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Abstract: Analyzing exploit codes is essential for assessing the severity of vulnerabilities and developing effective de-
fense measures against future exploits. Whereas ExploitDB and Metasploit are two major sources of exploit
codes, GitHub has been rapidly growing into a promising platform for sharing exploit codes. However, prior-
itizing GitHub exploit codes to be analyzed in depth is challenging, owing to its large collection of codes and
the absence of mechanisms for guaranteeing the validity of codes published by users. To address this problem,
this paper proposes a scheme to prioritize GitHub exploit codes based on their source codes and repository
metadata. First, we show that GitHub often contains different but semantically similar exploit codes target-
ing the same vulnerability, and such duplicated codes can be efficiently removed with code clone detection
techniques. Second, we leverage a feature of GitHub that it plays the role of a social networking platform.
By mining a graph that represents relationships among GitHub users, our scheme prioritizes exploit codes
by taking both the reputation from users and security community’s attention to targeted vulnerabilities into
consideration.

1 INTRODUCTION

In the rapidly evolving landscape of cybersecurity,
analyzing exploit codes (or proof-of-concept codes),
which are program codes to exploit specific vulnera-
bilities, plays a crucial role for vulnerability triage.
In-depth analysis of exploit codes allows Security
Operation Center (SOC) analysts to prioritize high-
risk vulnerabilities for their organizations, thereby al-
lowing them to take defensive measures for mitigat-
ing future exploits. In addition, public availability
of sophisticated exploit codes indicates that potential
attackers even without professional-level knowledge
are likely to be able to exploit the vulnerabilities suc-
cessfully. For these reasons, Common Vulnerability
Scoring System (CVSS) (Forum of Incident Response
and Security Teams (FIRST), 2023) and Exploit Pre-
diction Scoring System (EPSS) (Jacobs et al., 2023)
use information regarding the existence and maturity
of exploit codes for vulnerability assessment.

ExploitDB and Metasploit are public sources of
exploit codes widely used for a long time by secu-
rity analysts, researchers, and penetration testers. Ex-
ploitDB is an archive of exploit codes maintained by
OffSec and its content relies on contributions from

users. In contrast, Metasploit is an open-source pen-
etration testing framework developed by Rapid7. It
provides a large set of pre-configured exploit codes as
its modules, allowing users to customize and simulate
attacks against known vulnerabilities.

In addition to ExploitDB and Metasploit, there
have been many exploit codes shared on GitHub in
recent years. However, there are no existing stud-
ies that thoroughly compare GitHub with ExploitDB
and Metasploit in terms of their exploit codes. This
leads us to study the following research question: Are
the exploit codes published on GitHub worth collect-
ing and analyzing for vulnerability triage compared to
ExploitDB and Metasploit? To answer this question,
we compare exploit codes published on GitHub, Ex-
ploitDB, and Metasploit using the following four met-
rics: the number of exploit codes, coverage of vulner-
abilities, coverage of exploits in the wild, and timeli-
ness of exploit codes publication. Our results reveal
that GitHub is indispensable for comprehensive as-
sessment of vulnerabilities.

To realize efficient vulnerability triage, it is de-
sired to automatically extract exploit codes that worth
in-depth analysis by humans or computers among nu-
merous codes on GitHub; however, this is challeng-
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ing because GitHub is not dedicated for sharing ex-
ploit codes unlike the other two sources. First, for
a single vulnerability, users often publish different
but semantically similar exploit codes. Manually in-
specting such duplicated exploit codes is very time-
consuming. Second, GitHub has no mechanisms to
guarantee the validity of exploit codes. In contrast,
ExploitDB has a mechanism for its maintainers to ex-
plicitly mark exploit codes whose validity have been
verified as “verified”. In this paper, we present our
first attempt to design a scheme to prioritize exploit
codes based on their source codes and repository
metadata.

First, we show that duplicated exploit codes can be
identified with reasonable accuracy by combining ex-
isting code clone detection tools, SourcererCC (Saj-
nani et al., 2016) and ssdeep (Kornblum, 2006). Our
evaluation reveals that at least one clone codes have
been published for 58.5% of vulnerabilities with mul-
tiple exploit codes and our scheme can effectively nar-
row down candidates of exploit codes to be further
analyzed.

Second, we design a scheme to extract trustwor-
thy exploit codes by leveraging a unique feature of
GitHub that it plays the role of a social networking
platform. The key insights behind our design are
twofold: (1) We can construct a graph that represents
trust and interests among GitHub users by using the
metadata of users and their repositories, such as fol-
lowers of users and stars assigned to repositories; and
(2) We can identify a set of GitHub users whose ex-
ploit codes are valid with high confidence by using
external information sources including the NVD CVE
database, ExploitDB, and Metasploit. Specifically,
we regard GitHub users whose exploit codes are refer-
enced by any of the NVD CVE records and those who
have published valid exploit codes on ExploitDB or
Metasploit as roots of trust in the graph. We then de-
termine the trustworthiness of exploit codes by using
a graph mining technique called TrustRank (Gyöngyi
et al., 2004).

The contributions of this paper are as follows:
• By systematically collecting and investigating ex-

ploit codes on GitHub, ExploitDB, and Metas-
ploit, we show that the significance of monitor-
ing exploit codes published on GitHub has been
increasing in recent years.

• We show that GitHub contains a lot of different
but semantically similar exploit codes and such
duplications can be effectively identified and re-
moved by analyzing their codes.

