
Evaluating the Quality of Class Diagrams Created by a Generative
AI: Findings, Guidelines and Automation Options

Christian Kop a
University of Klagenfurt, Universitaetsstrasse 65 – 67, Klagenfurt, Austria

Keywords: Class Diagram, ChatGPT, PlantUML, Domain Modelling, Quality Checking.

Abstract: Working with a Generative AI such as ChatGPT to create conceptual models and particularly Class Diagrams
became very popular recently in the modelling community. Therefore, the objectives of this paper are the
following: It analyses the previous scientific work to summarize the findings about the quality of AI-generated
Class Diagrams. Own tests were carried out too. Based on these findings, the paper provides guidelines for
manual quality evaluation. It also discusses automation options for evaluating the quality.

1 INTRODUCTION

Working with a Generative AI became very popular
in the last two years. The driving factor was openAI,
which successfully made ChatGPT (ChatGPT, 2024)
available to the public.

Conceptual modelers also thought about the
benefits of such Generative AI tools for modelling.
They were interested to find scenarios in which such
a support can be used.

Therefore, the first objective of this paper is to
investigate what have already been found out in
previous work with regard to the quality of
automatically created conceptual models. This
literature study was supplemented by own tests in
order to get a better insight regarding the quality of
the created models.

Since possible quality issues in a model make it
necessary to establish guidelines for the evaluation of
a model, such guidelines are the second objective of
this article.

The third objective deals with the question, to
which extent, the quality of the model can be
automatically checked to minimize the manual effort.

In order to better address the above objectives, the
article specialises to several specific aspects:
ChatGPT was solely used to create Class Diagrams in
PlantUML (PlantUML, 2024) for domain modelling.
Prompt engineering was only carried out to the extent
that it can support the generation of such a Class

a https://orcid.org/0000-0001-5800-458X

Diagram. Thus, the findings of this papers are only
applicable for these specialised aspects.

To address the objectives, the rest of the paper is
structured as follows. In Section 2 the related work is
listed. Section 3 firstly explains the specific aspects
of how ChatGPT was tested and then it describes the
findings regarding the quality of the AI-generated
Class Diagrams. In Section 4 guidelines for manual
evaluation are given on the basis of the findings.
Afterwards this section focuses on the possibilities as
well as limitations of automatic checking. The paper
is summarized in Section 5.

2 RELATED WORK

Papers already exist, investigating the use of
Generative AI for several aspects of the software
development life cycle. Since this paper is dedicated
on the support of Generative AI and Large Language
Models (LLM) to generate Class Diagrams for
domain modelling, the literature survey is confined to
analyse only literature related to this scope.

(Combemale, 2023) gave a brief overview of the
potentials of Generative AIs and the possibilities it
could have for the future of conceptual modelling.

Some authors focused on the performance of
Generative AI and particularly on ChatGPT to create
Class Diagrams or Entity Relationship Diagrams
(ERD) from textual descriptions.

150
Kop, C.
Evaluating the Quality of Class Diagrams Created by a Generative AI: Findings, Guidelines and Automation Options.
DOI: 10.5220/0013103000003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 150-157
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

A detailed analysis of working with ChatGPT was
done in (Cámara, 2023). The authors listed 18
findings after testing ChatGPT to create UML Class
Diagrams. Some of these findings focused on prompt
engineering and how the possible size of the resulting
model can influence the quality of such a generated
model. In other findings, they explained what kind of
modelling language concepts the AI cannot create
properly. The authors also listed some types of errors,
which they recognized, when evaluating the
generated result.

In (Fill, 2023), the authors used textual
descriptions to test how ChatGPT creates an ERD, a
Business Process Diagram, a UML Class Diagram
and the HERAKLIT model. On a general level, they
discussed the system performance to generate these
specific types of models. They also explained what
kind of prompts they used to instruct ChatGPT how
to do this task.

