
Real-Time Detection of Multi-File DOM-Based XSS Vulnerabilities
Using Static Analysis: A Developer-Oriented Approach for Securing Web

Applications

Akira Kanaoka a and Shu Hiura
Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba, Japan

Keywords: DOM-Based XSS, Static Analysis, Web Security, Real-Time Detection.

Abstract: This paper introduces a static analysis method for real-time detection of DOM-Based Cross-Site Script-
ing (XSS) vulnerabilities that occur across multiple files in web applications. As modular development in
JavaScript becomes increasingly common, the risk of DOM-Based XSS vulnerabilities grows due to complex
interactions between separate files. Existing detection methods often struggle to comprehensively identify
these vulnerabilities. Our approach focuses on real-time detection during the development process by expand-
ing static analysis to cover multiple files. We implemented this method as an extension for Visual Studio Code
(VSCode), offering developers immediate feedback on potential security risks. In addition to proposing and
evaluating our method, we also address the lack of suitable datasets for evaluation by creating a neutral and
comprehensive dataset that includes multi-file DOM-Based XSS vulnerabilities. The evaluation shows that
our method enhances the accuracy of DOM-Based XSS detection, contributing to improved security in web
applications.

1 INTRODUCTION

Web-based services have become crucial components
of the internet, extending beyond traditional informa-
tion browsing to various applications. These services
have gained significance as they now provide environ-
ments that facilitate easy construction, even for de-
velopers with limited technical knowledge. As web
application technologies continue to proliferate, there
is a growing risk of vulnerabilities when development
proceeds without adequate expertise. Therefore, sup-
port is essential for developers to ensure the secure
development of these applications.

According to the OWASP Top 10, which lists
the most critical security risks for web applications,
94% of web applications have been found to con-
tain some form of vulnerability related to injection
attacks(OWASP, 2021). Among these vulnerabilities,
Cross-Site Scripting (XSS) is a particularly dangerous
one, allowing attackers to execute arbitrary JavaScript
within a web application. According to JVN iPedia,
which registers vulnerabilities in software products,
XSS was the most frequently registered vulnerabil-
ity in the third quarter of 2023 (October to Decem-

a https://orcid.org/0000-0002-3886-5128

ber)(IPA, 2024). A specific type of XSS, known as
DOM-Based XSS, occurs when a vulnerability in the
manipulation of the DOM (Document Object Model)
by JavaScript running in the browser is exploited. Un-
like other types of XSS, DOM-Based XSS does not
involve the server, making it difficult to detect. More-
over, since attackers can examine JavaScript source
code using browser developer tools, it is an easy tar-
get. Therefore, it is crucial for developers to ensure
that their source code does not contain vulnerabilities
that could lead to DOM-Based XSS.

Research on preventing DOM-Based XSS has
been ongoing, but various challenges remain.
Developer-oriented approaches for detecting DOM-
Based XSS vulnerabilities can be broadly categorized
into two methods: post-development source code
analysis and real-time analysis in the development
environment. The former method requires develop-
ers to correct all affected parts of the entire program,
which can be a significant burden. Therefore, the lat-
ter approach is more desirable. However, research and
development on real-time detection of DOM-Based
XSS vulnerabilities that span multiple files have not
yet been conducted. There are also challenges in eval-
uating detection methods. Firing Range, a testbed that
contains a wide variety of web application vulnera-

Kanaoka, A. and Hiura, S.
Real-Time Detection of Multi-File DOM-Based XSS Vulnerabilities Using Static Analysis: A Developer-Oriented Approach for Securing Web Applications.
DOI: 10.5220/0013109300003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 1, pages 191-198
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

191

bilities, is often used for evaluation. However, these
vulnerabilities are limited to those occurring within
a single file. In contrast, past instances of DOM-
Based XSS have often spanned multiple files, making
such evaluation insufficient. Furthermore, research on
real-time detection of DOM-Based XSS vulnerabili-
ties must evaluate whether the detection methods are
effective for developers. Yet, no existing research has
conducted user experiments to assess the proposed
methods.

In this study, we explore support mechanisms for
developers to prevent the inclusion of DOM-Based
XSS vulnerabilities in their source code. To this end,
we propose and implement a method for real-time de-
tection of DOM-Based XSS vulnerabilities that span
multiple files during the coding process. To verify
the accuracy of this detection method, we created an
evaluation dataset specifically designed to test these
vulnerabilities, which we have released as an open-
source resource on GitHub. We conducted both ac-
curacy evaluations using the dataset and performance
evaluations to measure detection time. In addition
to evaluating accuracy and performance, we prepared
user experiments to assess the usability of the pro-
posed method from the developers’ perspective. As a
result, we evaluated the effectiveness of our proposed
method in preventing DOM-Based XSS across mul-
tiple metrics and outlined future prospects for its im-
plementation.