• We design and implement a graph mining-based
scheme for prioritizing trustworthy exploit codes
based on social relationships among GitHub

users. A key feature of our scheme is to leverage
the NVD CVE records and exploit codes on Ex-
ploitDB and Metasploit to improve the reliability
of the results. To the best of our knowledge, this is
the first study to design a scheme for prioritizing
GitHub exploit codes.

The rest of the paper is organized as follows:
Section 2 describes our methodology to collect ex-
ploit codes from GitHub, ExploitDB, and Metasploit.
Section 3 quantitatively compares these exploit code
sources. Section 4 describes our scheme to prioritize
GitHub exploit codes. Section 5 summarizes related
works. Finally, Section 6 concludes this paper.

2 DATA COLLECTION

In the rest of the paper, we only focus on vulnerabili-
ties that assigned CVE IDs by MITRE. CVE records
marked as “REJECTED” or “RESERVED” are ex-
cluded. In this section, we describe the features of
three major sources of exploit codes: GitHub, Ex-
ploitDB, and Metasploit, and our methodology for
collecting exploit codes.

2.1 GitHub

GitHub is a web-based software development plat-
form. Each project is managed as a repository that
contains various files including source codes, bi-
nary codes, and text files. An important feature of
GitHub is that it also acts as a social networking
platform. Users can follow other users to stay up-
dated on their activities and projects. They can star
repositories to bookmark them for future reference.
Watching a repository allows users to receive noti-
fications about its updates. Forking creates a copy
of another user’s repository, allowing users to apply
experimental changes without affecting the original
projects. These features facilitate a highly interactive
and connected community, encouraging collaboration
and code sharing.

It is more difficult to correctly extract exploit
codes correlated with a specific CVE ID on GitHub
than ExploitDB and Metasploit because GitHub hosts
a much larger number and variety of codes. Simply
retrieving GitHub repositories using a CVE ID as a
keyword can return repositories that contain scripts to
exploring Indicator of Compromise (IoC) on devices
to check if they have been attacked. To address this
problem, we combined several heuristics under the
assumption that repository titles, descriptions, tags,
readme files are reasonably informative.
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First, we used the GitHub Search API to retrieve
repositories that mention a specific CVE ID in their
titles and descriptions. As a result, we obtained 12638
repositories. Note that forked repositories are omitted
from the search results.

Second, we checked if the repositories are cor-
related with the same CVE IDs as those speci-
fied in the search queries. For example, if we
specify CVE-2023-1111 in a search query, the re-
sponse contains not only the exploit codes correlated
with CVE-2023-1111 but also those correlated with
CVE-2023-11110, CVE-2023-11111, and so on. To
address this problem, we extracted CVE IDs from the
metadata of the repositories, such as title, description,
tags, and readme file using regular expressions, and
then excluded entries that did not contain the speci-
fied CVE IDs.

Third, we excluded repositories whose metadata
contains more than three different CVE IDs because
such repositories often contain multi-purpose vulner-
ability detection/exploitation tools (e.g., NSE scripts
for Nmap) or text files that merely enumerate vari-
ous vulnerabilities and relevant URL links. We did
not exclude repositories containing two CVE IDs be-
cause exploit codes often aim to increase impacts of
attacks by exploiting multiple vulnerabilities simul-
taneously. Recent examples include the exploitation
of CVE-2023-46805 (an improper authentication vul-
nerability of Ivanti products) and CVE-2024-21887
(a command injection vulnerability of the same prod-
ucts) that allows unauthenticated remote attackers to
execute arbitrary commands.

Fourth, we excluded repositories whose metadata
did not contain keywords indicating that they contain
exploit codes, such as “exploit”, “proof-of-concept”,
“checker”, and “scanner”. We also excluded reposito-
ries that contain keywords indicating that they do not
contain exploit codes, such as “indicator of compro-
mise”, since such repositories contain IoC scanners
for potentially compromised hosts.

Finally, we excluded repositories whose language
tags automatically assigned by GitHub are not con-
tained in a list of popular programming languages for
developing exploit codes. The list consists of C, C#,
C++, Go, Java, JavaScript, Nim, PHP, Perl, Power-
Shell, Python (including Jupyter Notebook), Ruby,
Rust, shell script. This rule aims to exclude empty
repositories and repositories that just contain readme
or text files detailing specific vulnerabilities.

After designing this heuristics-based scheme, we
evaluate its performance with our manually labeled
dataset of 144 GitHub repositories for randomly cho-
sen 17 vulnerabilities published in 2023. Among
them, 13 repositories do not contain exploit codes.

For this dataset, the precision, recall, and F1 score
were 0.972, 0.786, and 0.869, respectively. Although
the recall value is relatively low, we argue that this
is a good balance to avoid overestimating the number
of exploit codes on GitHub in Section 3. In total, we
collected 4537 exploit codes from GitHub.

2.2 ExploitDB

ExploitDB is a public archive of exploit codes and
shell codes maintained by OffSec. Each exploit code
is submitted by users with its metadata including the
title, author, affected software, and the correspond-
ing CVE IDs (if applicable). One of the features that
make ExploitDB a useful source of exploit codes is
the fact that it includes a mechanism to guarantee the
validity of their exploit codes. Newly submitted ex-
ploit codes are first marked as “unverified” and then
undergoes verification process by maintainers. If ex-
ploit codes pass the verification process, they are ex-
plicitly marked as “verified” to allow users to easily
choose functional exploit codes.