In (Chen, 2023), the authors examined, to which
extend the ChatGPT versions GPT-3.5 and GPT-4.0
can support the automated generation of Class
Diagrams. Therefore, the authors compared the
results with reference models, which were created by
experts. The authors found four categories of how AI
generated model elements matches with model
elements in the reference models: a semantically
exact match, a semantically exact match but not of the
same type, a partial match and no match. Based on the
examinations, the authors concluded, that an
automated generation do not always produce a perfect
result. However, they found out, that the creation of
classes performed better than the creation of
attributes. The creation of attributes performed better
than the creation of relationships. They also achieved
better results with GPT-4.

Another paper (Wang, 2024) examined how well
ChatGPT performed to create three types of UML
diagrams, namely Use Case Diagrams, Class
Diagrams and Sequence Diagrams. They also came
to the conclusion that the Generative AI performed
differently for different types of modelling elements.
The system performed better in recognizing e.g.,
classes and use cases from respective textual
descriptions. However, the system struggled to
recognize relationships.

A set of contributions not only focused on one
Generative AI (e.g., ChatGPT) but compared its
effectiveness with that of other approaches, intended
for creating conceptual models.

In (Omar, 2023), the authors examined how good
ChatGPT can model entity types, relationship types
and multiplicities in ERD with respect to other
modelling tools that use natural language processing

or ontologies. The authors concluded that among all
the tools ChatGPT performed best but also stated, that
human experts should evaluate the generated result

A rule-based approach, a machine learning
approach feature engineered by one of the authors and
ChatGPT were compared in (Bragilovski, 2024). It
turned out that the two machine learning approaches
outperformed the rule-based approach, but none of
them was able to outperform a human expert.

In (Bozyigit, 2023), the authors compared their
own tool with ChatGPT. They came to the conclusion
that on average the own tool performed better.
However, the performance in generating relationships
was low in both tools.

Another type of contributions raised the question
about the role a Generative AI can play in the
educational context of conceptual modelling and
software engineering. For instance, in (Cámara, 2024)
and (Xue, 2024), the authors focused on the question,
how students perform in using ChatGPT. In both
studies, it turned out that Students who used ChatGPT
performed better. In (Xue, 2024) it was stated that the
difference was not significant. In another study
(Saito, 2023) ChatGPT was used to return the
difference between a modelling solution from
students with a given perfect solution. In (Morales,
2023), the authors tested ChatGPT in the task to
explain, if a generalisation relationship between two
notions is appropriate. After a couple of tests, the
authors concluded that ChatGPT cannot be used as an
advisory tool for this specific purpose. Finally, in
(Wang, 2023), the authors also discussed the issue of
plagiarism and how good it can be detected either by
course instructors or specialized AI tools.

The impact of Generative AIs in the software life
cycle were addressed in the following contributions.

Netz et. al, (Netz, 2024) presented an approach,
where ChatGPT transformed natural language text
into a domain specific modelling language for
building web applications. Although the results were
promising for the authors, they also stated that the
detected issues regarding semantic correctness should
be evaluated by a human expert.

In (Kanuka, 2023), ChatGPT was used to create
both a design model (UML Class Diagram) as well as
python code from a textual description. In addition, it
had to establish a traceability between these two
specifications. Regarding traceability, it took several
attempts interacting with the AI until it fulfilled their
expectations.

The use of LLMs for the development of model
and code variants in software product lines was
introduced in (Acher, 2023).

The use of ChatGPT in different early phases of

Evaluating the Quality of Class Diagrams Created by a Generative AI: Findings, Guidelines and Automation Options

151

software development, is presented in (Rouabhia,
2023). The AI created, requirements from an input
document. From these requirements, use cases were
generated. The use cases were in turn the starting
point for the creation of a Class Diagram.

In (Härer, 2023), the author developed a
modelling application, that interacts with Generative
AI APIs. The application then takes the generated
model specification and draws it in the required type
of diagram (e.g., Class Diagram).

Lastly two authors (Conrardy, 2024) (Buchmann,
2024), explored if drawings and sketches of Class
Diagrams can be transformed to a textual
specification of this Class Diagram.