2 RELATED WORKS

2.1 DOM Based XSS

To determine the extent to which real web applica-
tions contain DOM Based XSS vulnerabilities, Lekies
et al. surveyed the top 5,000 Alexa(Lekies et al.,
2013). The results showed that 6,167 vulnerabili-
ties were contained within 480 domains. More re-
cently, DOM Based XSS vulnerabilities have also
been found on sites such as Facebook and Tik-
Tok(Vulners.com, 2022; Leyden, 2020).

2.2 Detection Methods

Research aimed at preventing DOM-Based XSS has
been conducted in the past. Generally, program anal-
ysis is divided into two types: dynamic analysis and
static analysis. Similarly, research on DOM-Based
XSS has also followed these two approaches, with dy-
namic and static analysis methods being explored.

In a study conducted by Parameshwaran et al.,
a technique for creating secure patches for websites

in the Alexa Top 1000 was proposed(Parameshwaran
et al., 2015). They put forth a methodology for the
identification of susceptible source code and its sub-
sequent replacement with secure source code through
the dynamic analysis of the code in operation while
the application is executed against a corpus of source
code representing services provided on the web. The
proposed method is dynamic and has a relatively low
overhead, as it can apply patches to vulnerable source
code with an overhead of approximately 5%.

Additionally, studies have been conducted that
do not include vulnerabilities through static analy-
sis. Wang et al. demonstrated the deployment of API
Hardening, a secure API for source code containing
DOM Based XSS vulnerabilities, for two years to de-
velopers within Google(Wang et al., 2021). This re-
sulted in a reduction in the occurrence of DOM Based
XSS vulnerabilities. API Hardening is introduced as
a compile-time checker after the source code is com-
pleted. It prevents vulnerabilities by replacing APIs
that could be Sink with their own secure APIs.

Other studies have been conducted with the objec-
tive of preventing the occurrence of DOM-based XSS.
These include the work of Liu et al. and others, who
have organised, compared and analysed these meth-
ods and pointed out their advantages and disadvan-
tages, including the aforementioned studies(Liu et al.,
2019).

3 VULNERABILITY DETECTION

3.1 DOM Based XSS Occurring via
Multiple Files

In modern development practices, the modular sep-
aration of JavaScript into multiple files has become
common. This approach enhances code reusability
and maintainability while supporting the integration
of external and custom modules. However, managing
interactions across a large number of files introduces
potential risks of vulnerabilities, particularly DOM-
Based XSS, due to insufficient handling of inter-file
dependencies(ars TECHNICA, 2020).

A notable example is CVE-2022-23367, a
DOM-Based XSS vulnerability spanning multiple
files(CVE, 2022a; CVE, 2022b). This case involved
a Source located at location.href and a Sink at loca-
tion.search. The vulnerability arose from inadequate
escaping mechanisms, with the Source and Sink ex-
isting in separate files linked via an import statement.

Addressing these challenges requires a systematic
approach to inter-file vulnerability detection.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

192

3.2 Necessary Countermeasures

To prevent DOM-Based XSS across multiple files,
various techniques can be employed. Dynamic anal-
ysis, such as the approach by Parameshwaran et
al.(Parameshwaran et al., 2015), effectively uses taint
propagation to detect vulnerabilities independent of
file separation. However, asynchronous JavaScript
processing can limit its comprehensiveness by pre-
venting certain event handlers from being executed,
leaving potential vulnerabilities undetected.

Static analysis techniques, such as those proposed
by Wang et al.(Wang et al., 2021), offer an alterna-
tive by replacing vulnerable APIs with secure ones.
However, this approach is not universally applicable
due to framework dependencies and development en-
vironment limitations. Additionally, static analysis is
performed at compile-time, often after development is
complete, necessitating extensive code modifications
and redesigns in cases of detected vulnerabilities.

Given these limitations, there is a need for a
real-time static analysis method that provides action-
able feedback to developers during the development
phase, addressing vulnerabilities spanning multiple
files without reliance on post-development compile-
time analysis.

