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Abstract: Working with a Generative AI such as ChatGPT to create conceptual models and particularly Class Diagrams 
became very popular recently in the modelling community. Therefore, the objectives of this paper are the 
following: It analyses the previous scientific work to summarize the findings about the quality of AI-generated 
Class Diagrams. Own tests were carried out too. Based on these findings, the paper provides guidelines for 
manual quality evaluation. It also discusses automation options for evaluating the quality.  

1 INTRODUCTION 

Working with a Generative AI became very popular 
in the last two years. The driving factor was openAI, 
which successfully made ChatGPT (ChatGPT, 2024) 
available to the public.  

Conceptual modelers also thought about the 
benefits of such Generative AI tools for modelling. 
They were interested to find scenarios in which such 
a support can be used. 

Therefore, the first objective of this paper is to 
investigate what have already been found out in 
previous work with regard to the quality of 
automatically created conceptual models. This 
literature study was supplemented by own tests in 
order to get a better insight regarding the quality of 
the created models. 

Since possible quality issues in a model make it 
necessary to establish guidelines for the evaluation of 
a model, such guidelines are the second objective of 
this article.  

The third objective deals with the question, to 
which extent, the quality of the model can be 
automatically checked to minimize the manual effort. 

In order to better address the above objectives, the 
article specialises to several specific aspects: 
ChatGPT was solely used to create Class Diagrams in 
PlantUML (PlantUML, 2024) for domain modelling. 
Prompt engineering was only carried out to the extent 
that it can support the generation of such a Class 
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Diagram.  Thus, the findings of this papers are only 
applicable for these specialised aspects.  

To address the objectives, the rest of the paper is 
structured as follows. In Section 2 the related work is 
listed. Section 3 firstly explains the specific aspects 
of how ChatGPT was tested and then it describes the 
findings regarding the quality of the AI-generated 
Class Diagrams.  In Section 4 guidelines for manual 
evaluation are given on the basis of the findings. 
Afterwards this section focuses on the possibilities as 
well as limitations of automatic checking. The paper 
is summarized in Section 5. 

2 RELATED WORK 

Papers already exist, investigating the use of 
Generative AI for several aspects of the software 
development life cycle. Since this paper is dedicated 
on the support of Generative AI and Large Language 
Models (LLM) to generate Class Diagrams for 
domain modelling, the literature survey is confined to 
analyse only literature related to this scope.  

(Combemale, 2023) gave a brief overview of the 
potentials of Generative AIs and the possibilities it 
could have for the future of conceptual modelling.  

Some authors focused on the performance of 
Generative AI and particularly on ChatGPT to create 
Class Diagrams or Entity Relationship Diagrams 
(ERD) from textual descriptions.  
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A detailed analysis of working with ChatGPT was 
done in (Cámara, 2023). The authors listed 18 
findings after testing ChatGPT to create UML Class 
Diagrams. Some of these findings focused on prompt 
engineering and how the possible size of the resulting 
model can influence the quality of such a generated 
model. In other findings, they explained what kind of 
modelling language concepts the AI cannot create 
properly. The authors also listed some types of errors, 
which they recognized, when evaluating the 
generated result.  

In (Fill, 2023), the authors used textual 
descriptions to test how ChatGPT creates an ERD, a 
Business Process Diagram, a UML Class Diagram 
and the HERAKLIT model. On a general level, they 
discussed the system performance to generate these 
specific types of models. They also explained what 
kind of prompts they used to instruct ChatGPT how 
to do this task. 

In (Chen, 2023), the authors examined, to which 
extend the ChatGPT versions GPT-3.5 and GPT-4.0 
can support the automated generation of Class 
Diagrams. Therefore, the authors compared the 
results with reference models, which were created by 
experts. The authors found four categories of how AI 
generated model elements matches with model 
elements in the reference models: a semantically 
exact match, a semantically exact match but not of the 
same type, a partial match and no match. Based on the 
examinations, the authors concluded, that an 
automated generation do not always produce a perfect 
result. However, they found out, that the creation of 
classes performed better than the creation of 
attributes. The creation of attributes performed better 
than the creation of relationships. They also achieved 
better results with GPT-4. 

