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Abstract: In recent years, machine learning technologies have gained immense popularity and are being used in a wide
range of domains. However, due to the complexity associated with machine learning algorithms, it is a chal-
lenge to make it user-friendly, easy to understand and apply. In particular, reinforcement learning (RL) ap-
plications are especially challenging for users who do not have proficiency in this area. In this paper, we use
model-driven engineering (MDE) methods and tools for developing a framework for abstracting RL technolo-
gies to improve the learning curve for RL users. Our domain-specific modelling environment for reinforcement
learning supports syntax-directed editing, constraint checking, code synthesis, and enables comparative anal-
ysis of results generated with multiple RL algorithms. We demonstrate our framework with the use of several
reinforcement learning applications.

1 INTRODUCTION

The advent of artificial intelligence and machine
learning technologies marks a significant transforma-
tion in the software and systems landscape, leading to
groundbreaking developments across various fields.
Among these, reinforcement learning (RL) (Sutton
and Barto, 2018) (Ding et al., 2020), a fundamental
paradigm of machine learning, is gaining consider-
able attention. Initially recognized for its success in
gaming, where machines were able to outperform ex-
pert human players, RL is now increasingly relevant
in dynamic and adaptive environments, with appli-
cations spanning from healthcare and finance to au-
tonomous vehicles. However, the complexity of RL
algorithms presents a significant barrier, often requir-
ing domain expertise and technical skills for effective
implementation and utilization. Despite the growing
demand for RL solutions, current professional pro-
files lack the comprehensive skills sets necessary to
fully leverage its potential, posing a challenge for
widespread adoption across industries (Bucchiarone
et al., 2020).

Just as the need for intelligence in various ap-
plication areas has led to the integration of machine
learning algorithms with more user-friendly inter-
faces, there is a similar demand for RL (Naveed et al.,
2024). Data scientists typically rely on specific li-

braries such as OpenAI Gym, TensorFlow Agents
(TF-Agents), and Stable Baselines to implement RL
algorithms. These require a deep understanding of
the intricate interfaces. However, majority of the re-
search work in the RL domain focuses on enhancing
algorithms and approaches to achieve better accuracy
and results in prediction and learning. There is very
limited work on simplifying RL concepts and tools
to enable non-technical users, such as business ana-
lysts, project managers, domain experts, and students
to engage with RL technologies. A user-friendly RL
framework reduces the technical barriers to entry, al-
lowing individuals without extensive programming or
data science backgrounds to experiment with RL and
incorporate it into their work. Such a framework can
also lead to enhanced collaboration between technical
teams and domain experts, since non-technical users
often have valuable domain expertise that can consid-
erably enhance RL projects, ultimately ensuring that
solutions align more closely with real-world needs.

Model-driven engineering (MDE) can contribute
to this challenge by providing enablers to directly ex-
press and manipulate domain-specific problems (Buc-
chiarone et al., 2020). Domain-specific languages
(DSL) in MDE aim to reduce complexity with the use
of abstraction. We propose a DSL tailored for RL, Re-
inforcement Learning Modelling Language (RLML),
that serves as an intuitive and accessible front-end for

40
Sinani, N., Salma, S., Boutot, P. and Mustafiz, S.
Towards a Domain-Specific Modelling Environment for Reinforcement Learning.
DOI: 10.5220/0013123800003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 40-51
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



RL users. RLML focuses on model-free algorithms,
which are more widely used and extensively tested,
to ensure broad applicability. The RLML framework,
built on top of the JetBrains MPS1 platform (Voelter
et al., 2013), provides an integrated textual modelling
environment that streamlines the creation, execution,
and analysis of RL models. The RLML concrete syn-
tax makes it easier for users to run RL algorithms with
limited RL knowledge. Depending on the level of
technical expertise, the users can choose to change the
algorithm parameters or use the default values. Fur-
thermore, to bridge the gap between Python, the pre-
dominant language in ML, and Java, we have imple-
mented model-to-code transformations for both lan-
guages, enhancing the accessibility of RL algorithms.

This paper is organized as follows: Section 2 pro-
vides a brief background on reinforcement learning
and discusses related work. Section 3 presents our
domain-specific modelling language, RLML. Sec-
tion 4 covers the RLML environment built using
the language workbench, JetBrains MPS. Section 5
demonstrates the use of our framework with several
reinforcement learning applications. Section 6 con-
cludes the paper.