3.3 Detecting DOM Based XSS
Vulnerabilities Occuring Across
Multiple Files

3.3.1 Overview

Effective detection of DOM Based XSS vulnerabil-
ities requires not only comprehensive source code
analysis after site completion but also real-time sup-
port during development. Static analysis by ESLint is
limited to detecting DOM Based XSS within a single
file, making it insufficient for identifying vulnerabili-
ties that span multiple files.

To address this limitation, this study builds upon
ESLint to propose a real-time detection method capa-
ble of analyzing a broader and more complex range of
DOM Based XSS vulnerabilities. By extending the
analysis scope to multiple files, this approach aims
to provide developers with immediate feedback dur-
ing the development process, enhancing vulnerabil-
ity detection and mitigation in modularized JavaScript
projects.

3.3.2 Processing Details

A comprehensive overview of the process is shown in
Figure 1.

The detection pre-processing involves analyzing
file dependencies from the source code open in the
editor, constructing abstract syntax trees (ASTs) for
all relevant files, and preparing them for exploration.
ASTs are initially built for files open in the editor. If
imports from other files are detected, ASTs for the
corresponding source files are also constructed, with
repeated checks confirming file dependencies.

Vulnerability detection proceeds in two phases:
Provisional Sink Detection and Provisional Source
Tracking. In the first phase, sections with data output,
such as HTML, are identified as Provisional Sinks.
The second phase tracks variables processed in Pro-
visional Sinks to identify potential Sources. Variables
in these processes are labeled as Temporary Sources
and tracked backward through assignments, switch-
ing labels as needed. If tracking requires cross-file
analysis, file dependencies guide AST traversal to
continue tracking.

Finally, in the DOM-Based XSS Decision phase,
combinations of Provisional Sources and Sinks are
evaluated. If constants that cannot cause vulnerabili-
ties are identified, the combination is dismissed. Oth-
erwise, the pair is flagged as a DOM-Based XSS vul-
nerability.

Details are shown in the flowchart in Figure 2.

3.3.3 Implemented as an Extension to VSCode

To validate the proposed detection method, a proto-
type was developed as a VSCode extension using the
Language Server Protocol (LSP), enabling compati-
bility with multiple development tools.

Unlike ESLint, which performs static analysis on
single files, the custom JavaScript Linter supports
multi-file analysis. The Linter is triggered when a
JavaScript file is opened or modified, constructing ab-
stract syntax trees (ASTs) via espree and analyzing
them with estraverse to detect vulnerabilities across
files.

4 EVALUATION DATA SET

4.1 Existing Evaluation Methods and
Their Problems

4.1.1 Existing Evaluation Methods

Parameshwaran et al. conducted detection ex-
periments on publicly available web applica-
tions(Parameshwaran et al., 2015), while Wang et
al. evaluated their proposed method by observing
its impact on developers reducing DOM-Based

Real-Time Detection of Multi-File DOM-Based XSS Vulnerabilities Using Static Analysis: A Developer-Oriented Approach for Securing
Web Applications

193

Figure 1: Overview of the process of the proposed method.

Figure 2: Process flowchart.

XSS vulnerabilities(Wang et al., 2021). However,
these experiments lacked reproducibility as results
varied depending on experimental environments,
making it difficult to assess the detection methods’
effectiveness.

In 2016, Pan et al. proposed a micro-benchmark
for evaluating DOM-Based XSS, incorporating script
triggers and Source-to-Sink flows in addition to
Source and Sink types. However, it did not address
cases involving multiple files(Pan and Mao, 2016).

4.2 Existing Dataset

Firing Range(google, 2018) is a testbed commonly
used to evaluate existing methods. It includes a
variety of web application vulnerabilities, including
DOM-Based XSS. However, these are limited to vul-
nerabilities occurring within single files. Actual cases
of DOM-Based XSS spanning multiple files(CVE,
2022a; CVE, 2022b) highlight the limitations of Fir-

ing Range as an evaluation dataset, making it insuf-
ficient for assessing multi-file vulnerability detection
methods.

4.3 Overview of the Proposed Dataset

4.3.1 Vulnerabilities Employed in Firing Range

In this study, we propose an extended dataset for
evaluating DOM-Based XSS vulnerabilities spanning
multiple files, building on the Firing Range frame-
work. Firing Range provides accessible source code
from web applications, with pages categorized by vul-
nerability type. These pages are scripted in HTML
and include both Sources and Sinks.

The proposed dataset reorganizes the extracted
HTML scripts into separate JavaScript files. This pro-
cess identified a total of 69 DOM-Based XSS vulner-
abilities.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

194

Table 1: File-to-file structure of the dataset.