Another paper (Wang, 2024) examined how well 
ChatGPT performed to create three types of UML 
diagrams, namely Use Case Diagrams, Class 
Diagrams and Sequence Diagrams.  They also came 
to the conclusion that the Generative AI performed 
differently for different types of modelling elements. 
The system performed better in recognizing e.g., 
classes and use cases from respective textual 
descriptions. However, the system struggled to 
recognize relationships. 

A set of contributions not only focused on one 
Generative AI (e.g., ChatGPT) but compared its 
effectiveness with that of other approaches, intended 
for creating conceptual models.  

In (Omar, 2023), the authors examined how good 
ChatGPT can model entity types, relationship types 
and multiplicities in ERD with respect to other 
modelling tools that use natural language processing 

or ontologies. The authors concluded that among all 
the tools ChatGPT performed best but also stated, that 
human experts should evaluate the generated result 

A rule-based approach, a machine learning 
approach feature engineered by one of the authors and 
ChatGPT were compared in (Bragilovski, 2024). It 
turned out that the two machine learning approaches 
outperformed the rule-based approach, but none of 
them was able to outperform a human expert.  

In (Bozyigit, 2023), the authors compared their 
own tool with ChatGPT. They came to the conclusion 
that on average the own tool performed better. 
However, the performance in generating relationships 
was low in both tools. 

Another type of contributions raised the question 
about the role a Generative AI can play in the 
educational context of conceptual modelling and 
software engineering. For instance, in (Cámara, 2024) 
and (Xue, 2024), the authors focused on the question, 
how students perform in using ChatGPT. In both 
studies, it turned out that Students who used ChatGPT 
performed better. In (Xue, 2024) it was stated that the 
difference was not significant. In another study 
(Saito, 2023) ChatGPT was used to return the 
difference between a modelling solution from 
students with a given perfect solution. In (Morales, 
2023), the authors tested ChatGPT in the task to 
explain, if a generalisation relationship between two 
notions is appropriate. After a couple of tests, the 
authors concluded that ChatGPT cannot be used as an 
advisory tool for this specific purpose. Finally, in 
(Wang, 2023), the authors also discussed the issue of 
plagiarism and how good it can be detected either by 
course instructors or specialized AI tools.  

The impact of Generative AIs in the software life 
cycle were addressed in the following contributions. 

Netz et. al, (Netz, 2024) presented an approach, 
where ChatGPT transformed natural language text 
into a domain specific modelling language for 
building web applications. Although the results were 
promising for the authors, they also stated that the 
detected issues regarding semantic correctness should 
be evaluated by a human expert. 

In (Kanuka, 2023), ChatGPT was used to create 
both a design model (UML Class Diagram) as well as 
python code from a textual description. In addition, it 
had to establish a traceability between these two 
specifications. Regarding traceability, it took several 
attempts interacting with the AI until it fulfilled their 
expectations. 

The use of LLMs for the development of model 
and code variants in software product lines was 
introduced in (Acher, 2023). 

The use of ChatGPT in different early phases of 
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software development, is presented in (Rouabhia, 
2023). The AI created, requirements from an input 
document. From these requirements, use cases were 
generated. The use cases were in turn the starting 
point for the creation of a Class Diagram. 

In (Härer, 2023), the author developed a 
modelling application, that interacts with Generative 
AI APIs. The application then takes the generated 
model specification and draws it in the required type 
of diagram (e.g., Class Diagram).  

Lastly two authors (Conrardy, 2024) (Buchmann, 
2024), explored if drawings and sketches of Class 
Diagrams can be transformed to a textual 
specification of this Class Diagram.  