2 BACKGROUND AND RELATED
WORK

This section provides some necessary background on
reinforcement learning and discusses related work.

2.1 Reinforcement Learning

Reinforcement learning (RL) is an area of machine
learning concerned with how intelligent agents ought
to take actions in an environment in order to maxi-
mize the notion of rewards. It is a self-teaching sys-
tem trying to find an appropriate action model that
would maximize an agent’s total cumulative reward,
by following the trial and error method. In general,
the RL algorithms reward the agent for taking desired
actions in the environment, and punishes i.e., grants
negative or zero rewards, for the undesired ones (Sut-
ton and Barto, 2018). The following are the key com-
ponents that describe RL problems.

• Environment: The RL environment (Graesser and
Keng, 2019) represents all the existing states that
the agent can enter. It produces information that
describe the states of the system. The agent inter-
acts with the environment by observing the state

1https://www.jetbrains.com/mps/

space and taking an action based on the observa-
tion. Each action receives a positive or negative
reward, which informs the agent on selecting the
next state.

• Agent: This is represented by an intelligent RL
algorithm that learns and makes decisions to max-
imize the future rewards while moving within the
environment.

• State: The state represents the current situation of
the agent.

• Action: The mechanism by which the agent tran-
sitions between states of the environment.

• Reward: The environment feeds the agent with re-
wards, which are numerical values that the agent
tries to maximize over time. They are received on
each action and may be positive or negative.

Reinforcement learning algorithms estimate how
good it is for the agent to be in a certain state. This es-
timation is the calculation of what is known as a value
function. The value function gets measured based on
the expected future rewards that the agent will receive
starting from a given state s, and according to the ac-
tions that the agent will make, and this is referred
to as the expected return. The goal of an RL algo-
rithm is to find the optimal policy for an agent to fol-
low that maximizes the expected return. An optimal
policy will have the highest possible value in every
state. The optimal policy is implicit and can be de-
rived directly from the optimal value function. There
are many different approaches to find the optimal pol-
icy. They are mainly categorized as model-based or
model-free learning algorithms, in addition to deep
reinforcement learning. It is worth mentioning that
this categorization is not comprehensive and it is of-
ten blurry (Brunton and Kutz, 2019).

When the model of the environment is available,
which is the case with model-based algorithms, the
RL problem is simpler and we can utilize policy iter-
ation or value iteration algorithms. To learn the op-
timal policy or value function we either need access
to the model (environment) and its probability distri-
bution over states, or we try to build a model. When
the agent knows this information, it can use it to plan
its next moves. However, it is more challenging when
we are dealing with model-free algorithms, and it is
often the case in real life scenarios, where the agent
does not know the environment and needs to discover
it. As stated by Sutton and Barto (Sutton and Barto,
2018): model-based methods rely on planning as their
primary component, while model-free methods pri-
marily rely on learning. Finally, deep reinforcement
learning incorporates deep learning techniques and al-
gorithms in order to learn the model (François-Lavet
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et al., 2018).

Figure 1: Reinforcement Learning (RL) Classification
(Adapted from (Brunton and Kutz, 2019)).

In model-free approaches, the agent learns and
evaluates how good actions are by trial and error
method. The agent relies on the past experiences to
derive the optimal policy (described earlier). Various
available algorithms in this approach include (see Fig.
1), Monte Carlo learning, Model-Free Actor Critic,
SARSA: State–action–reward–state–action learning,
DQN and Q-Learning.

In this work, we have focused on model-free
gradient-free algorithms. The objective of such al-
gorithms is to maximize an arbitrary score, which is
the value function, hence also referred to as value-
based algorithms. In value-based methods, the algo-
rithm does not store any explicit policy, only a value
function. Some algorithms, such as actor critic, are
both value and policy-based. Q-Learning, perhaps, is
one of the most dominant model-free algorithm which
learns the Q-function directly from experience, with-
out requiring access to a model.

Since we are using both model-driven engineering
and machine learning technologies in our research,
we would like to clarify that the term models have dif-
ferent meaning in these two fields. Models in MDE
refer to software models and are an abstract repre-
sentation of the elements that define the software and
system domain (Schmidt, 2006). On the other hand,
models in machine learning are algorithms that con-
tain defined instruction and mathematical formula-
tions (Jiang, 2021). Models in ML can be trained to
recognize certain patterns in provided data.

