Therefore, it can nar-

row down the correct location class candidates with

higher accuracy than CNN. Comparing the cases with

synthesis (DS, SD) and without synthesis (D), we can

confirm the effectiveness of the scene synthesis.

Regarding the method with a synthesis module

(‘S’), an interesting difference in behavior was ob-

served between the case of transferring the real im-

age descriptor to the synthetic viewpoint (DS) and the

case of using the synthetic image descriptor (SD). . It

can be seen that SD tends to have better overall perfor-

mance than DS. DS tends to perform better than SD

for top-1 accuracy, and DS performs better for top-

5 accuracy. This shows that DS is better than SD in

terms of accuracy, but the opposite is true in terms of

robustness.

The pipeline variant SD may be effective in pre-
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Table 1: Performance results.

Top-1[%] Top-5[%] MRR[%]

00800

L1 L2 L3 L1 L2 L3 L1 L2 L3

CNN 31.0 14.7 12.2 35.1 20.5 19.7 35.3 19.7 17.0

P (DS) 17.0 10.9 6.4 52.6 28.9 22.6 32.3 21.1 13.7

P (SD) 28.2 13.2 9.3 44.2 26.6 18.8 35.8 20.2 14.7

P-SE (PDS) 21.6 13.6 3.5 52.6 37.3 23.0 35.9 24.1 12.0

P-SE (PSD) 26.6 14.3 1.2 41.4 26.6 17.9 34.4 21.7 16.0

P-DE (PDS) 20.8 12.6 5.4 52.4 32.6 20.5 34.8 22.6 12.5

P-DE (PSD) 23.3 10.7 7.6 36.3 24.2 12.4 30.9 18.0 11.5

P-SL (PDS) 27.8 10.8 7.9 60.0 30.4 22.7 42.2 21.2 15.0

P-SL (PSD) 29.5 9.9 7.1 47.7 28.7 19.8 38.4 19.9 13.5

P-SL (SPD1) 24.4 14.6 9.3 59.7 36.7 22.9 40.1 25.5 16.1

P-SL (SPD2) 30.2 15.0 7.9 42.8 24.5 15.9 36.9 20.7 12.9

Ensemble (Ours.) 31.4 17.5 13.7 55.8 32.3 23.2 42.5 26.2 18.7

00801

CNN 34.8 10.5 4.06 39.3 16.8 6.7 0.3850.1500.073

P (DS) 15.0 7.6 1.94 51.6 33.9 14.2 30.6 19.2 8.6

P (SD) 26.7 10.0 5.74 52.3 21.7 8.68 37.8 17.1 8.8

P-SE (PDS) 18.0 9.3 4.8 49.2 31.5 12.7 32.7 20.0 9.8

P-SE (PSD) 28.6 10.1 4.2 43.1 18.4 8.3 36.7 16.2 7.3

P-DE (PDS) 15.8 6.8 2.1 41.7 23.0 9.0 27.5 15.1 6.7

P-DE (PSD) 16.8 7.0 3.0 31.2 14.0 6.6 25.1 12.2 6.2

P-SL (PDS) 17.6 9.7 3.4 55.7 28.1 13.0 33.8 19.6 9.0

P-SL (PSD) 28.3 9.5 3.9 45.8 15.8 7.5 37.1 15.0 7.3

P-SL (SPD1) 20.9 7.1 4.2 50.1 27.1 12.4 34.8 17.6 11.3

P-SL (SPD2) 24.6 8.9 4.7 46.6 22.3 9.5 35.1 16.3 9.7

Ensemble (Ours.) 31.2 11.0 4.75 59.5 30.3 13.1 43.9 20.7 10.0

00802

CNN 38.4 10.0 3.67 40.7 15.1 4.1 41.7 14.5 6.4

P (DS) 30.5 15.1 5.72 66.7 37.1 16.2 46.3 25.5 10.7

P (SD) 36.3 11.3 4.20 54.3 26.3 12.2 43.9 20.3 9.5

P-SE (PDS) 29.2 14.1 8.4 56.8 38.8 16.5 42.3 25.9 13.1

P-SE (PSD) 37.6 10.1 3.9 52.0 22.6 13.0 45.0 18.3 9.5

P-DE (PDS) 16.8 9.5 3.3 44.3 28.5 6.6 28.6 19.0 6.7

P-DE (PSD) 26.0 11.2 3.4 43.5 26.3 7.2 43.5 19.0 7.1

P-SL (PDS) 22.7 11.3 8.3 65.1 39.6 20.0 41.1 24.6 14.5

P-SL (PSD) 37.4 10.4 3.9 56.4 31.4 12.0 46.5 20.8 10.2

P-SL (SPD1) 30.9 16.3 7.1 63.3 42.4 16.6 45.6 28.6 12.6

P-SL (SPD2) 38.6 12.8 3.9 61.4 30.9 12.2 48.8 22.1 9.9

Ensemble (Ours.) 40.0 13.2 4.16 65.4 42.5 17.4 51.6 26.2 10.9

00800: 00800-TEEsavR23oF, 00801: 00801-HaxA7YrQdEC,

00802: 00802-wcojb4TFT35, L1: level1, L2: level2, L3: level3,

P: PatchNetVLAD, SL: SLICO, SE: cascade segmentation, DE: Detic

dicting both location and orientation; however, be-

cause it relies on the accuracy of synthetic images

from a virtual viewpoint, recognition instability tends

to be significant. In contrast, the pipeline variant DS

does not exhibit such instability in recognition. How-

ever, its ability to discriminate both location and ori-

entation tends to be weaker.

We also compared scene graphs containing only

whole nodes (e.g., DS) and scene graphs consisting of

whole nodes and part group nodes (e.g., PDS). The re-

sults show that PDS tends to perform better than DS,

confirming the effectiveness of scene parsing. Re-

garding the performance of each pipeline, it is ob-

served that the pipelines with high performance vary

from datasets. Thus, all the eight types of pipelines

exhibit their own unique strengths and weaknesses. It

can be concluded that combining all the pipeline vari-

ants into an ensemble achieves a stable and consistent

performance improvement.

5 CONCLUSIONS AND FUTURE

WORKS

In this work, we tackled the challenge of cross-

view image localization using synthetic scene graphs.

Starting with a standard pipeline for scene graph-

based localization, we proposed using pipeline vari-

ants as supervision cues to enhance robustness and

discriminativity. Through pipeline ensembles, abla-

tion studies, and performance validation, we demon-

strated that the proposed self-supervision cues con-

sistently improve performance. While the method’s

effectiveness is clear, further improvements are pos-

sible. Both scene graph generation and view syn-

thesis show strong invariance, and we believe the

framework can be enhanced by integrating various

self-localization techniques. Ensemble learning is

a promising direction for future work (Islam et al.,

2003).
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