To summarize, authors of previously published 
related papers presented general findings like e.g., the 
percentage of correctness for different types of model 
elements. More detailed findings about some errors 
were given in (Cámara, 2023). Overall, the conclusions 
in these papers are, Generative AI and particularly 
ChatGPT does a good job, however, the quality differs 
with respect of the type of modelling element.  

This literature analysis raised the question: Do 
even more and particularly more concrete quality 
issues exist that were not already mentioned? 
Furthermore, no explicit guidelines were found in 
literature that could guide modelers to evaluate the 
quality of the AI-generated Class Diagram. Finally, 
no discussion about automation options for this 
evaluation task was found. 

This paper is therefore dedicated to these open 
questions.  

3 FINDINGS 

This section deals with the testing of ChatGPT for 
generating Class Diagrams. It was tested both with 
existing examples of input texts given in the literature 
as well as new, own text examples.  

3.1 General Considerations Regarding 
the Tests 

ChatGPT was used, because it was frequently used in 
the literature analysed. During the interaction with the 
AI, an explanation was given about the nature of the 
expected output. Namely, it should be a domain 
model and it should be a UML Class Diagram in 
PlantUML notation. Therefore, the own textual 
descriptions started with the following explanation: 
“Create a domain model with a UML class diagram 
for the text below and output it in PlantUML: ….. “. 
Afterwards the text describing the content for the 

class diagram followed. In the text examples found in 
literature, the introductory and explanatory part of 
these texts were adopted, if needed, such that the 
purpose of the models and the desired Class Diagram 
notation were expressed. No effort was spent to repeat 
the interaction with the AI within one chat session by 
giving additional text inputs in different, more 
detailed variations in order to improve the received 
output from the previous interaction. Here, it is 
assumed that a modeller should always know what is 
right and what is wrong in the AI-generated 
conceptual model, before proceeding with any next 
step. Thus, checking quality of the resulting Class 
Diagram output is important anyway. 

PlantUML was taken, since it was frequently used 
in literature too. Furthermore, it is a text-based model 
specification language that ChatGPT already knows. 
Hence, it was assumed that creating a model should 
be like creating code for ChatGPT. Although, 
PlantUML has advantages, it has a drawback in the 
context of domain modelling. PlantUML was 
designed for modelling UML diagrams at each phase 
of software development. In domain modelling, a lot 
of these concepts and notations are not necessary.  
However, apart from a few exceptions, many of those 
concepts relevant for the implementation phase were 
not created by the AI. Therefore, only a subset of 
PlantUML had to be considered.  

Once the models were created, the quality of these 
models then were manually evaluated. 

3.2 Test Results 

The following was found about the important 
concepts in the resulting model. 

Classes: ChatGPT created classes from the 
textual description but due to missing information in 
the textual description, sometimes classes did not 
have attributes. Below there is such an example: 

 
class AcademicStaff { 
} 
  

In all the tests, classes were involved in 
relationships (i.e., association, aggregation, 
composition or generalization).  

Enumeration Types: ChatGPT created 
enumeration types properly, where it could recognize 
it in the input text.  

Attributes: ChatGPT created attributes that 
represent relationships to another class. For example, 
in a created class Sensor the following attribute 
appeared referencing to another class 
Manufacturer: 

  -manufacturer: Manufacturer  
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Here, the AI did not create an association, the usual 
modelling element in domain modelling. This kind of 
defect was already mentioned in (Cámara, 2023). In 
the following, it will be referred to such an attribute 
as a “referencing attribute” to distinguish it from an 
attribute that describes the property of a class without 
referencing to another class. The AI also sometimes 
added attributes to classes that were not part of the 
input text, since it used its acquired internal 
knowledge.  