2.2 Related Work

While machine learning is widely applied in the MDE
area, there is limited work available on the appli-
cation of MDE in the ML area (Bucchiarone et al.,
2020). Moreover, as stated in (Naveed et al., 2024),
only four studies have proposed MDE solutions for
RL. Domain-specific languages for the artificial in-
telligence domain and more specifically, the machine

learning domain, are recent contributions, driven by
the need to make ML algorithms more accessible and
to reduce the learning curve. To the best of our knowl-
edge, this is the first work on developing an MDE-
based framework for reinforcement learning.

In this section, we discuss some relevant ML/RL
work that use some form of MDE. We also present an
overview of relevant existing RL libraries and toolk-
its.

2.2.1 Application of MDE in ML

Our work takes inspiration from the Classification Al-
gorithm Framework (CAF) (Meacham et al., 2020).
While CAF was developed for machine learning clas-
sification algorithms, RLML is developed for rein-
forcement learning algorithms. They have similar
configuration-like interface for non-technical users.
CAF supports code generation in the Java language,
while RLML supports both Java and Python. Unlike
CAF, RLML offers a comparator feature.

Liaskos et al. (Liaskos et al., 2022) present a mod-
elling and design process for generating simulation
environments for RL based on goal models defined
using iStar. This allows model-based reasoning to be
carried out, and for agents to be trained prior to de-
ployment in the target environment. High-level RL
models can be automatically mapped to these simu-
lation components. While the scope of our work is
different, this tool can be integrated into our frame-
work to allow RLML models (i.e. alogrithms used) to
be mapped to high-level RL models.

DeepDSL (Zhao et al., 2017) is a DSL embed-
ded in Scala, for developing deep learning applica-
tions. It provides compiler-based optimizations for
deep learning models to run with less memory usage
and/or in shorter time. DeepDSL allows users to de-
fine deep learning networks as tensor functions and
has its own compiler that produces DeepDSL Java
program. Just as DeepDSL aims to bridge the gap
for non-technical uses in deep learning, we developed
RLML to fill a similar gap in reinforcement learning.

Our proposed approach is unique and different
than the rest of the reviewed work, because we use
model-driven engineering to create abstractions in the
RL domain. This not only provides simplification for
RL but also provides other benefits of model-driven
engineering, such as improved maintainability, visu-
alization and scalability.

2.2.2 RL Libraries and Toolkits

As the field of reinforcement learning evolves, various
platforms and libraries have been established to facil-
itate the development of RL applications, each with
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its distinct features and focus areas. For instance, the
Reinforcement Learning Toolkit developed with Un-
real Engine (Sapio and Ratini, 2022) provides immer-
sive simulation environments. Python libraries such
as RL-coach2, Tensorforce3,TRFL4, and TF Agents5

offer robust support for RL algorithms but require de-
velopers to engage deeply with algorithmic details
and understand the intricate concepts of RL. These
existing tools, written in Python, demand substantial
technical understanding of RL processes, from algo-
rithm implementation to the handling of complex cal-
culations. This requirement can be a barrier for those
who are not specialists in RL.

Another recent addition to these set of tools is
Scikit-decide6, an AI framework for RL, which sup-
ports automated planning and scheduling. It offers an
intuitive interface, but, similar to other tools under-
standing of RL fundamentals is still essential.

The development of RLML represents a novel ap-
proach within the RL landscape. By focusing on a
higher level of abstraction, RLML seeks to simplify
the use of RL with a user-friendly modelling environ-
ment. This contribution could be particularly valu-
able in making advanced RL technologies more ap-
proachable for everyone including non-data scientists
or for users without extensive background in the field,
thereby expanding the reach and application of RL in
various domains.

3 MODELLING LANGUAGE
DESIGN

In this section, we describe the proposed DSL for re-
inforcement learning, RLML. The core language con-
cepts were designed based on the main elements rep-
resenting the RL problem and solution algorithms.

3.1 RLML Abstract Syntax

Reflecting the RL domain concepts, RLML mainly
consists of an environment element, an agent element,
and the result element. Successively these elements
contain all the other details involved in solving an RL
problem. Similarly, the RLMLComparator consists of
the same elements as RLML, except it can have mul-
tiple agent elements as well as corresponding number

2https://intellabs.github.io/coach/
3https://tensorforce.readthedocs.io/
4https://www.deepmind.com/open-source/trfl
5https://www.tensorflow.org/agents
6https://airbus.github.io/scikit-decide/guide/introducti

on

of result elements. Figure 2 presents the metamodel
for RLML.

