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Abstract: Querying similar images from a database to a reference image is an important task with multiple possible use-
cases in healthcare industry, including improving labelling processes, and enhancing diagnostic support to 
medical professionals. The aim of this work is to measure the performance of different artificial neural 
networks, comparing their ability to identify clinically relevant similar images based on their generated feature 
sets. To measure the clinical relevance, metrics using expert labels of organs and diagnoses on the images 
were calculated, and image similarity was further confirmed by pixel metrics. Images with organ and 
diagnosis labels were selected from a dataset of early-stage pregnancy and 2nd -3rd trimester pregnancy 
ultrasound images respectively for the measurements. The networks were chosen from state-of-the-art 
foundational models trained on natural images, DINO and DINOv2, SAM2, and DreamSim. The best 
performing model based on our experiments is DreamSim for organ matches, and DINO for diagnosis matches. 
A simple ResNet trained on the mentioned early pregnancy dataset for organ classification was also added to 
the selection. ResNet performs best for early pregnancy organ matches, therefore finetuning a robust encoder 
on our own dataset is a promising future step to further enhance medically relevant similar image search. 

1 INTRODUCTION 

Image similarity search is a method that is able to list 
the top N most similar images from a reference 
database to a query image. The image similarity 
search methods are widely applicable for different 
use-cases, for example, image acquisition support, 
diagnostic support applications, annotation tools (in 
medical device or during development to label dataset 
for AI training). These can benefit from presenting a 
clinically useful reference gallery of medical images 
to a given query image. 

The currently most popular image similarity 
search methods require the image dataset to be 
converted into a feature space representation where a 
robust and fast search algorithm can be applied. This 
method is also called content-based image retrieval 
(CBIR), a popular area of research that focuses on 
developing methods for efficient retrieval processes 
in large image datasets. In CBIR systems, there are 
two phases, the offline and online phase. During the 
offline phase, features are being extracted from a set 
of reference images, stored as local features, and used 
to index the whole image database. During the online 

phase, the features for the query image are generated 
and compared with those in the database using a 
similarity- or distance metric. Images that have the 
lowest distances to the query image are considered as 
the results of the similarity search (Agrawal, 2022), 
(Qayyum, 2017). 

CBIR systems for image similarity are currently 
based on CNN, ResNet or Vision Transformer (ViT) 
models. ViTs tend to be better encoders than ResNets 
for tasks, where the input data is not structured, or has 
a high variability in features. ResNets were designed 
for image recognition, which assumes that images 
have regularity and structure in their features while 
ViTs are more flexible, able to encode information 
from any type of data with less prior knowledge about 
its structure. 

ResNet layers have a limited capacity to process 
large amounts of data, while ViTs can process longer 
sequences and higher data dimensionality by using 
their (self-) attention mechanisms. Self-attention 
mechanism in ViTs allows them to capture long-
range dependencies, while CNNs only have local 
receptive fields, and they cannot learn long-distance 
relationships as adequately as ViTs (Vaswani, 2017). 
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The ViTs are outstandingly effective for 
generating high-quality global descriptors, without 
requiring adjustments in the training data. The ViT- 
method outperforms 36 existing state-of-the-art 
descriptors, which were previously achieved by 
CNN-based methods in image retrieval tasks. 
Furthermore, its low computational complexity 
makes it a promising candidate for replacing 
traditional and widely used CNN-based approaches in 
image retrieval techniques (Gkelios, 2021). 

The second part of an image similarity task is the 
search in the extracted feature space of reference 
images. To be able to effectively and quickly search 
for similar images in a relatively large dataset size 
(from a few 1000 samples), structured search 
methods are recommended. The most popular ones 
are search trees and vector databases.  

Vector databases provide efficient means for 
storing, retrieving, and managing the high-
dimensional vector representations in large language 
model (LLM) operations (Jing, 2024). However, for 
a smaller dataset, KD Tree search method is quicker 
to build and use. 

Evaluating the similarity search algorithms can 
happen pixel-wise and using extra information 
(labels). Measuring how many matching labels 
(organs with planes, findings, diagnoses) are present 
compared to the query image can help getting 
information about how useful the similarity search is 
for diagnostic support or automatic, AI-based 
labelling. 