To extract exploit codes on ExploitDB that tar-
get the vulnerability with a specific CVE ID, we
used SearchSploit, an official command-line tool to
retrieve exploit codes on ExploitDB using flexible
keyword-based search. For example, to retrieve ex-
ploit codes targeting the vulnerability identified with
CVE-2023-1111, we can use the following command:
“searchsploit –cve 2023-1111”. However, this query
alone is not sufficient to extract exploit codes ex-
actly matching the specified CVE ID. We therefore
excluded a repository if its metadata did not contain
the same CVE ID as specified in a search query in the
same way as described in Section 2.1. In total, we
collected 15119 exploit codes from ExploitDB.

2.3 Metasploit

Metasploit is an open-source penetration testing
framework widely used for security assessments.
It provides a vast range utilities including exploit
codes, shell codes, vulnerability scanner, and post-
exploitation codes as its modules. These modules
are pre-configured scripts designed to breach specific
weaknesses, allowing users to easily simulate attacks.
Each module can be paired with different payloads to
achieve various post-exploitation objectives.

To obtain a list of exploit codes (exploit modules)
of Metasploit, we installed Metasploit v6.4.12 on a
local machine and extracted all the metadata regard-
ing Metasploit modules including exploits, auxiliary,
post, payloads, encoders, and evasion. After that, we
correlate each exploit code with a specific CVE ID if
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Figure 1: The number of exploit codes published on
GitHub, ExploitDB, and Metasploit for vulnerabilities
found in each year.

the module name, description, or reference section of
its metadata contains the CVE ID. In total, we col-
lected 2425 exploit codes from Metasploit.

3 COMPARISON OF SOURCES
OF EXPLOIT CODE

In this section, we compare GitHub, ExploitDB, and
Metasploit in terms of the following metrics that in-
dicate whether each of the sources can provide infor-
mation on a wide range of vulnerabilities in a timely
manner: (1) the number of exploit codes, (2) coverage
of CVE IDs, (3) coverage of exploits in the wild, and
(4) timeliness of exploit code publication.

3.1 Number of Exploit Codes

Fig. 1 presents the numbers of exploit codes published
on the three sources for vulnerabilities found in each
year. Since ExploitDB contains verified codes and un-
verified codes, they are shown separately.

First, the number of exploit codes published on
ExploitDB is largest among the three sources for vul-
nerabilities found between 1999 and 2019. However,
the number has been declining recent years. The ra-
tio of verified exploit codes has also been declining;
> 50% between 1999 and 2017 and < 25% between
2020 and 2023. This could be because the verification
of newly submitted exploit codes is still in queue of
ExploitDB maintainers. We therefore conclude that
ExploitDB is particularly useful for those who are in-
terested in exploit codes published a few years ago.

Second, GitHub has few exploit codes until 2014;
however, it is the largest source of exploit codes be-
tween 2020 and 2023. The number of exploit codes
has been increasing, and more than 600 exploit codes
have been published in recent years. Note that mul-
tiple GitHub users can publish exploit codes for the
same vulnerability, and we count them individually.
Thus, this result does not mean that exploit codes on
GitHub cover more vulnerabilities.

Different from the other two sources, the number
of exploit codes on Metasploit is stable regardless of
the years (min: 14 codes, max: 210 codes).

3.2 Coverage of CVE IDs

Fig. 2 presents Venn diagrams that represent the cov-
erage of CVE IDs, defined as the number of vul-
nerabilities for which each source has exploit codes.
The higher the number, the greater the availability of
codes for a wide range of vulnerabilities.

Overall, the coverage of ExploitDB is almost six
times larger than the other two sources. This result in-
dicates that ExploitDB is a mature platform for shar-
ing exploit codes and is the best source for security
researchers who want to conduct more comprehensive
vulnerability monitoring.

In terms of the changes in the coverage over time,
we can see that the coverage of GitHub has increased
rapidly in recent years. This is consistent with the fact
that the number of exploit codes published on GitHub
has been increased, as described in Section 3.1. In
particular, GitHub is the best source in terms of the
coverage of vulnerabilities found in 2023. This re-
sult shows that the importance of monitoring exploit
codes on GitHub has been increasing in recent years.

Another notable result is that the intersections of
vulnerabilities covered by each pair of the sources are
small. Specifically, only 12.5% of the vulnerabilities
have exploit codes published on multiple sources. In
other words, there are many vulnerabilities that are
only covered by a single source.

3.3 Coverage of Exploits in the Wild

In addition to the coverage of CVE IDs, the cover-
age of vulnerabilities that has been exploited in the
wild is an important measure to understand how much
information on the realistic cyberattacks each of the
sources provides.

To the best of our knowledge, there is no compre-
hensive dataset of vulnerabilities that have been ex-
ploited in the wild. Therefore, we collected the fol-
lowing three pieces of information to create a list of
vulnerabilities exploited in the wild:
1. Known Exploited Vulnerabilities (KEV) catalog
2. Microsoft Security Response Center (MSRC) ex-

ploitability indexes
3. Symantec attack signatures

First, the KEV catalog1 is a list of vulnerabilities
with active exploits reported to Cybersecurity and In-

1https://www.cisa.gov/known-exploited-
vulnerabilities-catalog
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Figure 2: Coverage of CVE IDs.

Table 1: Coverage of exploits in the wild.