No. Methods of splitting files
01 Export variables (export at the end)
02 Export variables (export before declaration)
03 Export function (export at the end)
04 Export functions (export before declaration)
05 Import two in an intermediary file.

4.3.2 Structure Between Files

To address the single-structure vulnerabilities ex-
tracted from Firing Range, they were split into multi-
ple files.

Identifying suitable syntax patterns for import and
export statements required consulting StackOverflow
and GitHub. On StackOverflow, we filtered DOM-
Based XSS cases using tag information and search
keywords, excluding low-rated posts, and investigated
those spanning multiple files. On GitHub, we identi-
fied high-rated repositories based on star counts and
analyzed cases of DOM-Based XSS across multiple
files.

From these investigations, we identified com-
monly used patterns for JavaScript import and export
statements. Five structural patterns between files were
determined, as summarized in Table 1.

4.3.3 Creating Datasets with a Combination of
Firing Range and File-To-File Structure

A dataset containing a total of 342 DOM based XSS
cases occurring in multiple files was created by com-
bining 69 Source and Sink combinations and five dif-
ferent file splitting methods.

Among the 69 DOM Based XSS vulnerabilities
introduced in Firing Range, three sample data sets
whose Source is document.referrer are excluded from
this dataset because it is not syntactically possible to
put export before the variable declaration in the case
of file partitioning method No. 2. They were excluded
from this data set.

These datasets are available on GitHub1.

5 EVALUATION OF DETECTION
METHODS

5.1 Evaluation Item

A prototype of the proposed detection method was
used to evaluate its effectiveness. Two key indica-
tors were assessed: accuracy, measuring the correct

1https://github.com/kanaoka-laboratory/multifile-
domxss-dataset

(a) deep-level-1.js

(b) deep-level-2.js

(c) deep-level-10.js

Figure 3: Source code for sample data.

detection of vulnerabilities, and performance, evalu-
ating the processing time required for detection.

For accuracy assessment, the dataset proposed in
this paper was utilized. While the dataset primarily
represents DOM-Based XSS across two files, an ex-
tended environment involving 10 files was created to
evaluate scalability. This environment was also in-
cluded in the evaluation.

An example of the source code used for the 10-file
assessment is shown in Figure 3. In this case, a DOM-
Based XSS vulnerability occurs when a string from
location.hash is propagated through multiple files and
ultimately processed by innerHTML. The source, lo-
cation.hash, originates in deep-level-1.js, is traced
through deep-level-2.js to deep-level-9.js, and is fi-
nally processed in deep-level-10.js. Each file alters
the variable name, demonstrating the tracking capa-
bility of the proposed method.

As a performance evaluation, the processing time
spent on detection was measured and evaluated.

The performance of the computers used in the ex-
periment is shown in Table 2.

Real-Time Detection of Multi-File DOM-Based XSS Vulnerabilities Using Static Analysis: A Developer-Oriented Approach for Securing
Web Applications

195

Table 2: PC specifications used for the evaluation.

Item Description
CPU Intel Core i5-1135G7 (2.4GHz)
RAM 16GB
OS Windows 11 Home 23H2

Figure 4: Prototype implementation detects DOM Based
XSS vulnerability and notifies the screen on the sample data
development screen.

5.2 Evaluation Results

5.2.1 Accuracy Evaluation

In detecting DOM-Based XSS vulnerabilities across
10 files, the prototype successfully traced the vulner-
ability through all files and notified the developer with
a wavy line at the Sink point. A dialog box was also
displayed, identifying the file containing the Source
(location.hash) and highlighting both the Source and
Sink for easier debugging (Figure 4).

From the dataset, 252 vulnerabilities were de-
tected out of 342 cases (73.7%). Detection rates were
unaffected by file splitting methods, as no differences
were observed across methods.

Detection failures were attributed to limitations in
the prototype’s handling of specific Source and Sink
combinations, rather than issues with the proposed
method itself. Table 3 summarizes the undetected
combinations, aggregating 90 failures into 18 unique
cases.

Failures due to Sources included 10 cases in Ta-
ble 3 and 50 cases (14.6%) in the dataset. These in-
volved Sources starting with ’localStorage’ or ’ses-
sionStorage’ or strings like ”badValue” defined as
variables. The prototype does not currently handle
variable-dependent strings, but extending the Provi-
sional Sink Detection phase to account for variables
would resolve this limitation.