Another, novel evaluation method for similarity 
techniques is DreamSim. The main issue with other 
popular perceptual similarity metrics is that they 
operate at the pixel or patch level, analyzing lower-
level attributes (colours, textures) without 
considering mid-level similarities (image layout, 
object poses). DreamSim, a novel perceptual 
similarity metric fine-tuned to align with human 
perception can outperform the old metrics by 
emphasizing foreground objects and semantic 
content, but also counting with colour and layout (Fu, 
2023). Due to its robustness in finding similarities on 
images, its ability to translate images into feature 
vectors can also be utilized. 

State-of-the-art comparison articles for CBIR 
methods are available mainly from 1995-2015, 
evaluating handcrafted techniques (Madugunki, 
2011), (Kokare, 2003), (Deselaers, 2008), or 
comparing text-based models (BERT, XLNet, 
RoBERTa) only (Yang, 2020). Evaluating CBIR 
techniques with and without deep learning can be 
found in (Ahmed, 2024), showing the advantages of 
using AI. 

Based on the mentioned works, the encoders 
chosen for evaluation are recent state-of-the-art ViTs, 
DINO and DINOv2, SAM2, and DreamSim. A 
simple ResNet trained on our dataset for organ 
classification was also evaluated. The search 
algorithms used in the CBIR offline stage are KD 
Tree, Ball Tree and vector database. 

The main goal of our experiments was to reach 
the best possible performance considering clinically 
relevant similar image search with as small network 
size and parameter number as possible, remaining fast 
and easy-to-use.  

2 METHOD 

Four recently published state-of-the-art encoders 
trained on various image datasets, and a ResNet 
trained specifically on early pregnancy ultrasound 
images were evaluated and compared in their abilities 
of extracting features for medically relevant 
similarity search on the pregnancy ultrasound 
database. The encoders chosen for evaluation are 
detailed below. 

2.1 Image Encoders 

2.1.1 DINO 

DINO was chosen as the first available, well-
performing pretrained ViT model. From all possible 
DINO variations (see at Table 1.), ViT-S/8 was 
chosen with its 21M parameters. The model extracts 
feature vectors with length of 384. (Vaswani, 2017), 
(Caron, 2021). 

Table 1: Pretrained DINO weights and parameter numbers. 

Model Params 
ViT-S/16 21M 
ViT-S/8 21M 

ViT-B/16 85M 
ViT-B/8 85M 

2.1.2 DINOv2 

DINOv2 is considered to be an improvement over 
DINO, offering better performance on downstream 
tasks. The difference between the two models is in 
their processing details. During training DINO uses 
cross-entropy loss with soft labels, while DINOv2 
uses KL divergence to measure the similarity of two 
images. The cross-entropy loss in DINO is less 
efficient computationally and more sensitive to noise 
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than the one used in DINOv2, but it can capture long-
range dependencies between pixels better. On the 
other hand, DINOv2's KL divergence has a lower 
variance and works well with larger batch sizes. 
DINOv2 training process incorporates a multi-crop 
augmentation strategy to improve generalization 
performance, where multiple views of the same 
image are used in contrastive learning.  

From the available DINOv2 variations, ViT-S/14 
distilled was chosen (see at Table 2.), because of the 
smaller size but comparable performance with the 
first version of DINO. The model extracts feature 
vectors with length of 384 (Oquab, 2023), (Darcet, 
2023). 

Table 2: Pre-trained DINOv2 weights and parameter 
numbers. 

Model Params (M) 
ViT-S/14 21 
ViT-B/14 86 
ViT-L/14 300 
ViT-g/14 1,100 

2.1.3 SAM2 

While DINO and DINOv2 were trained for general 
reconstruction tasks, SAM2 is a foundation model 
built for solving visual segmentation in images and 
videos, thus working with matrices instead of vector 
representations in its feature space. In order to get 
comparable results with DINO models, the extracted 
matrix had to be flattened and shortened with 
averaging. The final feature vector length is 256.  

From the available pretrained SAM2 weights 
(Table 3.), the smallest available network was chosen, 
similarly to DINO and DINOv2 (Ravi, 2024). 