• RLML: The RLML element is the root element of
all the other elements in the language, and con-
tains the environment element, RL agent and the
result. It includes properties that lets the user de-
cide an input method and a run language method.

• RLML Comparator: This is another root element
which is almost a replica of RLML and con-
tains all the other elements in the language except
RLML. It contains the environment element, mul-
tiple RL agent elements, and multiple result ele-
ments.

• Environment: This represents the RL problem en-
vironment for describing the RL problem and the
goal that the agent needs to reach. It is broken
down into states, actions, terminal states (also re-
ferred to as Done states) and rewards elements.
Each one of these elements contains a value prop-
erty, which expects a string value and have asso-
ciated constraints.

• Reinforcement Learning Agent: The RL agent in
the domain is represented by the RL algorithm,
which will be used to to solve the RL problem,
given by the RL environment.

• Reinforcement Learning Algorithm: It is special-
ized into the many different RL algorithms which
can be chosen and implemented to solve the RL
problem. It holds the settings property with ref-
erence to the required settings and parameters to
tune an RL algorithm. All the child RL algorithms
will inherit the settings property. The settings el-
ement carries the common RL algorithm parame-
ters. A specific type of RL algorithm can have its
own specific properties.
The algorithms currently covered in the language
include Q-Learning, SARSA, Monte Carlo, Ac-
tor Critic and DQN all of which fall under model-
free RL. The metamodel is easily extensible and
can support addition of more RL algorithms as the
language matures, to cover more tests cases and
broader RL problems.

• Settings and Hyperparameters: The settings ele-
ment contains hyperparameters, which include all
the common properties for the selected RL algo-
rithms. The hyperparameters element contains al-
pha (the learning rate), gamma (the discount fac-
tor), epsilon (specifies the exploration rate), and
total episodes (total number of episodes to train
the agent). More parameters can be added for spe-
cific algorithms in their individual concepts.
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Figure 2: RLML Metamodel.

• Result: The result element contains a result string
property, and is used to display the results of run-
ning the chosen algorithm.

3.2 RLML Concrete Syntax

One of the goals of RLML is to reduce the complex-
ity involved in implementing RL applications. RLML
uses textual concrete syntax and can be modelled as a
simple configuration-like properties file, as shown in
the sample model in Fig. 4.

The inspiration of the RLML concrete syntax
comes from YAML representation, which is a human-
readable data format used for data serialization. It
is used for reading and writing data independent of
a specific programming language. Another signifi-
cant aspect for this concrete syntax is its relevance
in model-free algorithms, where a dynamic state-
action space is required for the agent’s actions. This
interaction-focused approach is key in model-free re-
inforcement learning, allowing the agent to effec-
tively learn and refine its strategy through direct ex-
perience, even in complex and variable scenarios. As
per the abstract syntax, the model needs to specify
the project’s name, the environment element proper-
ties (the states, actions, rewards and terminal states),
the agent’s RL algorithm type and the settings for that
algorithm.

3.3 RLML Constraints

The property values are considered valid when they
are in a format that RLML can use to implement the
chosen RL algorithm. To ensure that the user is en-
tering valid properties, we defined the following DSL
validation constraints.

• States Constraint: States property value is expect-
ing a string representation of all the possible states

an agent can move within the current world or the
environment of the current task. The value of the
states property must be a comma-separated list of
state strings, within square brackets. The individ-
ual state names cannot have comma or spaces.
Valid example: [A, B, C, D, E, F]

• Actions Constraint: The possible actions that the
agent can take for each state of the states array.
This value is also in string format and expects
a two-dimensional array of indexes. The array
of indexes contain the index values of the states
that the agent can go to, starting from the given
state. Each array is a comma-separated list within
square brackets. The constraint validates the for-
mat of the provided string value and checks that
the length of actions array element is equivalent
to the length of the states array. In the valid exam-
ple below, we can see that there are six arrays of
indexes to match the length of the example array
for states.
States example: [A, B, C, D, E, F]
Valid Example: [[1,3], [0,2,4], [2], [0,4], [1,3,5],
[2,4]]

• Rewards Constraint: The rewards property value
is similar to the actions property value. In
this case, the two-dimensional array contains
an array of rewards that the agent will receive
when moving from the given state to other states
in the environment. The RL algorithm will
eventually learn to move towards the states that
give maximum future rewards and ignore the
ones that do not give rewards. Each array is a
comma-separated list within square brackets.
Similar to actions value validation, the rewards
constraint validates the format of the string and
checks that the length of the rewards array is
equal to the length of states array and the length
of individual rewards elements, is equivalent to
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the length of the states array. In the valid example
below, there are also six arrays of six reward
values to match the length of states example
array.
States example: [A, B, C, D, E, F]
Valid Example: [[0,0,0,0,0,0], [0,0,100,0,0,0],
[0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0],
[0,0,100,0,0,0]]