Failures due to Sinks included 8 cases in Table 3
and 40 cases (11.7%) in the dataset. These involved
Sinks where syntax variations obscured the detection
of the target string. Since the Sink string does not
appear explicitly in the program, the current string-
matching approach fails to detect it. Addressing this
issue will require detailed technical research and fur-
ther refinement of the detection methodology, posing
a challenge for future work.

5.2.2 Performance Evaluation

In order to check whether the tracking is actually per-
formed across multiple files, the transition progress
was output as a debug log and the processing time
when the vulnerability was detected was measured.

The average time required for detection was 4.079
milliseconds, measured 10 times. According to the
Nielsen Norman Group index, which is typically used
in application UIs, a delay of 100 milliseconds or less
is considered to be the time that the user perceives an
instantaneous response to be taking place. 4 millisec-
onds is therefore a sufficiently acceptable processing
time.

6 DISCUSSION

6.1 Vulnerability Detection

6.1.1 Performance

Although the performance evaluation showed good
results in this assessment, these performances could
well increase with processing complexity. The dataset
used in this study was mostly data where DOM based
XSS was generated by two files with a direct link. If
this were to occur in three or more files, the complex-
ity of the file structure would increase dramatically
and the increase in detection time would be consider-
able. The construction and analysis of data sets with
more than three files will be the subject of future re-
search.

6.1.2 Accuracy of Detection

The detection on the dataset created in this study
detected 252 vulnerabilities out of 342 vulnerabil-
ity data, with a detection rate of approximately
73%, which leaves room for improving the accuracy.
Therefore, it is required to increase the number of de-
tectable Source and Sink types in the future.

As mentioned in the evaluation part, a large num-
ber of the 90 undetected 18 cases (50 in 10 cases) can
be attributed to the prototype implementation, and the
intrinsic accuracy of the proposed method can be said
to be 88% (=(242+50)/342).

The undetected cases caused by Sink (40 cases in
8 cases, 11.7 %) need to be further investigated. These
are also related to sanitisation, which is the shaping of
strings, and will require more detailed study.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

196

Table 3: Source/Sink combinations that the prototype failed to detect in detection using the dataset.

Folder#. Source Sink
07-12 localStorage[’badValue’] eval
08-09 localStorage.getItem(’badValue’) document.write
08-12 localStorage.getItem(’badValue’) eval
08-18 localStorage.getItem(’badValue’) innerHTML
09-09 localStorage.badValue document.write
11-14 location.hash from.action
11-15 location.hash function
11-17 location.hash inlineevent
11-20 location.hash javascript-url
11-23 location.hash onclik-addEventListener
11-24 location.hash onclik-setAttribute
11-30 location.hash parmCodeEvent.value
14-04 location.search a.xlink-href
16-12 sessionStorage[’badValue’] eval
17-09 sessionStorage.getItem(’badValue’) document.write
17-12 sessionStorage.getItem(’badValue’) eval
17-18 sessionStorage.getItem(’badValue’) innerHTML
18-09 sessionStorage.badValue document.write

6.1.3 Application to Fix Support

Although this research was a proposal to detect DOM
Based XSS, proposals for fixing vulnerabilities by ap-
plying the detection mechanism can also be consid-
ered. Since VSCode extensions can perform string
transformation of source code in real-time, they can
not only detect but also fix vulnerabilities. For exam-
ple, in innerHTML, which is mentioned as Sink in this
article, replacing it with textContent allows HTML
tags, etc. to be output as strings and prevents DOM
Based XSS from occurring. However, as the method
of modification differs depending on the combination
of Sink and Source, it is necessary to propose modifi-
cations suitable for each combination.

6.2 Dataset for Evaluation

6.2.1 Comparison with Firing Range

The dataset created is a variation of the file structure
of the Firing Range so as not to alter the behaviour of
the web application itself. Therefore, the data behaves
in a similar way to the Firing Range and remains com-
patible. As such, the reliability of the dataset would
be equivalent to that of the Firing Range.

6.2.2 Dataset Comprehensiveness

The dataset created in this study is a partial extension
of the Firing Range and could be expanded in the fu-
ture to include more complex or special vulnerable
data.

One approach to increasing data is to increase the
number of syntactic patterns when dealing with Sink

and Source, in addition to further increasing the num-
ber of file partitioning methods and combinations of
Sink and Source. For the former, it is desirable to ex-
pand the data set by increasing the number of Sink and
Source combinations that are not listed in the Firing
Range, as well as sample data considering file split-
ting methods other than the patterns referred to here.
The latter syntax pattern for handling Sink and Source
is considered to be a code that can be more easily in-
cluded during development by investigating the us-
age of each Sink and Source on StackOverflow and
GitHub, etc., which were used to determine the file
division method this time.