Table 3: Pre-trained SAM2 weights and parameter numbers. 

Model Size (M) 
sam2_hiera_tiny 38.9 
sam2_hiera_small 46 

sam2_hiera_base_plus 80.8 
sam2_hiera_large 224.4 

2.1.4 DreamSim 

As mentioned in the introduction, DreamSim has 
outstanding capabilities measuring similarities 
among a set of images. Their model was trained by 
concatenating CLIP (Radford, 2021), Open CLIP 
(Cherti, 2023), and DINO (Vaswani, 2017) 
embeddings, and then finetuning it based on human 

perceptual judgements. This ensembled method 
outperformed the individual encoders in 
performance, therefore, its feature extraction abilities 
were exploited and used besides the final similarity 
evaluation scores it calculates (Fu, 2023). 

The length of a feature vector generated with 
DreamSim is 1792.  

2.1.5 ResNet 

A ResNet- based network was trained on the early 
pregnancy ultrasound images for organ classification. 
The image features extracted with its encoder are also 
added to the comparative evaluation, to check the 
possible effects of using the same ultrasound domain, 
compared to larger models trained on completely 
different datasets. 

The parameter number of the ResNet trained on 
early pregnancy is around 1 000 000. The accuracy of 
the model measured on the same dataset using a 
completely separated test set (containing 600 images) 
is 84.81%.  

The length of a feature vector generated with 
ResNet encoder is 256. 

2.2 Search Methods 

To search among the generated feature vectors 
effectively, tree-based methods and vector database 
solutions were applied. The current dataset consists 
of 4800 early pregnancy and 3300 fetal labelled 
images, and for this scale KD Tree is the fastest and 
most efficient method. However, when the size of the 
labelled dataset scales up, vector database could 
outperform KD Tree. 

2.2.1 Vector Databases (Vector DB) 

Vector databases are indexing- and retrieval systems 
designed for higher dimensional spaces. They use 
binary search trees for storing vectors in a 
compressed format allowing efficient querying. 
Unlike KD Tree or Ball Tree, Vector DB does not 
divide the dataset into smaller regions, it partitions the 
data points using a hierarchical clustering algorithm, 
then stores them as a tree of centroids. The search is 
performed by finding the closest centroid to the query 
point, then executing binary searches on its children. 

The currently used Vector DB is a Pythonic 
vector database offering a comprehensive suite 
of create, read, update, and delete operations and 
robust scalability options, including sharding and 
replication. It's easy to deploy in a variety of 
environments, from local to cloud applications. 
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2.2.2 KD Tree 

Tree-based search algorithms work by dividing the 
dataset into smaller parts, enabling faster access and 
retrieval of data features in a region of interest. The 
most common tree-based search algorithm is KD 
Tree. It divides the dataset along each dimension 
recursively until it reaches the leaf nodes that contain 
the data points. KD Tree spatial algorithm was used 
in our experiments from SciPy library in Python. 

2.2.3 Ball Tree 

Ball Tree is a tree structure designed for K-nearest 
neighbour search in low dimensional spaces 
(typically less than 10). It works by partitioning the 
dataset into hyperspheres of equal size and radius. 
Each of these balls contain several data points, with 
the center being the midpoint of the given ball. The 
algorithm builds a set of overlapping balls, so ball is 
as large as possible while containing all the nearest 
neighbours to any point within it. Ball Tree was 
implemented using scikit- learn Python library. 

2.3 Experiments and Results 

NVIDIA Quadro RTX 5000 was used for the 
experiments. Generating feature vectors for 10000 
images took below 70 minutes in all cases and took 
around 20 minutes with feature vector length under 
400. Inference time of the search algorithms 
(including building the search structure and querying 
top 10 images) is below 0.5 seconds. 

2.3.1 Dataset 

Data collection was part of the SUOG research 
project, conducted by multiple hospitals in Europe. 
Images were de-identified and managed by 
Assistance Publique – Hôpitaux de Paris. The data 
was collected prospectively for SUOG and the image 
similarity search is a part of this project as well. 