Code Source # of vulnerabilities Ratio

GitHub 453 32.9%
ExploitDB 432 31.3%
Metasploit 472 34.3%

Overall 756 54.9%

frastructure Security Agency (CISA). We regard vul-
nerabilities that have been added to the KEV catalog
at least once as exploited in the wild. One of crite-
ria for a vulnerability to be added to the KEV catalog
is that there must be a clear remediation guidance for
organizations using the affected products. Thus, the
KEV catalog might not cover all the vulnerabilities
exploited in the wild.

Second, MSRC investigates vulnerabilities of Mi-
crosoft products and publishes the results as the Se-
curity Update Guide2. In the results, exploitabil-
ity of each of the vulnerabilities is represented as
an exploitability index, which takes one of the fol-
lowing four values: “Exploitation detected”, “Ex-
ploitation more likely”, “Exploitation less likely”, and
“Exploitation unlikely”. We extracted vulnerabilities
marked as “Exploitation detected”.

Third, Symantec is publishing a list of signa-
tures currently monitored by their security products
as Symantec Attack Signatures3. Allodi et al. have
shown that the CVE IDs mentioned in the signatures
are the best available indicator for estimating the ex-
istence of exploit codes correlated to a specific CVE
ID (Allodi and Massacci, 2012). Other studies have
also used the list of CVE IDs as their ground truth
for creating datasets of vulnerabilities exploited in the
wild (Sabottke et al., 2015; Suciu et al., 2022).

By removing duplicates from the three sources,
we extracted 1378 vulnerabilities exploited in the
wild. Table 1 summarizes the number and ratio of
vulnerabilities exploited in the wild for which exploit
codes are available. The source with the largest ratio

2https://msrc.microsoft.com/update-guide/vulnerability
3https://www.broadcom.com/support/security-

center/attacksignatures

is Metasploit, which covers 34.3% of the vulnerabili-
ties, but GitHub and ExploitDB are comparable to it.
This result shows that Metasploit is the best source for
analyzing particularly high-risk vulnerabilities.

Another noteworthy result is that the intersections
of vulnerabilities covered by these sources are small.
Only about 32% of vulnerabilities exploited in the
wild can be covered if one of the sources is monitored.
In contrast, more than half of the vulnerabilities can
be covered if we combine all of them.

3.4 Timeliness

We define timeliness as the dates it takes until the first
exploit code for a specific vulnerability is published
after the vulnerability is made public, assuming that
the vulnerabilities were widely known to the public
at the publication date of the CVE record. Specifi-
cally, for every vulnerability with CVE ID id, tid is
defined as the difference between the date the first ex-
ploit code correlated with id is published and the date
the CVE record for id is published. tid becomes neg-
ative if an exploit code is published before the corre-
sponding CVE record is published.

It is difficult to reliably determine the publica-
tion date of a CVE record because the publication
dates for a specific CVE ID sometimes different sig-
nificantly between MITRE and NVD. For example,
CVE-2003-0590 is reserved at July 17th, 2003 by
MITRE but the CVE record was not published un-
til October 17th, 2016. In contrast, NVD published
the corresponding CVE record much earlier: on Au-
gust 18th, 2003. As another example, the NVD CVE
record for CVE-1999-1557 was published on May
2nd, 2005 but the MITRE CVE record was published
on August 31st, 2001. These large differences reduce
the reliability of tid values. To obtain conservative re-
sults, we define the earlier one among the publication
dates of CVE records by MITRE and NVD as the date
when the CVE record was published.

Fig. 3a, Fig. 3b, and Fig. 3c present box plots of
tid values. The orange lines in the box plots repre-
sent the median values. Following the definition of
box plots, tid that are far from the interquartile ranges
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Figure 3: Timeliness.

are regarded as outliers and not plotted in the figures.
Fig. 3d presents the distributions of the median values
of the three sources between 2018 and 2023.

As shown in Fig. 3b and Fig. 3c, the median val-
ues of ExploitDB and Metasploit are in the range of
[−10,20] for almost all the years. This implies that,
for many vulnerabilities, analysis of exploit codes on
ExploitDB and Metasploit provides valuable infor-
mation shortly after (or even before) the vulnerabil-
ities are publicly disclosed. In contrast, as shown
in Fig. 3a, the median values of GitHub were tens
or hundreds of times larger between 1999 and 2017.
This is because most of the GitHub exploit codes were
published after 2018. However, as shown in Fig. 3d,
the timeliness of GitHub between 2018 and 2023 have
been comparable to the others. For example, in 2023,
the median values of GitHub, ExploitDB, and Metas-
ploit are 5.0, 15.5, −1.0, respectively. This could
be because GitHub have become widely known as a
promising platform for sharing exploit codes.

Finally, we manually investigated some of the out-
lier values of tid and found that their causes include
the fact that it might take a few years from the dis-
covery of a vulnerability to the publication of the cor-
responding CVE record. For example, the vulnera-
bility identified with CVE-2018-7935 (a DoS vulner-
ability of Huawei mobile routers) was discovered in
2018 and an exploit code was published on GitHub
by the discoverer4; however, the CVE record and
vendor advisory were published in 20235. Similarly,

4https://github.com/lawrenceamer/CVE-2018-7935
5https://www.huawei.com/en/psirt/security-

CVE-2021-31796 was discovered and an exploit code
was published on GitHub in 20176; however, the pub-
lication of the CVE record was in 2021.

3.5 Summary of Results

The observations obtained in this section can be sum-
marized as follows:

• Until a few years ago, the significance of monitor-
ing exploit codes on GitHub was low; however, it
has begun to attract the attention from the security
community as a promising platform for sharing
exploit codes and has been rapidly growing into a
source of exploit codes comparable to ExploitDB
and Metasploit in term of the number of exploit
codes, coverage of CVE IDs, coverage of exploits
in the wild, and timeliness.