Finally, if in the input text, names of attributes are 
mentioned for different classes, then these attributes 
also appear in these different classes in the resulting 
model. This is generally okay, but it could also mean 
that restructuring is necessary. Take for instance the 
following excerpt from a created Class Diagram, 
which a modeler can either take as it is or s/he can 
think of alternative modelling decisions. 

 
class Owner { 
    +String firstName 
    +String surname 
    +String address 
    +String telephone 
    +String email 
} 
 
class Customer { 
    +String firstName 
    +String surname 
    +String email 
    +String telephone 
} 
 

Types of Attributes: ChatGPT does a good job 
in finding types of attributes even if these types are 
not mentioned in the input text.  

Associations: The Generative AI created 
associations that consists of multiplicities. These 
multiplicities however were not always correct. 
Sometimes, also association names were missing. In 
one case, the association name actually was a role 
specification of a participating class.  Sometimes, the 
AI created associations with a navigation direction 
Such associations with navigation direction were also 
observed in (Cámara, 2023). In addition, and due to a 
lack of sufficient information in the input text, they 
did not have multiplicities and association names 
either. Here are several examples of associations from 
different created models:  

 
WeatherStation --> Location 
University "1" -- "0..*" Faculty 
Resident "0..*" -- "many" Item 
Customer "1" -- "0..*" Account : holder 
Institute "1" -- "0..*" Employee : 
employs 
 

Sometimes, it also happened that the AI created 
associations that were not given in the input text.  

In one case, it also created two associations from 
two different sentences, although these sentences 
only described one association from the perspectives 
of each involved class. 

Aggregations and Compositions: In (Cámara, 
2023) it was complained, that the composite notation 
was placed illegally on both ends of a composition. 
However, this could not be reproduced during the 
tests for this paper. During the tests, it was recognized 
that the AI did not generate the multiplicities for 
special relationships. It even happened that a 
composition was created although it is not needed and 
it had an association name. Below, there is a 
composition and an aggregation example from 
different created models. 

 
Property *-- Newspaper : AdvertisedIn 
EBike o-- Battery   
 

Generalizations: The AI often created correct 
generalisations but sometimes, it found alternative 
constructs for a generalization. It used association 
names e.g., shippingAddress and 
billingAddress to express the role of the class 
Address participating in an association. But no 
generalization between shippingAddress and 
billingAddress to Address was created.  

In one test case it also wrongly generated an 
association with a navigation direction and generated 
the association name inherits although a 
generalization would be correct in this case. In 
another test case, the generalization was expressed 
with the keyword extend.  

In a case, it also happened that the AI wrongly 
modelled a class as a super class although it was the 
subclass in this generalization e.g., 

 
Lecturer <|-- ScientificEmployee 
ScientificEmployee <|-- Employee 
 

Association Classes: They are useful, if for 
example, attributes do not belong to only one of the 
participating classes. The attribute “mark” is a 
common example in the domain of a student 
information system, where students can manage, to 
which courses they will enrol. A mark belongs neither 
to a course nor to a student only. In (Cámara, 2023) 
the authors found out, that an association class is not 
generated properly. When carrying out the own tests, 
it turned out that instead a compensation was created 
in the test case of the student information system 
scenario. The additional class Enrolment was 
created. This class contained the specific attribute 
mark but the two classes Student and Course were 
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not connected to each other. Instead, each of them 
refered to Enrolment via an association. Hence, the 
created PlantUML output did not have the correct 
concept and notation for specifying an association 
class (e.g., (Student, Course) .. Enrolment). 
Thus, Enrolment was only treated as a normal class 
in the output. 