The dataset consists of 18000 early pregnancy 
images from which 4800 is labelled with organs (and 
planes: axial, coronal, sagittal) and diagnosis 
(including normal pregnancy), and the other had 
130000 fetal images from which 3300 is labelled with 
organs (and planes) and diagnoses. In this work only 
the labelled part of the two datasets were used to 
measure clinical relevance of the methods. 

2.3.2 Search Algorithms 

To choose between KD Tree, Ball Tree and Vector 
DB, experiments were made on different data sizes 

(5000, 15000 images), comparing the time demand of 
building the structure and vector querying. For 
building the tree, the results can be seen in Table 4. 
For querying the dataset with a vector with length (L) 
of 10, 20 and 50 the times required are summarized 
in Table 5. 

Table 4: Building times of each structure. 

Building time (s) 
Data size KD Tree Ball Tree Vector DB

5000 0.011 0.120 0.042
15000 0.050 0.540 0.127

Table 5: Querying times of KD Tree, Ball Tree and Vector 
DB (in sec). 

 Data size L=10 L=20 L=50 

KD Tree 5000 0.005 0.005 0.004
15000 0.016 0.016 0.015

Ball Tree 5000 0.001 0.001 0.001
15000 0.004 0.005 0.005

Vector DB 5000 0.015 0.007 0.007
15000 0.043 0.019 0.019

Considering building times KD Tree performed 
the best. For querying in a tree Ball Tree seems the 
quickest by a factor of 2-3, but due to its slower 
building process, the final chosen algorithm for the 
dataset is KD Tree. 

2.3.3 Pixel Metrics 

The main goal is to evaluate the similarity methods 
based on clinical relevance. To further support this 
we also compared different pixel-level metrics to 
assess their ability to distinguish semantically similar 
and different images. To have an idea of the 
network’s performance on pixel-level similarity 
different metrics were evaluated and the most 
distinguishable, quickest, and simplest were 
selected. 

For the pixel- metric evaluation 5-5 visually 
similar and not- similar images were chosen from our 
ultrasound dataset. Also 4 non-ultrasound, natural 
images were chosen to imitate out-of-scope scenarios. 
This can be seen on Figure 1. with the reference 
image on the top, the visually similar images from the 
same ultrasound dataset are in the second row, the 
visually not-similar images from the same ultrasound 
dataset are in the third row, and randomly chosen 
natural images are in the fourth row. 

As the number of selected images is limited, if the 
pixel-metrics would be planned to use for evaluation 
besides additional confirmation, extended image sets 
with detailed pixel-metric statistics were needed. 
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The evaluation of histogram- based image 
similarity and MSE compared to DreamSim score can 
be seen in Table 6., 7. and 8. For histogram-based 
score the range is [0,1], where 1 means the exact same 
image. For the selected natural images (not similar to 
ultrasound) the value range is [0.2, 0.6], for 
ultrasound images it is [0.3, 0.8], for visually similar 
ultrasound images it is above 0.9. For MSE 0 means 
the exact same match. For natural images the value 
range is [5500, 17000],  for ultrasound images it is 
[5000, 7500], for similar ultrasound images it is 
below 5500. For DreamSim [0,1] is the value range 
and 0 is the exact same match. For natural images the 
values are above 0.6, for ultrasound images the value 
range is [0.25, 0.4], for similar ultrasound images it is 
below 0.2. AI- based scores performed more robustly 
and consistently, separating different types of 
similarities better than pixel-based metrics. 

Other traditional CBIR methods were also 
evaluated (SSIM, SIFT, RMSE, PSNR, UQI, MSSIM, 
ERGAS, SCC, SAM, VIF) but their results showed 
high overlaps between similar and not similar cases. 

Table 6: Similarity scores of pixel-based metrics for the 
same reference image and for other natural images. 

Metric Same Natural images
Hist. based 1 0.41 0.29 0.68 0.67
MSE 0 16748 10517 7405 5698
DreamSim 0 0.69 0.81 0.8 0.76

Table 7: Similarity scores of pixel-based metrics for not-
similar images from same database. 

Metric Not similar images from same 
database 

Hist. based 0.59 0.79 0.73 0.38 0.65
MSE 5097 5898 6190 6452 7106
DreamSim 0.32 0.28 0.36 0.35 0.3

Table 8: Similarity scores of pixel-based metrics for similar 
images from same database. 