To summarize, authors of previously published
related papers presented general findings like e.g., the
percentage of correctness for different types of model
elements. More detailed findings about some errors
were given in (Cámara, 2023). Overall, the conclusions
in these papers are, Generative AI and particularly
ChatGPT does a good job, however, the quality differs
with respect of the type of modelling element.

This literature analysis raised the question: Do
even more and particularly more concrete quality
issues exist that were not already mentioned?
Furthermore, no explicit guidelines were found in
literature that could guide modelers to evaluate the
quality of the AI-generated Class Diagram. Finally,
no discussion about automation options for this
evaluation task was found.

This paper is therefore dedicated to these open
questions.

3 FINDINGS

This section deals with the testing of ChatGPT for
generating Class Diagrams. It was tested both with
existing examples of input texts given in the literature
as well as new, own text examples.

3.1 General Considerations Regarding
the Tests

ChatGPT was used, because it was frequently used in
the literature analysed. During the interaction with the
AI, an explanation was given about the nature of the
expected output. Namely, it should be a domain
model and it should be a UML Class Diagram in
PlantUML notation. Therefore, the own textual
descriptions started with the following explanation:
“Create a domain model with a UML class diagram
for the text below and output it in PlantUML: ….. “.
Afterwards the text describing the content for the

class diagram followed. In the text examples found in
literature, the introductory and explanatory part of
these texts were adopted, if needed, such that the
purpose of the models and the desired Class Diagram
notation were expressed. No effort was spent to repeat
the interaction with the AI within one chat session by
giving additional text inputs in different, more
detailed variations in order to improve the received
output from the previous interaction. Here, it is
assumed that a modeller should always know what is
right and what is wrong in the AI-generated
conceptual model, before proceeding with any next
step. Thus, checking quality of the resulting Class
Diagram output is important anyway.

PlantUML was taken, since it was frequently used
in literature too. Furthermore, it is a text-based model
specification language that ChatGPT already knows.
Hence, it was assumed that creating a model should
be like creating code for ChatGPT. Although,
PlantUML has advantages, it has a drawback in the
context of domain modelling. PlantUML was
designed for modelling UML diagrams at each phase
of software development. In domain modelling, a lot
of these concepts and notations are not necessary.
However, apart from a few exceptions, many of those
concepts relevant for the implementation phase were
not created by the AI. Therefore, only a subset of
PlantUML had to be considered.

Once the models were created, the quality of these
models then were manually evaluated.

3.2 Test Results

The following was found about the important
concepts in the resulting model.

Classes: ChatGPT created classes from the
textual description but due to missing information in
the textual description, sometimes classes did not
have attributes. Below there is such an example:

class AcademicStaff {
}

In all the tests, classes were involved in
relationships (i.e., association, aggregation,
composition or generalization).

Enumeration Types: ChatGPT created
enumeration types properly, where it could recognize
it in the input text.

Attributes: ChatGPT created attributes that
represent relationships to another class. For example,
in a created class Sensor the following attribute
appeared referencing to another class
Manufacturer:

 -manufacturer: Manufacturer

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

152

Here, the AI did not create an association, the usual
modelling element in domain modelling. This kind of
defect was already mentioned in (Cámara, 2023). In
the following, it will be referred to such an attribute
as a “referencing attribute” to distinguish it from an
attribute that describes the property of a class without
referencing to another class. The AI also sometimes
added attributes to classes that were not part of the
input text, since it used its acquired internal
knowledge.

Finally, if in the input text, names of attributes are
mentioned for different classes, then these attributes
also appear in these different classes in the resulting
model. This is generally okay, but it could also mean
that restructuring is necessary. Take for instance the
following excerpt from a created Class Diagram,
which a modeler can either take as it is or s/he can
think of alternative modelling decisions.

class Owner {
 +String firstName
 +String surname
 +String address
 +String telephone
 +String email
}

class Customer {
 +String firstName
 +String surname
 +String email
 +String telephone
}

Types of Attributes: ChatGPT does a good job
in finding types of attributes even if these types are
not mentioned in the input text.