Methods: In general, methods should not appear 
in a domain model focusing on relationships between 
notions. However, if ChatGPT already generates 
methods in some cases, then they can also be seen as 
a chance to get more information about the resulting 
model. Methods of a class have in common, that they 
operate either on attributes of this class or on an 
instance of another class, to which this class has an 
association, aggregation relationship or composition 
relationship respectively. An example for a method 
specification that was created in a test case is: 

 
+ getBranches(): List<Branch> 
 

Therefore, it is worth to take a look at the 
signature of the method (i.e., the name of the method 
and the parameter of the method as well as the return 
parameter of the method if available).  If the signature 
of the method indicates that the object of another class 
is involved, then it can be checked if the class of the 
method is directly connected with this other class via 
an association, aggregation- or composition 
relationship. Otherwise, it can be checked if attributes 
appear in this class that are used in the method. The 
name of a method is a hint sometimes. During the 
tests with the input texts, it was sometimes recognized 
that the AI created methods, but from its signature it 
could not be concluded, which attributes are involved 
if the method does not operate on instances of classes. 
This however would be necessary, if the modeler 
would like to be sure that the model is complete in 
this respect. 

4 MANUAL EVALUATION AND 
AUTOMATION OPTIONS 

Based on the results of the tests, this section provides 
guidelines for manual evaluation as well as a 
discussion of automation options. 

4.1 Guidelines for Manual Evaluation 

Although AI often delivers good modelling results, 
problems can arise that are not present in manually 
generated models. Therefore, a modeler has to 
carefully check the resulting model. 

Classes: For each class firstly, the modeler should 
check if it is necessary in the model according to 
his/her domain experience. Afterwards, it has to be 
checked if it has attributes. It should be also tested if 
a class is at least involved in one relationship 
(association, aggregation, composition or 
generalization) with another class.  

Enumeration Types: Although, enumeration 
types were created well, it is also good to check them. 
For each enumeration type the modeler should check 
if it is necessary. Afterwards, s/he should check if it 
has sufficient and correct enumeration values. 

Attributes and Types: For each attribute per 
class firstly it has to be checked if it is not a 
referencing attribute to another class that shall be 
better modelled via an association, aggregation or 
composition. If it is not a referencing attribute, it has 
to be checked if it is relevant or not. If other classes 
also have attributes with the same name, the structural 
usefulness has to be checked. If a multiplicity is 
specified for an attribute, the modeler should also 
check if it is correct. Afterwards, the modeler should 
check if the type of the attribute is correct. 

Associations: For each association firstly, it has 
to be checked, if it is necessary in the model and it is 
not redundant with respect to another association, 
aggregation or composition connecting the same pair 
of participating classes. Afterwards, the modeler 
should check if the multiplicities are correct, if it does 
have an adequate association name and if a created 
navigation direction is really necessary. 

Aggregations and compositions: For each 
aggregation and composition respectively, firstly, it 
has to be checked if it is necessary in the model and 
it is not redundant with respect to another association, 
aggregation or composition connecting the same pair 
of participating classes. Afterwards, it has to be 
checked if it does have the aggregate/composite 
notation only on one end and it does have correct 
multiplicities. In case of a composition, it has to be 
checked, if the multiplicity at the composite end is 
“1”. It should be also evaluated if navigation 
directions are necessary.  

Generalizations: For each generalization, firstly, 
the modeler should check if it is necessary in the 
model and is not redundant with respect to another 
generalization connecting the same pair of 
participating classes. Afterwards, it should be 
checked if the role of the super class and sub class is 
correctly assigned to the participating classes.  

Association Classes: The modeler should evaluate 
the model regarding association classes.  S/he should 
check, if association classes are missing or classes are 
wrongly generated as a compensation for an 
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association class. In addition, it has to be checked, if an 
attribute is assigned to only one participating class 
although it should be part of an association class.  

Methods: For each method the modeler should 
consider, that it can provide further information. A 
method should therefore be checked to determine if it 
uses the attributes of its class or instances of another 
class. For a method that uses the attributes, it has to 
be clarified, which attributes are used and if they 
already appear in the class. If instances of another 
class are used in a method, then it has to be checked, 
if the class of the method also has a direct relationship 
(i.e., via an association, aggregation relationship or a 
composition relationship) to that other class.  

Missing Model Elements: Finally, once all the 
elements listed in the created model are evaluated, the 
modeler should check if any further necessary 
information (e.g., additional classes, enumeration 
types, attributes associations, aggregations, 
compositions, generalizations, association classes) is 
still missing. 