Metric Similar images from same database 
Hist. based 0.95 0.95 0.99 0.98 0.87
MSE 1808 3653 4281 5492 4055
DreamSim 0.04 0.07 0.11 0.13 0.16

2.3.4 Image Similarity Search 

To evaluate the similarity search methods, a random 
selection of 10 images were chosen from SUOG 
dataset for comparison. Since the fetal image dataset 
has significantly more possible organ and diagnosis 
labels, it was chosen to present the results in detail. 
The same measurements were done also on the early 
pregnancy dataset. 

 
Figure 1: Test images for pixel-based similarity metrics. 

 
Figure 2: Image of sagittal cervical fetal spine, in fetal spine 
group. 

 
Figure 3: 10 Most similar images for reference image in 
Figure 2., 8 out of 10 belongs to fetal spine group. 

2.3.5 Results on Fetal Dataset 

To compare the methods, as a first step the top 10 
retrieved similar image results were evaluated 
iterating through all images in our dataset. We 
measure the relevance of the retrieved similar images 
by checking how many organ, diagnosis and finding 
labels match with the original (reference) image. For 
example, for a reference image labelled as ‘sagittal 
cervical fetal spine’ (presented in Figure 2.), the most 
similar 10 images (based on DreamSim features and 
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Figure 4: 10 Randomly selected images from the database 
for comparison to the top 10 images retrieved with 
similarity search, 0 out of 10 belongs to fetal spine group. 

KD Tree search) can be seen on Figure 3., and a 
random selection of 10 images can be seen on Figure 
4. Evaluating the organ labels of the images in both 
selection of images (Figure 2., 3. and 4.) the 
superiority of similarity sampling is visible. In the 
similar selection 8 out of 10 images belongs to the 
same organ group as the query image (fetal spine), 
while in the random selection, no image belongs to 
the same organ group. 

Apart from visual similarity, label matches have 
also been counted to measure clinical relevance of the 
retrieved similar images. Exact label matches and 
label group matches are measured separately for 
organs and for diagnoses. The groups were formed 
based on consultations with medical experts. Organ 
groups are created to fuse together organs that 
belongs together biologically (e.g. different parts of 
the spine – lumbar, cervical, thoracic), or are very 
close to each other in space, or are visually similar 
(left and right part of the same organ). 

The following values were measured for the top 
10 similar retrieved image for a reference image (note 
that ‘#’ is used to abbreviate ‘number count’ in the 
following tables): 

• The organs and organ group match counts in a 
reference image’s top 10 similar image set, with each 
encoder’s features. Table 9. shows an example, 
measured with DreamSim features. 

• Diagnosis match counts in a reference image’s 
top 10 similar image set, with each encoder’s 
features. Table 10. shows an example, measured with 
DreamSim features. 

• Histogram-based pixel similarity, MSE and 
DreamSim score for each of a reference image’s top 
10 similar image set, measured with each encoder’s 
features. (Summarized results are presented later.) 

• The summarized and averaged label match 
values for each organ and for each diagnosis, with the 
total number of labelled images marked for each 
organ or diagnosis class, and the expected values to 
get similar images calculated with random sampling 
for comparison. The summary tables have been 
generated for each encoder. Table 11., 12., 13., and 
14. show an example of a subset of the measured label 
match values, with 6 organs presented (out of 102 
available ones) for simpler visualization. 

• The summarized label match values for each  
organ and diagnosis, calculated with weighted 
average (with the number of labelled images for each 
class) to have a final, single value for method 
comparison (see in Table 15- 17). 

Table 9: Organ and organ group label match counts for a 
reference image’s top 10 similar images (using DreamSim 
features and KD Tree search). Higher counts in the same 
organ class or organ group class are considered as better 
results. Reference organ label is ‘sagittal cervical fetal 
spine’ in ‘fetal spine’ group. 