• Terminal States Constraint: In the RL domain, the
terminal states is a subgroup of all the states that
can end a training episode, either because it is
the goal state or because it is a terminating state.
Therefore, the terminal states array should pro-
vide a smaller string array than the states array.
The terminal states constraint ensures the format
of the string value provided is a comma-separated
list within square brackets and checks that this ar-
ray is a sub-array of the states example array.
States example: [A, B, C, D, E, F]
Valid Example: [C]

4 DOMAIN-SPECIFIC
MODELLING ENVIRONMENT

This section describes the proposed RL framework.

4.1 RLML Features

A modelling environment has been designed and de-
veloped to create RLML models. Translational se-
mantics have been implemented to support execution
of the models through the environment. The mod-
elling environment supports use of different agents as
well as displays the output of the RL training.

Our framework provides support for the same
algorithms in both Java and Python programming
languages, thus maintaining algorithmic uniformity.
Concurrently, efforts were made to enhance Java’s
RL capabilities, ensuring it remains a viable option
for those preferring or requiring it. Our balanced ap-
proach enhances the project’s overall utility, catering
to the diverse needs of the RL community and main-
taining inclusivity across programming preferences.

Our environment provides support for saving
trained RL models, thus facilitating the retention and
subsequent utilization of these models and offering
researchers a valuable resource. Additionally, we de-
veloped support for running multiple algorithms si-
multaneously, presenting data for each distinct varia-
tion. This functionality not only allows users to com-
pare and analyze different algorithmic approaches
side by side but also facilitates a deeper understand-

ing of how variations in parameters affect outcomes
(see Fig. 5). It provides a robust platform for exper-
imentation, enabling users to efficiently identify the
most effective algorithms and parameter settings for
their specific use cases. This multi-algorithm capabil-
ity greatly enhances the tool’s utility in complex sce-
narios, making it an invaluable asset for both research
and practical applications in diverse fields where nu-
anced algorithmic comparisons are essential.

Recognizing the complexity of RL inputs and the
impracticality of manual entry in some cases, we have
enhanced RLML with the capability to import values
through a text file. This feature allows users to se-
lect a file (see Fig. 6), which is then processed to en-
sure it contains valid data. Upon confirmation of valid
input, the system automatically populates the States,
Actions, Rewards, and Done States. This addition sig-
nificantly enhances the versatility of the tool, making
it suitable for use cases that involve large input sizes.

Figure 3: RLML Environment: Code Completion.

Figure 4: Sample RLML Model.

4.2 RLML Editor

MPS is a language workbench which provides a tool
or set of tools to support language definition, and it
implements language-oriented programming. MPS
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is an integrated development environment (IDE) for
DSL development, which promotes re-usability and
extensibility. The language definition in MPS con-
sists of several aspects: structure, editor, actions, con-
straints, behaviour, type system, intentions, plugin
and data flow. Only the structure aspect is essential
for language definition and the rest are for additional
features. These aspects describe the different facets
of a language.

We have employed the structure, editor, con-
straints, and behaviour aspects in the RLML defini-
tion. The structure aspect defines the nodes of the
Abstract Syntax Tree (AST), known as concepts in
MPS. The editor aspect describes how a language is
presented and edited in the editor. It enables the lan-
guage designer to create a user interface for editing
their concepts. Constraints describes the restrictions
on the AST. Finally, the behaviour aspect enables cre-
ation of constructors for the node.

• RLML Structure: The structure aspect contains
the concepts that represent the RLML metamodel.
Each concept consist of properties and children,
reflecting the properties and the relationships in
the RLML metamodel, shown in Fig. 2.