Associations: The Generative AI created
associations that consists of multiplicities. These
multiplicities however were not always correct.
Sometimes, also association names were missing. In
one case, the association name actually was a role
specification of a participating class. Sometimes, the
AI created associations with a navigation direction
Such associations with navigation direction were also
observed in (Cámara, 2023). In addition, and due to a
lack of sufficient information in the input text, they
did not have multiplicities and association names
either. Here are several examples of associations from
different created models:

WeatherStation --> Location
University "1" -- "0..*" Faculty
Resident "0..*" -- "many" Item
Customer "1" -- "0..*" Account : holder
Institute "1" -- "0..*" Employee :
employs

Sometimes, it also happened that the AI created
associations that were not given in the input text.

In one case, it also created two associations from
two different sentences, although these sentences
only described one association from the perspectives
of each involved class.

Aggregations and Compositions: In (Cámara,
2023) it was complained, that the composite notation
was placed illegally on both ends of a composition.
However, this could not be reproduced during the
tests for this paper. During the tests, it was recognized
that the AI did not generate the multiplicities for
special relationships. It even happened that a
composition was created although it is not needed and
it had an association name. Below, there is a
composition and an aggregation example from
different created models.

Property *-- Newspaper : AdvertisedIn
EBike o-- Battery

Generalizations: The AI often created correct
generalisations but sometimes, it found alternative
constructs for a generalization. It used association
names e.g., shippingAddress and
billingAddress to express the role of the class
Address participating in an association. But no
generalization between shippingAddress and
billingAddress to Address was created.

In one test case it also wrongly generated an
association with a navigation direction and generated
the association name inherits although a
generalization would be correct in this case. In
another test case, the generalization was expressed
with the keyword extend.

In a case, it also happened that the AI wrongly
modelled a class as a super class although it was the
subclass in this generalization e.g.,

Lecturer <|-- ScientificEmployee
ScientificEmployee <|-- Employee

Association Classes: They are useful, if for
example, attributes do not belong to only one of the
participating classes. The attribute “mark” is a
common example in the domain of a student
information system, where students can manage, to
which courses they will enrol. A mark belongs neither
to a course nor to a student only. In (Cámara, 2023)
the authors found out, that an association class is not
generated properly. When carrying out the own tests,
it turned out that instead a compensation was created
in the test case of the student information system
scenario. The additional class Enrolment was
created. This class contained the specific attribute
mark but the two classes Student and Course were

Evaluating the Quality of Class Diagrams Created by a Generative AI: Findings, Guidelines and Automation Options

153

not connected to each other. Instead, each of them
refered to Enrolment via an association. Hence, the
created PlantUML output did not have the correct
concept and notation for specifying an association
class (e.g., (Student, Course) .. Enrolment).
Thus, Enrolment was only treated as a normal class
in the output.

Methods: In general, methods should not appear
in a domain model focusing on relationships between
notions. However, if ChatGPT already generates
methods in some cases, then they can also be seen as
a chance to get more information about the resulting
model. Methods of a class have in common, that they
operate either on attributes of this class or on an
instance of another class, to which this class has an
association, aggregation relationship or composition
relationship respectively. An example for a method
specification that was created in a test case is:

+ getBranches(): List<Branch>

Therefore, it is worth to take a look at the
signature of the method (i.e., the name of the method
and the parameter of the method as well as the return
parameter of the method if available). If the signature
of the method indicates that the object of another class
is involved, then it can be checked if the class of the
method is directly connected with this other class via
an association, aggregation- or composition
relationship. Otherwise, it can be checked if attributes
appear in this class that are used in the method. The
name of a method is a hint sometimes. During the
tests with the input texts, it was sometimes recognized
that the AI created methods, but from its signature it
could not be concluded, which attributes are involved
if the method does not operate on instances of classes.
This however would be necessary, if the modeler
would like to be sure that the model is complete in
this respect.

4 MANUAL EVALUATION AND
AUTOMATION OPTIONS

Based on the results of the tests, this section provides
guidelines for manual evaluation as well as a
discussion of automation options.