Another approach is to increase the number of
files comprising the vulnerability: if the vulnerabil-
ity is composed of n≥ 3 files, the structure represent-
ing the location of its Sink and Source and their rela-
tionship becomes more complex. It becomes a graph
structure with files as nodes and file calling relation-
ships as edges, suggesting that a graph-theoretic ap-
proach becomes important.

6.3 Usability Consideration

In this prototype, the dialogue generation and the rel-
evant parts of the source code are marked with wavy
lines on the VSCode. The appropriateness of this user
interface also needs to be fully discussed. Although
this paper focuses on the functional aspects of vulner-
ability detection and does not evaluate them, the suit-
ability of the UI is a factor that should be discussed
further: if the UI is not suitable, even if vulnerabilities
are detected and further modifications are proposed,
the user, the software developer, may not be aware of
these proposals or may not accept them. UI research

Real-Time Detection of Multi-File DOM-Based XSS Vulnerabilities Using Static Analysis: A Developer-Oriented Approach for Securing
Web Applications

197

to make better use of technological advantages will
also be important.

7 CONCLUSIONS

In this study, we proposed and implemented a static
analysis method for the real-time detection of DOM-
Based XSS vulnerabilities that occur across multiple
files in web applications. As JavaScript development
increasingly adopts modular approaches, the risk of
undetected vulnerabilities, particularly DOM-Based
XSS, has grown due to the complex interactions be-
tween separate files. Our method addresses this is-
sue by providing developers with immediate feedback
during the coding process, helping to prevent the in-
troduction of these vulnerabilities.

To evaluate the effectiveness of our proposed
method, we created a comprehensive and neutral
dataset that includes multi-file DOM-Based XSS vul-
nerabilities, which was previously unavailable. This
dataset not only enabled a thorough evaluation of our
detection method but also serves as a valuable re-
source for the broader research community.

Our evaluation demonstrated that the proposed
method significantly improves the accuracy of DOM-
Based XSS detection, thereby contributing to en-
hanced security in web applications. Furthermore,
by integrating this tool into development environ-
ments, developers can more effectively mitigate po-
tential security risks in real-time. Future work will fo-
cus on refining the detection accuracy and extending
the dataset to cover a broader range of vulnerability
scenarios, as well as conducting user studies to fur-
ther assess the usability and effectiveness of the tool
in real-world development environments.

ACKNOWLEDGEMENTS

This work was supported in part by JSPS KAKENHI
Grant Number JP22K12035, and JST, CREST Grant
Number JPMJCR22M4, Japan.

REFERENCES

ars TECHNICA (2020). Sourcegraph: Devs are managing
100x more code now than they did in 2010 — ars tech-
nica.

CVE (2022a). Cve - cve-2022-23367.
CVE (2022b). Cve - cve-2022-45020.
google (2018). Github - google/firing-range.

IPA (2024). Vulnerability countermeasure information
database jvn ipedia registration status [2023 4th quar-
ter (oct. - dec.)] — enhancing information security —
ipa information-technology promotion agency, japan.

Lekies, S., Stock, B., and Johns, M. (2013). 25 million
flows later: large-scale detection of dom-based xss.
In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, CCS ’13,
page 1193–1204, New York, NY, USA. Association
for Computing Machinery.

Leyden, J. (2020). Xss vulnerability in ‘login with face-
book’ button earns $20,000 bug bounty — the daily
swig.

Liu, M., Zhang, B., Chen, W., and Zhang, X. (2019). A
survey of exploitation and detection methods of xss
vulnerabilities. IEEE Access, 7:182004–182016.

OWASP (2021). A03 injection - owasp top 10:2021.
Pan, J. and Mao, X. (2016). Domxssmicro: A micro bench-

mark for evaluating dom-based cross-site scripting de-
tection. In 2016 IEEE Trustcom/BigDataSE/ISPA,
pages 208–215.

Parameshwaran, I., Budianto, E., Shinde, S., Dang, H.,
Sadhu, A., and Saxena, P. (2015). Auto-patching dom-
based xss at scale. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2015, page 272–283, New York, NY,
USA. Association for Computing Machinery.

Vulners.com (2022). Tiktok: Dom xss on ads.tiktok.com -
vulnerability database — vulners.com.

Wang, P., Bangert, J., and Kern, C. (2021). If it’s not se-
cure, it should not compile: Preventing dom-based xss
in large-scale web development with api hardening.
In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1360–1372.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

198