• RLML Editor: The RLML editor aspect is con-
figured to define RLML’s concrete syntax, as de-
scribed and illustrated earlier in Fig. 4. The con-
cept editor for the RLML root element contains
the “Click Here”, “Browse File”, “Change Run
Language”, “Run Program” and “Clear Result”
buttons (see Fig. 4). The ”Click Here” button tog-
gles the visibility of “Browse File” option which
opens the file selection dialog. The “Change Run
Language” option allows users to switch between
Python and Java code. The “Run Program” exe-
cutes the generated code in MPS. When the code
is run in MPS, the results are displayed in the ed-
itor. Finally, the “Clear Result” button resets the
displayed output to blank. The setup provides a
user-friendly environment and enables code exe-
cution and results display right in MPS.
With the support for automatic code completion in
MPS, the environment shows suggestions as the
user creates the RLML model. The code comple-
tion feature helps the RLML user to see the list
of available RL algorithms (refer to Fig. 3) and
choose the one which can solve the targeted RL
problem.

• RLML Constraints: The validation constraints are
implemented using MPS’s concept constraints.
For each defined structure concept, we can de-
velop a concept constraint to validate it. RLML
constraints aspect reflect RLML’s constraints (ex-

plained in Sec. 3.3), which are the actions, re-
wards, states and terminal states constraints.

• RLML Behaviour: The behaviour aspect lets us
set the default values for each algorithm concept,
as well as the default run language (currently
Java).
The sandbox solution in MPS facilitates imple-
menting the developed language and holds the
end user code. Figure 4 shows an example of an
RLML model in MPS.

4.3 RLML Code Generation

This work aims to provide abstractions to reduce the
complexity associated with RL problems and algo-
rithms by generating runnable code from the RLML
models. Generators define possible transformations
between a source modelling language and a target lan-
guage, typically a general purpose language, like Java
or Python.

For our proposed language, we implemented the
model to code transformation to generate code from
RLML models. We have used a root mapping rule and
reduction rules for our code generation. While Java is
directly supported by MPS, it is limited in generating
code for Python. Since support for the generation of
Python code is highly desirable in the RL domain, we
utilize an open-source MPS module7 for this purpose.
This module allows us to extend MPS’s capabilities
to generate Python code, applying similar model-to-
text transformations as with Java. This integration en-
hances the versatility of our tool, supporting a wider
range of programming languages and accommodating
a broader user base.

• Root Mapping Rule: RLML’s generator mod-
ule contains two root mapping rules, one for the
RLML element and other for RLMLComparator
element, which are the root elements of RLML.
The rule specifies the template to transform the
RLML element or RLML concept in MPS, into
a valid general purpose language class with fields
and methods corresponding to those in RLML el-
ement’s properties and children.

• Reduction Rule: The generator module con-
tains reduction rules for all supported algo-
rithms. Supporting more RL algorithms sim-
ply means extending the language with addi-
tional RL algorithm concepts and their reduction
rules/transformation rules. However, it is im-
portant to note that since Python does not have
native support in MPS, the reduction rules can-
not be used. To extend an algorithm in Python,
7https://github.com/juliuscanute/python-mps

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

46



Figure 5: RLML Environment: Comparator.

we need to add a new function definition to the
mapRLMLmain.py file. As part of our contribu-
tions, we are building a Java library of RL algo-
rithms, to be used with MPS. While Python im-
plementations are typical for RL, developers and
students with Java expertise will find such a li-
brary quite beneficial.

Using these transformation rules, MPS can transform
an RLML model to runnable code. The generated file
contains more than 1500 lines of code for Java and
about 300 lines for Python. This emphasizes the sim-
plicity offered by RLML. The name of the file will
be mapped to RLML element’s project name prop-
erty, and it contains a method called run which im-
plements the RL algorithm calculations based on the
reduction rules for Java or the function definition for
Python defined earlier.

With regards to the user experience, we have in-
tegrated UI elements like buttons in the RLML ed-
itor and enabled file importation with data valida-
tion. Addressing MPS’s inability to support Python,
we devised innovative solutions for Python code gen-

eration and execution within MPS by running the
python code as Java process. These enhancements
not only streamline the RLML user experience but
also broadly benefit MPS’s community, particularly
in modelling language engineering.

A video demonstrating the RLML modelling en-
vironment is available at https://cs.torontomu.ca/∼s
ml/demos/rlml.html.

4.4 Discussion

Most machine learning libraries are widely available
as Python libraries and not as Java libraries, hence it
was challenging to find Java libraries to support RL
algorithms. For the few available libraries, they were
not fully supported by MPS. We were able to over-
come this challenge by implementing algorithms in
Java ourselves and using an open source MPS mod-
ule to support Python code generation. Apart from
these algorithms, we did not implement any RL al-
gorithms, but instead relied of tried and tested imple-
mentations of RL algorithms and focused on enabling
non-technical users to leverage existing implementa-
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Figure 6: RLML Environment: Text File Input Wizard.

tions of RL algorithms easily through our framework.
Another issue was, RL problems do not have fixed

input format from the perspective of actions, rewards
and states. Therefore, it was not straightforward to
come up with a format for those inputs. More valida-
tion and mapping is needed for broader problem cov-
erage. This could be fixed by using more model-based
algorithms where the agent is given an environment it
can interact with to solve the problem.