4.1 Guidelines for Manual Evaluation

Although AI often delivers good modelling results,
problems can arise that are not present in manually
generated models. Therefore, a modeler has to
carefully check the resulting model.

Classes: For each class firstly, the modeler should
check if it is necessary in the model according to
his/her domain experience. Afterwards, it has to be
checked if it has attributes. It should be also tested if
a class is at least involved in one relationship
(association, aggregation, composition or
generalization) with another class.

Enumeration Types: Although, enumeration
types were created well, it is also good to check them.
For each enumeration type the modeler should check
if it is necessary. Afterwards, s/he should check if it
has sufficient and correct enumeration values.

Attributes and Types: For each attribute per
class firstly it has to be checked if it is not a
referencing attribute to another class that shall be
better modelled via an association, aggregation or
composition. If it is not a referencing attribute, it has
to be checked if it is relevant or not. If other classes
also have attributes with the same name, the structural
usefulness has to be checked. If a multiplicity is
specified for an attribute, the modeler should also
check if it is correct. Afterwards, the modeler should
check if the type of the attribute is correct.

Associations: For each association firstly, it has
to be checked, if it is necessary in the model and it is
not redundant with respect to another association,
aggregation or composition connecting the same pair
of participating classes. Afterwards, the modeler
should check if the multiplicities are correct, if it does
have an adequate association name and if a created
navigation direction is really necessary.

Aggregations and compositions: For each
aggregation and composition respectively, firstly, it
has to be checked if it is necessary in the model and
it is not redundant with respect to another association,
aggregation or composition connecting the same pair
of participating classes. Afterwards, it has to be
checked if it does have the aggregate/composite
notation only on one end and it does have correct
multiplicities. In case of a composition, it has to be
checked, if the multiplicity at the composite end is
“1”. It should be also evaluated if navigation
directions are necessary.

Generalizations: For each generalization, firstly,
the modeler should check if it is necessary in the
model and is not redundant with respect to another
generalization connecting the same pair of
participating classes. Afterwards, it should be
checked if the role of the super class and sub class is
correctly assigned to the participating classes.

Association Classes: The modeler should evaluate
the model regarding association classes. S/he should
check, if association classes are missing or classes are
wrongly generated as a compensation for an

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

154

association class. In addition, it has to be checked, if an
attribute is assigned to only one participating class
although it should be part of an association class.

Methods: For each method the modeler should
consider, that it can provide further information. A
method should therefore be checked to determine if it
uses the attributes of its class or instances of another
class. For a method that uses the attributes, it has to
be clarified, which attributes are used and if they
already appear in the class. If instances of another
class are used in a method, then it has to be checked,
if the class of the method also has a direct relationship
(i.e., via an association, aggregation relationship or a
composition relationship) to that other class.

Missing Model Elements: Finally, once all the
elements listed in the created model are evaluated, the
modeler should check if any further necessary
information (e.g., additional classes, enumeration
types, attributes associations, aggregations,
compositions, generalizations, association classes) is
still missing.

4.2 Automation Options

This section discusses, to which extend a modeler can
get tool support to find issues. Both, issues regarding
semantic quality as well as syntactic quality
(Krogstie, 2002) are discussed. According to Krogstie
(Krogstie, 2002), particularly semantic quality is
inter-subjective, i.e., agreed upon the social actors. It
also has to be noted, that many issues are subjective
with respect to the intention of a modeler. What could
be a defect for one modeler could be correct for
another one. The main task of a tool offering
automatic support, is therefore only to draw the
attention of the modeller to a specific section of the
model, where an issue might exist. It is the decision
of the modeler if this is a defect that has to be
corrected. As a proof of concepts, a prototype was
developed. This prototype covers the automation
options explained here.

Classes: Testing if a class might be
underspecified can give the modeler a hint that there
is missing information. Once each class with its
attributes is collected in an internal data structure, it
can be computed, if the class has no attributes, or the
number of its attributes is under a manually defined
threshold. Setting an adequate threshold of course
needs the experience of a modeler.