4.2 Automation Options  

This section discusses, to which extend a modeler can 
get tool support to find issues. Both, issues regarding 
semantic quality as well as syntactic quality 
(Krogstie, 2002) are discussed. According to Krogstie 
(Krogstie, 2002), particularly semantic quality is 
inter-subjective, i.e., agreed upon the social actors.  It 
also has to be noted, that many issues are subjective 
with respect to the intention of a modeler. What could 
be a defect for one modeler could be correct for 
another one. The main task of a tool offering 
automatic support, is therefore only to draw the 
attention of the modeller to a specific section of the 
model, where an issue might exist. It is the decision 
of the modeler if this is a defect that has to be 
corrected. As a proof of concepts, a prototype was 
developed. This prototype covers the automation 
options explained here. 

Classes: Testing if a class might be 
underspecified can give the modeler a hint that there 
is missing information. Once each class with its 
attributes is collected in an internal data structure, it 
can be computed, if the class has no attributes, or the 
number of its attributes is under a manually defined 
threshold. Setting an adequate threshold of course 
needs the experience of a modeler.  

A class is also underspecified if it is not involved 
in any relationship, i.e., if the difference between the 
set of all classes and the set of classes participating in 
a relationship is not empty, then the elements in the 
non-empty set are classes with no relationships.  

Enumeration Type: An issue can appear in an 
enumeration type, if it does not have sufficient 
enumeration values. In general, an enumeration type 
should have at least two values, as a general 
threshold. But if it has more than two enumeration 
values, it remains to the modeler’s experience if s/he 
agrees with this number. 

Attributes and Types: An attribute can be 
automatically tested, if they belong to the category of 
referencing attributes. The simplest case is an 
attribute name in singular form, which is identical to 
a class name other than the class name, in which the 
attribute appears. For transforming the plural form of 
an attribute’s name to its singular form, though, rules 
or a digital dictionary support have to be used. It can 
also be tested if the name without a certain suffix 
(e.g., “ID”) matches with the name of a class. Lastly, 
if the name of the type in the attribute’s specification 
is identical to another class, then this also supports the 
detection of referencing attributes. 

It can also be automatically detected, if an 
attribute’s name is listed in multiple classes. If this is 
detected, this could indicate that restructuring could 
be necessary. As already mentioned in Section 3.2 
however, it depends on the context and thus the 
design decision of the modeler. Here, an automatic 
support only gives the information that it exists.  

No automatic support can be given to check, if the 
type of an attribute is appropriately chosen. This has 
to be done manually by the modeler. 

Associations: The check for incompleteness itself 
does not need any contextual information and can be 
done automatically. An association name and 
multiplicities are either available or not. Navigation 
directions also can be detected easily by just looking 
in association specifications, if they exist.  

However, context plays a dominant role in 
deciding whether a multiplicity is right or wrong (e.g., 
is  “*”, is “1..*” or even “1” the correct solution).  
Therefore, it cannot be automatically tested, if the 
multiplicities are correct. The same holds for 
association names. Whether an association should 
have an association name or whether existing names 
are correct remains the decision of the modeler. 
Wrong association names might be detected, if a tool 
also manages a list of association names that are 
wrong in many contexts but this gives no clue if a 
name is wrong or correct in a given context.  

Aggregations and Compositions: A wrong 
notation as mentioned in (Cámara, 2023) – i.e., 
aggregate / composite symbol on both ends - can be 
automatically filtered out as a syntactical error. 

Missing multiplicities can also be detected 
automatically. Apart from one exception, it is once 
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again impossible to automatically distinguish 
between wrong and correct multiplicities in 
aggregations and compositions. The only exception is 
the multiplicity at the composite end of a 
composition. This multiplicity must be always “1” 
end hence such a violation can be automatically 
detected.  