Organ # Group #
Sagittal conus 
medullaris 3 Fetal spine 

8 Sagittal thoracic fetal 
spine 3 Fetal spine 

Sagittal lumbar fetal 
spine 2 Fetal spine 

Axial middle cerebral 
artery 1 Fetal brain and 

skull 1 

Sagittal right 
diaphragmatic dome 1 Fetal abdomen 1 

For every labelled image in the dataset with every 
mentioned encoder (and KD Tree search), the top 10 
similar images statistics are calculated to measure 
organ, organ group, diagnosis, and diagnosis label 
matches. Not found labels (that are being present in 
the reference image but not on any of the top 10 
similar ones), and extra organ classes/ diagnoses (that 
are not present among the reference image labels, but 
present on one or more of the retrieved top 10 similar 
ones) are also counted and stored. 
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Table 10: Diagnosis label match counts for a reference 
image's top 10 similar image set (using DreamSim 
features). 

Reference diagnoses: 
Left congenital diaphragmatic hernia

# common diagnoses (reference- top 10 similar): 
0

# not found diagnoses (at all on top 10 similar): 
1

# extra diagnoses (besides reference diagnose(s)): 
8

The statistics from Table 9. and 10 are further 
summarized for image examples belonging to the 
same organ class and diagnosis, organ group and 
diagnosis group. As a final step, label match statistics 
are weighted averaged together based on the amount 
of image examples belonging to each organ class. 

Table 11: Label match statistics for organ classes. 
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Cerebral posterior 
fossa mid sagittal 24 0.11 0.38 

Longitudinal 
cervix 3 0.01 0.33 

Trans-cerebellar 
axial oblique 74 0.32 3.45 

Lateral ventricule 
para sagittal 29 0.13 2.86 

Sylvian fissure 
para sagittal 15 0.07 1.60 

Sagittal cervical 
fetal spine 20 0.09 1.45 

In Table 11. statistics are summarized from single 
images’ top 10 statistics belonging to the same organ 
class. The ‘image count’ column is the number of 
image examples belonging to the given organ class. 
The next column is the expected label match count 
with random sampling (the image count in an organ 
class divided by all labelled images). The last column 
presents the label match count with similarity search 
(using DreamSim). The third row in Table 11. shows 
that with randomly sampling 10 images, we get 0.32 
image examples with the same label in average, and 

querying top 10 similar images, we get 3.45 image 
examples with the same label (for an organ class 
having a total number of 74 image examples. With 
less image examples in an organ class (total of 3 for 
example – like ‘Longitudinal cervix’) the expected 
number of images is 0.01 in average with random 
sampling, and 0.33 with image similarity. That means 
if we randomly select 10 images, we will have very 
little chance of seeing even one image example from 
the same organ class, with or without image 
similarity, so we need about 20-30 images minimum 
in the reference dataset (for every organ and 
diagnosis) to use our methods effectively.  

Table 12: Label match statistics for organ groups. 
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Cerebral 
posterior 
fossa mid 
sagittal

Fetal brain 
and skull 3.14 8.13 

Longitudinal 
cervix Adnexal 0.65 1.00 

Trans-
cerebellar 
axial oblique 

Fetal brain 
and skull 3.14 8.68 

Lateral 
ventricule 
para sagittal 

Fetal brain 
and skull 3.14 9.17 

Sylvian 
fissure para 
sagittal

Fetal brain 
and skull 3.14 7.73 

Sagittal 
cervical fetal 
spine

Fetal spine 0.79 3.95 

In Table 12. the calculation analogy is similar to 
Table 11. but the organ groups are summarized 
together instead of calculating with separate organ 
classes. For example, ‘Cerebral posterior fossa mid 
sagittal‘, ‘Trans-cerebellar axial oblique’ and ‘Lateral 
ventricule para sagittal’ and ‘Sylvian fissure para 
sagittal’ belongs to the same, ‘Fetal brain and skull’ 
group, so all the image examples retrieved belonging 
to ‘Fetal brain and skull’ is being considered as a 
match, not just the exact same organ classes. 
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Table 13: Diagnosis label match statistics. The values in the 
columns are averaged through all the single image statistics 
belonging to the given organ class. 
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Cerebral posterior 
fossa mid sagittal 1.15 0.28 0.87 7.44 