A class is also underspecified if it is not involved
in any relationship, i.e., if the difference between the
set of all classes and the set of classes participating in
a relationship is not empty, then the elements in the
non-empty set are classes with no relationships.

Enumeration Type: An issue can appear in an
enumeration type, if it does not have sufficient
enumeration values. In general, an enumeration type
should have at least two values, as a general
threshold. But if it has more than two enumeration
values, it remains to the modeler’s experience if s/he
agrees with this number.

Attributes and Types: An attribute can be
automatically tested, if they belong to the category of
referencing attributes. The simplest case is an
attribute name in singular form, which is identical to
a class name other than the class name, in which the
attribute appears. For transforming the plural form of
an attribute’s name to its singular form, though, rules
or a digital dictionary support have to be used. It can
also be tested if the name without a certain suffix
(e.g., “ID”) matches with the name of a class. Lastly,
if the name of the type in the attribute’s specification
is identical to another class, then this also supports the
detection of referencing attributes.

It can also be automatically detected, if an
attribute’s name is listed in multiple classes. If this is
detected, this could indicate that restructuring could
be necessary. As already mentioned in Section 3.2
however, it depends on the context and thus the
design decision of the modeler. Here, an automatic
support only gives the information that it exists.

No automatic support can be given to check, if the
type of an attribute is appropriately chosen. This has
to be done manually by the modeler.

Associations: The check for incompleteness itself
does not need any contextual information and can be
done automatically. An association name and
multiplicities are either available or not. Navigation
directions also can be detected easily by just looking
in association specifications, if they exist.

However, context plays a dominant role in
deciding whether a multiplicity is right or wrong (e.g.,
is “*”, is “1..*” or even “1” the correct solution).
Therefore, it cannot be automatically tested, if the
multiplicities are correct. The same holds for
association names. Whether an association should
have an association name or whether existing names
are correct remains the decision of the modeler.
Wrong association names might be detected, if a tool
also manages a list of association names that are
wrong in many contexts but this gives no clue if a
name is wrong or correct in a given context.

Aggregations and Compositions: A wrong
notation as mentioned in (Cámara, 2023) – i.e.,
aggregate / composite symbol on both ends - can be
automatically filtered out as a syntactical error.

Missing multiplicities can also be detected
automatically. Apart from one exception, it is once

Evaluating the Quality of Class Diagrams Created by a Generative AI: Findings, Guidelines and Automation Options

155

again impossible to automatically distinguish
between wrong and correct multiplicities in
aggregations and compositions. The only exception is
the multiplicity at the composite end of a
composition. This multiplicity must be always “1”
end hence such a violation can be automatically
detected.

It is the decision of the designer, if a name should
be given for an aggregation or composition. Usually,
composition and aggregations already have a
semantic, hence a name is an add-on and it should not
be the wrong name. Therefore, the tool can inform the
modeler about named aggregations and compositions.
Showing such names to the modeler gives him/her the
opportunity to decide if a name for the aggregation or
composition is adequate.

Generalizations: It is difficult to automatically
detect the relevance of a generalisation and
correctness of a generalization specification. But in
two situations, a tool can at least tell the modeler to
take a look.

Regarding relevance of a generalization, let’s
suppose a class G has several subclasses e.g., S1, S2,
S3 and none of these subclasses have attributes as
well as relationships to other classes. Showing such a
case to the modeler gives him/her the chance to think
if restructuring is necessary or not. Both is possible,
it might be correct but it could also be an indicator for
missing information.

Regarding correctness of a generalization
specification, suppose a situation, where the name of
one class is also a substring of the other involved class
name (e.g., ScientificEmployee, Employee). In
this example the class Employee is the superclass in
the generalization. If, however, the generalisation
relationship does not reflect this, but the
generalization arrow is pointing from Employee to
ScientificEmployee instead, then this
generalisation specification is wrong. This can be
easily detected by comparing the two strings.

Since issues in generalization relationships can
only be recognized under certain conditions, the
modelling expert is particularly in demand here.