Addressing the challenge of handling large data
set inputs, our tool offers a feature for data input
through a file. This method is particularly useful for
adding large inputs efficiently. However, it is impor-
tant to note that this feature requires the text files to
adhere to a specific format (as defined in the concrete
syntax of the language). Consequently, users need
to either manually create these files or generate them
specifically for use with this tool, considering the for-
mat requirements. In our tests, we were able to use
a large language model (LLM) (Radford et al., 2019)
along with precise prompts to generate these files.

We added support to save the RL model which can
be useful for researchers to reuse the trained model.
However, the limitation of the save feature is that it
cannot be reused if the original parameters (States,
Actions, Rewards, or Done States) are changed. Ef-
fectively, reusing the saved model would be the same
as increasing the number of episodes to train.

In practical RL applications, selecting appropriate
states and actions can be quite complex, especially in
real-world scenarios. Future extensions will focus on
enhancing the language syntax to allow users more
flexibility. This includes the ability to define custom
actions that better reflect the complexities encoun-
tered in real-world situations. We also plan to incor-
porate features that let users specify probability distri-
butions for state transitions based on different actions.
By allowing for more detailed and realistic modelling
of state transitions and actions, our framework will be
better suited to tackle the nuanced and often unpre-
dictable nature of practical RL applications.

5 RL APPLICATIONS

We validated our framework with four well-known
applications from the RL domain: path finding, black-
jack, simple game, and frozen lake(Ravichandiran,
2018). Due to space constraints, we only present two
of the applications here. For details on the use of
RLML on the simple game and frozen lake applica-
tions, please refer to (Sinani, 2022). The artifacts are
available at https://github.com/mde- tmu/RLML.
Implementation of the Monte Carlo and DQN algo-
rithms is currently work in progress, hence the vali-
dation does not cover these algorithms.

5.1 Path Finding Application

Figure 7: Path Finding Environment.

The path finding problem (Verma et al., 2020) is a
common application in the machine learning domain
that can be solved with different algorithms, including
RL. In the path finding environment, the agent’s goal
is to learn the path to a target state, starting from a ran-
domly selected state (see Fig. 7). There are in total six
states in this application, represented by the alphabeti-
cal letters A to F. On each episode, the agent starts in a
random state and takes actions to reach the goal state,
C. Once the agent reaches the goal state, the episode
will be considered complete. The agent will repeat
the training episodes spcific number of times, as con-
figured in the RL algorithm. In an RLML model, this
is set as the total episodes in the RL algorithm entity.
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At the end of the training, the agent will learn the best
path to the goal state C, starting from the random ini-
tial state. The agent learns the path to the goal state
by updating what is referred to as Q-Table and aims
to calculate the optimal action value function that can
be used to derive the optimal policy.

The RL environment needs to be modelled in a
format that conforms to the RLML abstract and con-
crete syntax (see Sec. 3). We model the path finding
environment as states, actions, rewards and terminal
states arrays, as shown in Fig. 5. Next, the path find-
ing application environment variables and RL algo-
rithm option needs to be selected in the RLML model.
Sample RLML model instances for the path finding
algorithm are shown in Fig. 4.

The source code is automatically generated from
the RLML model for each selected algorithm. At
a high level, it is a Java/Python file named ac-
cording to the RLML root element name, e.g.,
PathFindingQLearning (similar to the code in
Fig. 10). It contains a methods to implement, run and
print the results of the chosen algorithm.

The RLML environment contains the Run
Program button (see Sec. 4.2). Once we click on the
Run Program button, the environment is dynamically
updated with the calculated results and we can see the
result of running the program within the environment.
The Q-Table and policy are dynamically calculated
and displayed. This can be viewed in the modelling
environment in the Results section (see Fig. 8). The
policy, derived from Q-Table values, shows the pre-
ferred action the agent will make at each state. As
seen in the results, the agent learned to go to state B
from state A, to state C from state B, and so on. Over-
all, the agent learned the shortest path to go to the
target state, which is C.