Longitudinal 
cervix 1.33 0.33 1.00 8.00 

Trans-cerebellar 
axial oblique 1.16 0.25 0.90 8.13 

Lateral ventricule 
para sagittal 1.17 0.31 0.86 7.58 

Sylvian fissure 
para sagittal 1.00 0.20 0.80 7.47 

Sagittal cervical 
fetal spine 1.05 0.50 0.55 7.40 

Table 14: Pixel metric statistics. The pixel metric values in 
the columns are averaged through all the single image 
statistics belonging to the given organ class. 
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Cerebral posterior 
fossa mid sagittal 0.9653 2171.54 0.89 

Longitudinal 
cervix 0.9792 2787.11 0.80 

Trans-cerebellar 
axial oblique 0.9674 2557.68 0.90 

Lateral ventricule 
para sagittal 0.9872 1874.36 0.89 

Sylvian fissure 
para sagittal 0.9881 1451.74 0.90 

Sagittal cervical 
fetal spine 0.9592 1565.04 0.87 

In Table 13. the number of diagnosis label match 
counts are summarized for images belonging to the 
given organ class (presented in rows). This means that 
separate similar image set statistics like the example 
in Table 10. (for top 10 retrieved similar images for a 
single reference image) have been averaged for all 
reference images in an organ class. 

For example, in ‘Cerebral posterior fossa mid 
sagittal’ there are 1.15 diagnoses on the reference 
images in average, 0.28 common diagnoses in 
average (diagnosis of the reference image that is also 

found on at least one of the top 10 retrieved images), 
0.87 diagnoses from reference images are not found 
in average, and there are 7.44 diagnoses being present 
on the similar images, but not on the reference image 
in average (extra diagnoses). 

Table 14. shows pixel-level similarity metrics 
averaged out similarly as in Table 13. 

Table 15: Final summary of image similarity search 
experiments. Weighted average of organ and organ group 
label match statistics. Expected value for random sampling 
and best performing model is highlighted for comparison. 
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Random 
Sampling 0.42 1.93 

DINO 2.14 5.88
DINOv2 2.10 5.69
ResNet 1.10 4.15
DreamSim 2.68 6.41
SAM2 1.18 4.42

In the final summary tables (Table 15., 16., 17.) 
statistics were counted for organ classes with 
sufficient amount of image examples (> 20-25). This 
currently means 30 organ classes from the available 
102 ones, and similarly, 30 diagnose classes from the 
67 available ones. 

Table 15. presents the results with organ label 
match counts. With randomly sampling 10 images the 
expected organ label match count is 0.42 (most 
probably we will not see any image belonging to the 
same organ label), and with DreamSim and KD Tree 
search, the organ label match count goes up to 2.68 
(we will probably see 2-3 images belonging to the 
same organ label). Because of the weighted average 
summary, this means that the organ classes with more 
image examples will perform even better, while organ 
classes with fewer image examples are expected to 
give less meaningful results. The next column shows 
the similar statistics calculated with organ groups.  

Table 16. summarizes diagnosis and diagnosis 
group statistics. The best performing model on fetal 
dataset for single and grouped organs is DreamSim, 
for single and grouped diagnoses it is DINO. 

For diagnoses and diagnosis groups the average 
label match increment is not significant. Based on 
consultation with medical experts the conclusion is 
that organs and planes do not correlate well with 
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diagnoses from 2nd trimester of pregnancy, because 
from that point multiple organs must be checked 
thoroughly to set up a proper diagnosis. However, 
findings, organs and planes tend to correlate well in 
every stage of a pregnancy, and findings can help in 
setting up the diagnosis. 

Averaged and summarized pixel-level similarity 
metrics tend to be quite close to each other for every 
encoder, but all of them performs better than random 
sampling, as Table 17. presents.  

Table 16: Final summary of image similarity search 
experiments for diagnoses. Weighted average of diagnoses 
and diagnosis group label match statistics. Expected value 
for random sampling and best performing model is 
highlighted for comparison. 