Redundant Relationships (associations,
aggregations, compositions, generalizations): An
automatic support can at least inform the modeler that
a pair of classes appears in more than one
relationship. Once again, it depends on the context if
the same pair of classes should really be connected to
each other in more than one association. The modeler
with his/her knowledge should decide if a redundancy
exist in the model. However, it is more unlikely that
the same pair of classes is part of more than one
composition, aggregation or a combination of

composition, aggregation and association. It is also
unlikely that the same pair of classes is part of more
than one generalization relationship.

Association Classes: The evaluation if an
association class exists, also strongly depends on the
context and cannot be done without the experience of
the modeler. If the AI cannot create such a class
properly, then automatic support is only possible, if
the Generative AI uses a specific strategy to
compensate an association class. Particularly, if a
class is created, whose name is a nominalization of a
verb or an adjective. Since some nominalizations
have suffixes like e.g., “ing”, “ment” etc., all classes
could be inspected if their names contain one of those
suffixes. These classes are then shown to modeller.
Admittedly, this is only a minimal support, and does
not guarantee successful detection of association
classes. Neither it can be expected that the AI creates
association classes in this way nor it can be expected,
that a class with a specific suffix is always an
association class.

Methods: As already explained, the signature of
methods can be used to find out, if attributes or
relationships to classes are missing. The idea here is
to analyse the signature in order to find words or
tokens in the method’s name or in a non-empty
parameter list that matches with existing attributes of
the method’s class or other class names. The modeller
has to be informed if this analysis fails. S/he then has
to decide if information is missing. This automatic
support has limitations, since there is no commitment
at all, that the name of a method always has to match
with an attribute’s name or the method has
parameters.

5 CONCLUSION

This paper presented guidelines to evaluate the
quality of AI-generated Class Diagrams. The paper
also discussed if a modeler can be supported in these
evaluation tasks. It was argued that automation is only
possible in co-operation with the modeller. A tool can
just encourage the modeler to have a look at a created
model. It is then up to the modeler do make the right
decision.

Currently, only the performance of ChatGPT for
generating a Class Diagram was tested. Future work
could focus on other Generative AI tools and on other
modelling languages. The presented analysis of the
output are qualitative observations (i.e., what kind of
issues appear). A more extensive study could focus
on quantitative factors like the frequencies of certain
issues in the created models.

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

156

REFERENCES

Acher, M., Martinez, J. (2023). Generative AI for
Reengineering Variants into Software Product Lines:
An Experience Report, In SPLC '23: Proceedings of the
27th ACM International Systems and Software Product
Line Conference, pp. 57 – 66, https://doi.org/
10.1145/3579028.3609016.

Bozyigit, F., Bardakci, T., Khalilipour, A., Challenger, M.,
Ramackers, G., Babur, Ö, Chaudron, M., R., V. (2023)
Generating domain models from natural language text
using NLP: a benchmark dataset and experimental
comparison of tools, Software and Systems Modeling,
https://doi.org/10.1007/s10270-024-01176-y.

Buchmann, T., Fraas, J.. (2024) AI-Based Recognition of
Sketched Class Diagrams. In Proceedings of the 12th
International Conference on Model-Based Software
and Systems Engineering (MODELSWARD 2024), pp.
227-234

Bragilovski, M., van Can, A. T., Dalpiaz, F., Sturm, A.
(2024) Deriving Domain Models from User Stories:
Human vs. Machines. In IEEE 32nd International
Requirements Engineering Conference (RE), IEEE
Xplore, pp. 1 - 12, DOI: 10.1109/RE59067.2024.00014-

Cámara, J., Troya, J., Burguen͂o, Vallecillo, A., (2023). On
the assessment of generative AI in modeling tasks: an
experience report with ChatGPT and UML. In Software
and Systems Modeling Vol. 22, pp. 781 – 793,
https://doi.org/10.1007/s10270-023-01105-5.

Cámara, J., Troya, J., Montes-Torres, J., Jaime, F. J. (2024).
Generative AI in the Software Modeling Classroom: An
Experience Report with ChatGPT and UML. In IEEE
Software, vol 41 (6) pp. 1 – 10.