• The intersections of vulnerabilities covered by
GitHub, ExploitDB, and Metasploit are small.
This implies that there is an urgent need to col-
lect and monitor exploit codes published on all the
sources rather than focusing on a single source for
more comprehensive monitoring of exploit codes.
However, such augmentation of coverage substan-
tially increases the burden of exploit code anal-
ysis process by SOC analysts of organizations.
Therefore, it is desired to design and implement
a scheme to (semi-)automatically prioritize ex-
ploit codes that worth in-depth analysis from the
GitHub’s large collection of codes.

notices/huawei-sn-20230210-01-dos-en
6https://github.com/unmanarc/CACredDecoder
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4 PRIORITIZING GitHub
EXPLOIT CODES

In Section 3, we have revealed that we need to collect
and analyze not only exploit codes on ExploitDB and
Metasploit but also those on GitHub for more com-
prehensive monitoring of exploit codes and better vul-
nerability triage. However, extracting GitHub exploit
codes that worth in-depth analysis is more difficult
task than one might consider due to the following two
problems:

1. The number of exploit codes has been grow-
ing and GitHub users can publish multiple ex-
ploit codes that targets the same vulnerability. In
our GitHub dataset, 30.3% of vulnerabilities have
more than two exploit codes. For example, we
found 25 exploit codes for CVE-2022-46169 (a
command injection vulnerability of Cacti, which
is listed in the KEV catalog). Manually inspect-
ing such duplicated exploit codes one by one is
very time-consuming.

2. Unlike the other two sources, GitHub has no built-
in mechanisms to guarantee the validity of each
exploit code. In contrast, ExploitDB has a mech-
anism for the maintainers to explicitly mark ex-
ploit codes that have been verified to be valid, and
Metasploit contains only functional exploit codes
as its modules.

In this section, we present our first attempt to de-
sign a scheme to prioritize exploit codes based on
their source codes and metadata for triaging high-risk
vulnerabilities. First, we show that GitHub repos-
itories often contain very similar exploit codes for
the same vulnerability and such duplicated codes can
be removed with reasonable performance by using
code clone detection techniques. Second, we design
a graph-based scheme to extract trustworthy exploit
codes by leveraging several mechanisms of GitHub
to represent interests and trust among users, such as
stars and forks.

4.1 Removing Similar Exploit Codes
with Code Clone Detection

For detecting semantically similar exploit codes with
code clone detection tools, we focus on Python ex-
ploit codes because Python is the most widely used
language for exploit code. Among 4537 GitHub
repositories, 56.0% are Python, 11.8% are C, 7.0%
are shell script, 4.8% are Java, and 4.7% are C++.

Before exploring code clones among the entire
Python exploit codes, we evaluate the performance

of existing clone detection techniques with our man-
ually labeled dataset of 144 Python exploit codes for
17 vulnerabilities published in 2023. For clone detec-
tion, we focused on Type-1, Type-2, and Type-3 code
clones (Bellon et al., 2007); in brief, two codes are re-
garded as a clone pair if they are identical except for
some modifications that do not affect their behavior
(e.g., whitespaces, comments, variable/function iden-
tifiers) or if they are copied codes with further mod-
ifications such as changed, added, or removed state-
ments. In our dataset, 13 of the 17 vulnerabilities have
at least one pair of cloned exploit codes.

A unique feature of exploit codes is that they of-
ten contain many statements to display code metadata
or debug information to improve their usability. A
typical example is the print function used to dis-
play banners that contain author names and version
information. However, these statements have no prac-
tical effects on their functionality. In addition, dif-
ferent authors often use very different output strings,
resulting in negative effects on clone detection. To
mitigate this problem, we removed function calls to
output strings to stdout/stderr, including print and
logging.debug in advance.

Table 2 summarizes our main performance eval-
uation results, where θ represents clone threshold,
i.e., two exploit codes are regarded as a clone pair if
their similarity score is larger than θ. The first can-
didate is a BERT-based Python clone code detection
model (sangHa0411, 2022; lazyhope, 2023) trained
with a public dataset (PoolC, 2021). BERT-based
code analysis models have been actively studied in
recent years and achieve state-of-the-art performance
for several tasks (Feng et al., 2020). However, the
performance of the BERT-based model is not satis-
factory; it outputs high similarity scores (> 0.99) for
almost all the pairs of codes, and as a result, the pre-
cision scores become very small. One of the reasons
is a feature of BERT-based models that they use small
chunks of codes (typically functions or methods) for
model training because BERT imposes restrictions on
the number of input tokens. Consequently, they are
not suitable for applying to exploit codes.

Next, we evaluate SourcererCC (Sajnani et al.,
2016), which is a clone detector based on compar-
ison code tokens optimized for large code bases.
For our dataset, similarity threshold θ = 0.5 per-
forms the best; however, the recall score is still small
(0.678). We therefore incorporate SourcererCC with
ssdeep (Kornblum, 2006), a context triggered piece-
wise hashing scheme commonly used for detecting
similar files. Specifically, we regard two exploit codes
as a clone pair if SourcererCC or ssdeep determines
they are a clone pair. As shown in Table 2, this

Prioritization of Exploit Codes on GitHub for Better Vulnerability Triage

33



Table 2: Performance comparison of code clone detection schemes.