M
od

el
 

A
ve

ra
ge

 n
um

be
r o

f 
sim

ila
r i

m
ag

es
 in

 to
p 

10
 

(W
ith

 sa
m

e 
di

ag
no

sis
 

la
be

l) 

A
ve

ra
ge

 n
um

be
r o

f 
sim

ila
r i

m
ag

es
 in

 to
p 

10
 

(W
ith

 sa
m

e 
di

ag
no

sis
 

gr
ou

p 
la

be
l) 

Random 
Sampling 0.50 1.49 

DINO 0.75 2.29 
DINOv2 0.68 1.98
ResNet 0.68 1.93
DreamSim 0.74 2.12
SAM2 0.64 2.03

Table 17: Final summary of pixel metrics in image 
similarity search experiments. DreamSim encoder’s 
DreamSim score is biased but marked for comparison (*). 
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Random Sampling 0.87 3246.89 0.75 
DINO 0.95 2325.61 0.87*
DINOv2 0.94 2463.29 0.85
ResNet 0.93 2437.70 0.82
DreamSim 0.95 2247.93 0.88*
SAM2 0.96 2262.52 0.84

DreamSim scores are one of the best evaluation 
metrics for similarity search when labels are not 
available. As DreamSim encoder were used as an 
encoder as well, its own score is biased and expected 
to get higher scores than other encoders (as it contains 
DINO features, it was also marked as a biased result), 
however it still functions as a good comparison for 
the other encoders. 

2.3.6 Results on Early Pregnancy Dataset 

We have performed the same analysis on our early 
pregnancy dataset, and in that case, finding label 
match statistics can also be measured (labelling the 
fetal dataset with findings is still in progress). Due to 
length constraints, only a brief summary of the final 
results is provided here. 

For early pregnancy data, the performance of the 
models are very similar, but due to less variability of 
organs at early stages of the pregnancy, the 
increments tend to be less than on the fetal dataset.  

Table 18: Final summary of image similarity search 
experiments for organs and organ groups. 
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Random 
Sampling 0.88 3.12 

DINO 3.00 7.08
DINOv2 2.81 6.68
ResNet 3.64 8.19 
DreamSim 3.20 7.30
SAM2 2.61 6.12

Table 19: Final summary of image similarity search 
experiments for diagnoses and diagnosis groups. 
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Random 
Sampling 2.36 2.83 

DINO 3.83 4.39
DINOv2 3.45 3.95
ResNet 3.23 3.84
DreamSim 3.76 4.27
SAM2 3.23 3.77

The best performing model on early pregnancy 
dataset for single and grouped organs is ResNet 
(which was trained on the very same dataset for organ 
classification), for single and grouped diagnoses it is 
DINO, and for findings it is DreamSim. The pixel-
level metrics shows that comparing to random 
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sampling, AI- based similarity search methods 
perform consistently better. These results are being 
presented in Table 18-21. 

Table 20: Final summary of image similarity search 
experiments for findings. 

M
od

el
 

A
ve

ra
ge

 n
um

be
r o

f 
sim

ila
r i

m
ag

es
 in

 to
p 

10
 

(W
ith

 sa
m

e 
fin

di
ng

 
la

be
l) 

Random Sampling 1.24 
DINO 3.43 
DINOv2 3.18 
ResNet 3.01 
DreamSim 3.58 
SAM2 2.75 

Table 21: Final summary of pixel metrics in image 
similarity search experiments. DreamSim encoder’s 
DreamSim score is biased but marked for comparison (*). 
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Random Sampling 0.57 6234.12 0.70
DINO 0.92 3553.05 0.87*
DINOv2 0.91 3777.70 0.86
ResNet 0.90 3697.85 0.83
DreamSim 0.93 3397.69 0.89*
SAM2 0.93 3524.69 0.85

3 CONCLUSIONS 

In general, we proved that employing AI models for 
ultrasound similarity search resulted in reliable 
performance, offering several usage possibilities in 
medical applications. 

In this image similarity task considering diagnosis 
label match statistics, DINO features performed best, 
and for organ label match statistics DreamSim 
encoder performed best for fetal dataset. Our ResNet 
was outstanding for early pregnancy organ label 
matches. One likely explanation for this is that the 
model’s training task was to separate the organs in 
early pregnancy cases.  

From this we can hypothesize that training an 
encoder model on the whole ultrasound dataset using 
general target (e.g. reconstruction) could enhance the 

similarity search performance. This can be realized 
by training a model from scratch, or finetune an 
already evaluated encoder model using specific 
techniques developed to tailor these models to custom 
datasets.  
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