It is the decision of the designer, if a name should 
be given for an aggregation or composition. Usually, 
composition and aggregations already have a 
semantic, hence a name is an add-on and it should not 
be the wrong name. Therefore, the tool can inform the 
modeler about named aggregations and compositions. 
Showing such names to the modeler gives him/her the 
opportunity to decide if a name for the aggregation or 
composition is adequate. 

Generalizations: It is difficult to automatically 
detect the relevance of a generalisation and 
correctness of a generalization specification. But in 
two situations, a tool can at least tell the modeler to 
take a look.  

Regarding relevance of a generalization, let’s 
suppose a class G has several subclasses e.g., S1, S2, 
S3 and none of these subclasses have attributes as 
well as relationships to other classes. Showing such a 
case to the modeler gives him/her the chance to think 
if restructuring is necessary or not. Both is possible, 
it might be correct but it could also be an indicator for 
missing information.  

Regarding correctness of a generalization 
specification, suppose a situation, where the name of 
one class is also a substring of the other involved class 
name (e.g., ScientificEmployee, Employee). In 
this example the class Employee is the superclass in 
the generalization. If, however, the generalisation 
relationship does not reflect this, but the 
generalization arrow is pointing from Employee to 
ScientificEmployee instead, then this 
generalisation specification is wrong. This can be 
easily detected by comparing the two strings.  

Since issues in generalization relationships can 
only be recognized under certain conditions, the 
modelling expert is particularly in demand here.  

Redundant Relationships (associations, 
aggregations, compositions, generalizations): An 
automatic support can at least inform the modeler that 
a pair of classes appears in more than one 
relationship. Once again, it depends on the context if 
the same pair of classes should really be connected to 
each other in more than one association. The modeler 
with his/her knowledge should decide if a redundancy 
exist in the model. However, it is more unlikely that 
the same pair of classes is part of more than one 
composition, aggregation or a combination of 

composition, aggregation and association. It is also 
unlikely that the same pair of classes is part of more 
than one generalization relationship. 

Association Classes: The evaluation if an 
association class exists, also strongly depends on the 
context and cannot be done without the experience of 
the modeler. If the AI cannot create such a class 
properly, then automatic support is only possible, if 
the Generative AI uses a specific strategy to 
compensate an association class. Particularly, if a 
class is created, whose name is a nominalization of a 
verb or an adjective. Since some nominalizations 
have suffixes like e.g., “ing”, “ment” etc., all classes 
could be inspected if their names contain one of those 
suffixes. These classes are then shown to modeller. 
Admittedly, this is only a minimal support, and does 
not guarantee successful detection of association 
classes. Neither it can be expected that the AI creates 
association classes in this way nor it can be expected, 
that a class with a specific suffix is always an 
association class.  

Methods: As already explained, the signature of 
methods can be used to find out, if attributes or 
relationships to classes are missing. The idea here is 
to analyse the signature in order to find words or 
tokens in the method’s name or in a non-empty 
parameter list that matches with existing attributes of 
the method’s class or other class names. The modeller 
has to be informed if this analysis fails. S/he then has 
to decide if information is missing. This automatic 
support has limitations, since there is no commitment 
at all, that the name of a method always has to match 
with an attribute’s name or the method has 
parameters. 

5 CONCLUSION 

This paper presented guidelines to evaluate the 
quality of AI-generated Class Diagrams. The paper 
also discussed if a modeler can be supported in these 
evaluation tasks. It was argued that automation is only 
possible in co-operation with the modeller. A tool can 
just encourage the modeler to have a look at a created 
model. It is then up to the modeler do make the right 
decision.  

Currently, only the performance of ChatGPT for 
generating a Class Diagram was tested. Future work 
could focus on other Generative AI tools and on other 
modelling languages. The presented analysis of the 
output are qualitative observations (i.e., what kind of 
issues appear). A more extensive study could focus 
on quantitative factors like the frequencies of certain 
issues in the created models.  
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