Accuracy Precision Recall F1

BERT-based model (θ = 0.995) 0.483 0.131 0.745 0.223
BERT-based model (θ = 0.999) 0.684 0.191 0.673 0.298

SourcererCC (θ = 0.6) 0.948 0.882 0.545 0.674
SourcererCC (θ = 0.5) 0.951 0.804 0.673 0.733
SourcererCC (θ = 0.4) 0.911 0.536 0.818 0.648

SourcererCC (θ = 0.5) + ssdeep 0.962 0.804 0.818 0.811
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Figure 4: The number of vulnerabilities with at least one
code clones among vulnerabilities with multiple exploit
codes.

scheme has the best F1 score 0.811.

4.1.1 Results

We explore code clones by applying the above scheme
to the entire Python exploit codes. Note that the
dataset does not contain forked repositories, as de-
scribed in Section 2.1. As a result, we found that
58.5% of vulnerabilities with multiple exploit codes
have cloned exploit codes. As shown in Fig. 4, code
clones are widespread regardless of the years vulner-
abilities were found in. The median of the numbers of
code clones for each vulnerability is 2 with standard
deviation 3.40. CVE-2023-38646 has 21 clones out of
its 23 exploit codes, which is the maximum number
of clones for a single vulnerability. The vulnerability
with the second most code clones is CVE-2020-1472
(a.k.a. Zerologon), and 20 out of its 24 exploit codes
are determined as code clones.

Next, we discuss the benefits of the code clone
detection scheme on reducing the burden of exploit
code analysis. We divide all the codes into clone
clusters according to the clone detection results. Let
us assume that, for analyzing exploit codes of a spe-
cific vulnerability, analysts choose only one of exploit
codes from every cluster corresponding to the vulner-
ability. In this case, the number of exploit codes to be
analyzed can be reduced by 25.5% compared to the
case where all the codes must be analyzed.

These results indicate that code clones are
widespread on the exploit code sharing ecosystem on
GitHub, and thus detecting them can effectively re-
duce the number of candidates of exploit codes to be

analyzed in depth.

4.2 Graph-Based Exploit Code
Prioritization

After identifying clone codes, we further narrow
down exploit codes to be analyzed based on their
trustworthiness and the attention to the correspond-
ing vulnerabilities. Specifically, we extract reposi-
tory owners whose exploit codes are valid with high
confidence by leveraging TrustRank (Gyöngyi et al.,
2004), an algorithm derived from the PageRank al-
gorithm. PageRank was originally designed to de-
rive the influence and importance of web pages; how-
ever, it has been applied to the analysis of various
platform where users are interconnected, including
Twitter (Chien et al., 2014) and GitHub (Hu et al.,
2016). A core feature of TrustRank is that it lever-
ages the concept of trust. In brief, it manually chooses
a set of trustworthy nodes with trust scores 1.0, and
then propagates the scores following the graph struc-
ture through multiple iterations until the scores of
the nodes converge. Consequently, every node is as-
signed a trust score in the range of [0.0,1.0], reflecting
its trustworthiness based on the quality and quantity
of connections with other nodes.

First, we created a graph that represent relation-
ship between GitHub users. Each node corresponds
to a GitHub user and a directed edge from user A to
user B is established if any of the following condi-
tions holds: (1) A is following B; (2) A has sent a star
for any of the repositories of B; (3) A is watching any
of the repositories of B; or (4) A has forked any of
the repositories of B. The resulting graph consists of
103210 nodes and 100071 edges. The minimum, me-
dian, mean, and maximum degree of the nodes are 1,
1, 5.46, and 4022, respectively.

Next, we created a list of GitHub users who are
regarded as roots of trust in the graph, meaning that
their exploit codes are assumed to be valid. The first
part of the list contains GitHub users whose exploit
codes are referenced by any of the NVD CVE records.
We collected NVD CVE records for vulnerabilities
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published between 1999 and 2023, and then extracted
URLs in the reference sections of the records. Among
45678 URLs collected, we found 4378 URLs belong
to github.com. We further extracted URLs that are
identical with the URL of any of the exploit code
repositories. As a result, we obtained 190 exploit code
repositories referenced by the NVD CVE records, and
these repositories belong to 158 users. The second
part contains GitHub users who have published valid
exploit codes on ExploitDB or Metasploit. We col-
lected the usernames of the authors of Metasploit ex-
ploit codes and ExploitDB exploit codes marked as
“verified”, and associated the authors with GitHub
users with exact matching of usernames. To reduce
the impact of collisions of usernames among different
sources, we excluded users whose usernames are less
than four characters. In total, we obtained a list of 280
trustworthy GitHub users. Note that our graph gen-
eration process can be fully automated, and thus the
rank scores can be easily updated when new GitHub
users are added to the graph.

Finally, we derive the rank scores for all the nodes
in the graph. The initial trust scores of the trustworthy
GitHub users and the other users are set to 1.0 and 0.5,
respectively. The scores are then updated iteratively
according to the following equation:

sn+1 = dMsn +(1−d)s0,

where si, M, and d denote the vector of rank scores
in the i-th iteration (i ≥ 0), the transition matrix
that represents the graph structure, and the dump-
ing factor, respectively. The damping factor d is set
0.85, which is the default value for the PageRank
and TrustRank algorithm. For M = {mi, j}, mi, j =
1/(outdegree of node j) if there exists a directed edge
from node j to node i and mi, j = 0 otherwise. We
set the convergence threshold to 10−6, meaning that
the iteration process stops if the L2-norm between sn

and sn+1 is less than the threshold. To derive accu-
rate rank scores, it is desirable to use a small con-
vergence threshold; however, the amount of time re-
quired to derive the scores becomes large. Therefore,
the threshold is typically set to 10−4 or 10−6. For
our graph, the score derivation was completed within
0.304 seconds even when the threshold is set to 10−6.