ChatGPT (2024). https://openai.com/chatgpt/ (last access:
17th Dec. 2024)

Chen, K., Yang, Y., Chen, B., López, J., H., A. (2023).
Automated Domain Modeling with Large Language
Models: A Comparative Study. In 26th International
Conference on Model Driven Engineering Languages
and Systems (MODELS), IEEE Xplore, pp. 162 – 172.

Combemale, B., Gray, J., Rumpe, B. (2023). ChatGPT in
software modeling. In Software and Systems Modeling.
https://doi.org/10.1007/s10270-023-01106-4.

Conrardy, A., Cabot, J. (2024). From Image to UML: First
Results of Image-based UML Diagram Generation
Using LLMs. In arxiv.org, arXiv:2404.11376v1.

Fill, H.-G., Fettke, P., Köpke, J. (2023), Conceptual
Modeling and Large Language Models: Impressions
From First Experiments With ChatGPT. In Enterprise
Modelling and Information Systems Architectures, Vol.
18, No. 3, pp. 1 – 15, DOI:10.1847/emisa.18,

Härer, F. (2023). Conceptual model interpreter for Large
Language Models. In arxiv.org, arXiv:2311.07605.

Kanuka, H., Koreki, G., Soga, Ryo, Nishikawa, K. (2023).
Exploring the ChatGPT Approach for Bidirectional
Traceability Problem between Design Models and
Code. In arxiv.org, arXiv:2309.14992v2.

Krogstie, J., (2002). A Semiotic Approach to Quality in
Requirements Specifications. In Organizational
Semiotics. IFIP, vol 94. Springer, pp 231–249

Morales, S., Planas, E., Clariso, R., Gogolla, M., (2023).
Generative AI in Model-Driven Software Engineering
Education: Friend or Foe? In International Conference
on Model Driven Engineering Languages and Systems
Companion (MODELS-C), IEEE Xplore, pp. 110 – 113.

Netz, L., Michael, J., Rumpe, B. (2024). From Natural
Language to Web Applications: Using Large Language
Models for Model-Driven Software Engineering. In
Modellierung 2024, Lecture Notes in Informatics
(LNI), pp. 179 – 195.

Omar M.A., (2023). Measurement of ChatGPT
Performance in Mapping Natural Language
Specification into an Entity Relationship Diagram. In
Proceedings of the 2023 IEEE 11th International
Conference on Systems and Control, IEEE Xplore, pp
530 – 535.

PlantUML, (2024). https://plantuml.com/en/, (last access:
17th Dec. 2024)

Rouabhia, D., Hadjadj, I. (2023). AI as a Co-Engineer: A
Case Study of ChatGPT in Software Lifecycle. In
Research Square, pp 1 – 86,
https://doi.org/10.21203/rs.3.rs-3809973/v1.

Saito, D., Minagawa, T., Hisazumi, K. (2023). Automated
Review Tool for Educational Models Utilizing
Generative AI. In Asia Pacific Conference on Robot IoT
System Development and Platform (APRIS2023), pp.
50 – 51.

Wang, B., Wang, C., Liang, P., Li, B., Zeng, C. (2024) How
LLMs Aid in UML Modeling: An Exploratory Study
with Novice Analysts. In arxiv.org,
arXiv:2404.17739v1

Wang, K., Akins, S., Mohammed, A., Lawrence, R. (2023).
Student Mastery or AI Deception? Analyzing
ChatGPT’s Assessment Proficiency and Evaluating
Detection Strategies. In arXiv.org, arXiv:2311.
16292v1.

Xue, Y., Chen, H., Bai, G. R., Tairas, R., Huang, Y. (2024)-
Does ChatGPT Help With Introductory Programming?
An Experiment of Students Using ChatGPT in CS1. In
46th International Conference on Software
Engineering: Software Engineering Education and
Training (ICSESEET), pp. 331 – 341, https://doi.org/
10.1145/3639474.3640076.

Evaluating the Quality of Class Diagrams Created by a Generative AI: Findings, Guidelines and Automation Options

157