So far the application was implementing the Q-
Learning algorithm, however we can easily substi-
tute the algorithm with another algorithm, such as,
SARSA or Actor Critic algorithm. The difference be-
tween Q-Learning, SARSA and Actor Critic imple-
mentations is minor at the RLML level. RLML only
shows the algorithm type and hyperparameters neces-
sary for each algorithm to run. However, it will handle
the details of the algorithm calculations during code
generation and based on that, it will produce the valid
results. As can be seen in Fig. 9, in all cases, the agent
successfully learns the path to the goal state.

5.2 Blackjack Game

The Blackjack game is a prominent application in
the machine learning domain, solvable through var-
ious algorithms, including those from reinforcement

Figure 8: Path Finding Results in RLML with Q-Learning.

learning. In the Blackjack environment, the objec-
tive of the agent is to master decision-making strate-
gies to maximize winnings, beginning from an ini-
tial hand. This involves understanding when to hit or
stand, based on the current hand and the dealer’s vis-
ible card, aiming to attain a hand value as close to 21
as possible without exceeding it. Given the concrete
syntax of the language, going to any state but the cur-
rent state counts as a Hit action, whereas staying at
current state counts as a Stand.

Since, the game represents a real world applica-
tion the state space is quite complex consisting of
around 460 states. In each episode, the agent starts
with an initial hand in Blackjack, taking actions based
on the hand’s value and the dealer’s visible card, with
the aim of optimizing its strategy for winning. The
goal in this context is to make decisions that maxi-
mize the agent’s chances of beating the dealer with-
out exceeding a hand value of 21. Each completed
hand is an episode, and the agent undergoes numer-
ous episodes as defined in the RL algorithm’s set-
tings. Through training, the agent learns the best
decision-making strategy for Blackjack, starting from
any given hand. It achieves this by updating the Q-
Table, with the ultimate aim of determining the opti-
mal action-value function to derive the optimal pol-
icy. Similar to the pathfinding application, the RL
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Figure 9: Path Finding Results in RLML: Q-Learning VS SARSA VS ActorCritic.

environment needs to be modelled in a format that
conforms to the RLML abstract and concrete syntax.
In line with that, we can generate and run code for
a Blackjack game (e.g., named BlackjackQLearning)
using the RLML editor’s “Run Program” button. Ex-
amining the calculated Q-Table and derived policy re-
veals how the player has learned optimal decision-
making strategies in the Blackjack environment. In
the Q-Table, specific actions in certain states may
have negative values, reflecting decisions that typi-
cally lead to losing hands.

The algorithm learns to avoid actions that histori-
cally result in losses, even if they seem initially ap-
pealing. The player, or agent, has been trained to
prioritize decisions that maximize overall gains over
time, rather than immediate, riskier gains, as indicated
by the positive and negative rewards in the Q-Table.

6 CONCLUSION

In our work, we applied MDE in the machine learning
area to develop an RL environment for non-technical

Figure 10: Blackjack with Q-Learning: Generated Code
with RLML.
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users, making it easier for a wider audience to lever-
age RL’s potential. Our no-code solution allows users
to quickly build and test RL models without extensive
programming skills, hence enabling faster prototyp-
ing and experimentation. RLML is developed to be
easily extensible to support a wide range of RL algo-
rithms. To the best of our knowledge, this work is a
first step in this direction for reinforcement learning.

With the use of the language workbench MPS, we
built a domain-specific modelling environment sup-
porting model editing, syntax checking, constraints
checking and validation, as well as code generation.
RLML achieves the abstraction needed in RL applica-
tions, by providing a configuration-like model to pro-
vide input values of the RL problem environment and
a choice of the RL algorithm. From that point, our
framework can generate executable code, run it and
display the results. The environment also provides a
comparator to compare results obtained with differ-
ent RL algorithms. It supports both Java and Python
implementations.

We demonstrated the use of our proposed frame-
work with the path finding and blackjack RL applica-
tions. It can also be used for business applications as
well as to get feedback from RL users at different lev-
els of expertise. Moreover, RLML can be helpful in
academia for making reinforcement learning accessi-
ble for non-technical students.

This work is a starting point towards developing
a framework for supporting various types of RL tech-
nologies, both model-free and model-based, with the
ultimate goal of democratizing access to advanced AI
capabilities. We are currently working on incorporat-
ing probability distributions and custom actions into
RLML, which will allow it to model real world use
cases more effectively.
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