4.2.1 Results

It takes 46 iterations to derive the rank scores. The
distribution of rank scores is long tailed. Specifically,
the top 100 GitHub users hold more than half of the
sum of the rank scores.

First, we verify if the TrustRank algorithm has
sufficient effects on the final ranking of users, com-
pared to the case where users are simply ranked with

the number of stars, watchers, forks, or followers. To
this end, we use the Pearson correlation coefficient,
denoted by r ∈ [−1.0,1.0]. Table 3 summarizes the
correlation coefficient values for all the pairs of the
5 metrics. First, the number of stars, watchers, and
forks are positively correlated (0.760 ≤ r ≤ 0.956),
while the correlation between the number of followers
and the other metrics are small (0.282 ≤ r ≤ 0.310).
This is likely because, among the 4 metrics, only
the number of followers is the characteristic of users,
rather than their repositories. Second, the correla-
tion coefficients between the rank scores and the other
metrics are medium (0.303 ≤ r ≤ 0.807). For ex-
ample, among the top 100 users determined by our
TrustRank-based scheme, 52 users are not contained
in the top 100 users determined solely by the total
number of followers, stars, watchers, forks. From
these results, we conclude that our scheme has a suf-
ficient impact on the final prioritization.

Table 4 presents short profiles of the top 5 GitHub
users. Three of them are included in the list of
trusted owners. The first three owners host ex-
ploit codes for famous vulnerabilities of Windows
software with codenames including CVE-2021-1675
and CVE-2021-34527 (a.k.a. PrintNightmare, re-
mote code execution vulnerabilities of Windows Print
Spooler, software responsible for connecting Win-
dows OS with printers and managing printing jobs),
CVE-2022-21999 (a.k.a. SpoolFool, a remote code
execution vulnerability of SMBv3), and so on. Sim-
ilarly, the last two owners publish exploit codes for
famous vulnerabilities but not limited to Windows
software. One important feature of the exploit codes
is that all of them have the top-level user reputation
among code targeting the same vulnerability. In other
words, our scheme can prioritize exploit code by tak-
ing both the reputation from users and the security
community’s attention to vulnerabilities into consid-
eration.

5 RELATED WORK

Using GitHub for Vulnerability Triage: Exist-
ing studies have investigated communication among
users on social media platforms including GitHub,
Twitter, and Reddit for vulnerability triage. Schi-
appa et al. have analyzed GitHub events, Tweets, and
Reddit posts that explicitly mention CVE IDs using
a topic modeling technique (Schiappa et al., 2019).
They revealed that these social media platforms, es-
pecially Twitter, can be used to identify high-severity
vulnerabilities. They also revealed that there is a pos-
itive correlation between the number of Twitter posts
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Table 3: Correlation coefficient among rank score and other 4 metrics.

rank score # of stars # of watchers # of forks # of followers

rank score 1.0 0.807 0.683 0.779 0.303
# of stars 0.807 1.0 0.760 0.956 0.298

# of watchers 0.683 0.760 1.0 0.765 0.310
# of forks 0.779 0.956 0.765 1.0 0.282

# of followers 0.303 0.298 0.310 0.282 1.0

Table 4: The profile of the top 5 GitHub users. We masked their usernames for privacy reasons.

Rank # of
stars

# of
watchers

# of
forks

# of
followers Content

1 5648 163 1316 1425
8 exploit codes for vulnerabilities of Windows
software including PrintNightmare, SpoolFool,
SMBGhost, and CurveBall.

2 6236 142 1744 1459
Python exploit codes for PrintNightmare,
Zerologon, and vulnerabilities regarding
Active Directory.

3 423 43 104 644
4 exploit codes for vulnerabilities of Windows
software found in 2020 including SMBGhost
and CurveBall.

4 2306 117 478 7466 Exploit codes for vulnerabilities of OpenSSL
including Heartbleed

5 1767 28 499 hidden A exploit code for Log4Shell

mentioning a specific CVE ID and the number of ex-
ploit codes against the vulnerability, indicating that
Twitter can be used to identify vulnerabilities that
are likely to be exploited in the wild. Shrestha et
al. have analyzed these three platforms in a simi-
lar way (Shrestha et al., 2020). They revealed that
discussion on a specific software vulnerability can be
found on GitHub even before it is officially published
by NVD. Neil et al. have identified that GitHub can
be used for mining threat intelligence regarding open
source software (Neil et al., 2018). They represent
obtained threat intelligence as a knowledge graph to
notify security analysts and developers when any in-
telligence is found for software of their interests. One
of the differences between our study and these exist-
ing studies is that we mainly focused on the aspect of
GitHub as a platform for sharing exploit codes.

Analyzing Exploit Codes for Vulnerability Triage:
Suciu et al. proposed the notion of expected ex-
ploitability to continuously estimate the likelihood
that exploit codes will be published for a specific vul-
nerability (Suciu et al., 2022). They use features ex-
tracted from vulnerability information (e.g., NVD de-
scriptions and CVSS scores), write-ups, and exploit
codes collected from ExploitDB, Bugtraq, and Vul-
ners to derive expected exploitability using neural net-
work. Householder et al. have presented a historical

analysis of availability of exploit codes for various
vulnerabilities and investigated features of vulnerabil-
ities that affect the likelihood that exploit codes are
developed against them (Householder et al., 2020).
Their study is similar to our study; however, they only
use ExploitDB and Metasploit as sources of exploit
codes and did not focus on GitHub. In (Jacobs et al.,
2023), Jacobs et al. have described the engineering
efforts for improving EPSS scores, which predict the
probability each vulnerability will be exploited within
next 30 days. They use the public availability of ex-
ploit codes targeting a specific vulnerability as one of
the features for deriving its EPSS score. In 2013, Al-
lodi et al. have revealed that ExploitDB covers 25%
of vulnerabilities exploited in the wild (Allodi and
Massacci, 2013), where their list of vulnerabilities ex-
pected in the wild only those referenced in the Syman-
tec Attack Signature and Threat Explorer. Their re-
sults are similar to those we described in Section 3.3;
however, they only focused on ExploitDB.

Detecting Malicious Codes on GitHub: Poten-
tially malicious files such as malware and shellcodes
can be uploaded to GitHub because it can host arbi-
trary text files, source code, and binary codes. Several
existing studies have investigated these files. Rokon
et al. have identified 7504 malware source code
repositories on GitHub by using a machine learn-
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ing model trained with manually labeled data (Rokon
et al., 2020). The machine learning model uses repos-
itory metadata such as titles, descriptions, content of
README files as features for classification. Cao et
al. have analyzed malware repositories that have been
published as forks of legitimate GitHub repositories
to trick users into downloading the malware (Cao
and Dolan-Gavitt, 2022). They used anti-malware
software including ClamAntiVirus and CAPA to de-
tect malware repositories and used the ssdeep algo-
rithm to detect malware samples that are similar to
already detected ones. Yadmani et al. have con-
ducted a large-scale investigation of malware repos-
itories that attempt to trick security researchers into
executing them by making them appear to be reposi-
tories of exploit codes. Specifically, they have iden-
tified malware repositories using several heuristics,
such as identifying codes that use IP addresses con-
tained in malicious public IP address lists, analyzing
binary executables with VirusTotal, and manual anal-
ysis of hexadecimal/base64-encoded payloads (Yad-
mani et al., 2023). They investigated exploit codes on
GitHub like our study; however, they focused solely
on GitHub and thus did not perform thorough com-
parison with other sources of exploit codes.

As represented by CVE-2024-3094 (the vulnera-
bility due to the backdoor intentionally implanted in
XZ Utils), which attracted global attention in May
2024, developing efficient methods to prevent soft-
ware supply chain attacks that add malicious code
fragments to open-source software is an urgent task.
A line of studies aims to detect malicious commits on
GitHub. Gonzalez et al. proposed to use commit logs
and repository metadata to identify malicious com-
mits to a GitHub repository (Gonzalez et al., 2021).
As a different approach, Gong et al. aim to detect
malicious user accounts on GitHub by analyzing dy-
namic activities and interactions of users with deep
neural networks (Gong et al., 2023).

Detecting Code Clones on GitHub: Code clone
detection schemes have been used for various rea-
sons including reduction of duplicated codes on a
project, code provenance inference, and detection of
the spread of bugs and vulnerabilities due to copy-
and-paste of source codes. Some existing studies have
investigated code clones on GitHub; however, they
did not focus on exploit codes. Lopes et al. have
conducted a large-scale investigation of code clones
written in Java, C++, Python, and JavaScript by using
SourcererCC (Lopes et al., 2017), and revealed that
code clones are prevalent on the GitHub ecosystem.
They have published the dataset of code clones; how-
ever, the dataset does not contain repositories pub-

lished recently and thus insufficient for our investi-
gation. Nguyen et al. have presented a framework
for computing similarity of OSS projects on GitHub
to recommend projects that facilitate on-going devel-
opment (Nguyen et al., 2020). Zhang et al. have
developed a recursive encoder-base machine learning
model to detect cloned Java codes (Zhang and Wang,
2021). Wyss et al. have investigated code clones in
npm packages and found 207 out of 6292 code clones
carry vulnerabilities that originated from the original
npm package (Wyss et al., 2022).

6 DISCUSSION AND
CONCLUSION

In this study, we first compared exploit codes pub-
lished on GitHub, ExploitDB, and Metasploit in terms
of the numbers of exploit codes, coverage of vulner-
abilities, coverage of exploits in the wild, and time-
liness of exploit codes publication. As a result, we
revealed that it is necessary to monitor exploit codes
on GitHub together with the other sources for better
vulnerability triage. We then proposed a scheme that
combines existing code clone detection tools and a
graph mining technique to extract exploit codes that
worth in-depth analysis. We argue that this study is
an important step toward improving the efficiency and
reliability of vulnerability triage processes through
automated exploit code analysis.

Finally, we discuss some limitations of this study.
First, although we applied several heuristics to ex-
tract GitHub repositories with exploit codes in Sec-
tion 2.1, repositories without exploit codes can be in-
cluded in the final dataset. Thus, a promising research
direction includes development of a machine learning
model to determine whether a repository contains an
exploit code or not for improving the validity. Sec-
ond, we demonstrated how exploit code prioritization
results can be used for vulnerability triage; however,
vulnerability triage is commonly conducted by tak-
ing a wider range of information such as threat intel-
ligence reports and vendor advisories into considera-
tion. Therefore, another promising research direction
is to combine the results obtained with our proposed
scheme with other information to evaluate its usabil-
ity for practical vulnerability triage.
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