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Abstract: This paper investigates the application of neural radiance field (NeRF) to reconstruct a 3D model from 2D 
endoscopic videos for surgical planning and removal of gastrointestinal lesions. It comprises three stages. The 
first one is video preprocess to remove frames with artefact of colour misalignment based on a deep learning 
network. Then the remaining frames are converted into NeRF compatible format. This stage includes 
extraction of camera information regarding intrinsic, extrinsic and ray pathway parameters as well as 
conversion to NeRF format based on COLMAP library, a pipeline built upon structure-from-motion (SfM) 
with multi-view stereo (MVS). Finally the training takes place for establishment of NeRF model implemented 
upon Nerfstudio library. Initial results illustrate that this end-to-end, i.e. from 2D video input to 3D model 
output deep learning architecture presents great potentials for reconstruction of gastrointestinal tract. Base on 
the two sets of data containing 2600 images, the similarity measures of SSIM, PSNR and LPIPS between 
original (ground truth) and rendered images are 19.46 ± 2.56, 0.70 ± 0.054, and 0.49 ± 0.05 respectively. 
Future work includes enlarging dataset and removal of ghostly artefact from rendered images.  

1 INTRODUCTION 

Gastrointestinal tract (GI) cancers (oesophagus, 
stomach, bowel), were responsible for 26.3% of 
cancer cases and 35.4% of deaths worldwide in 2018 
(Lu 2021). As the 2nd largest death caused by cancer 
in the world (after lung cancer), GI cancers have very 
low 5-year survival rate (<20%). At present, the only 
curative and most effective treatment for early GI 
cancer or lesion is the removal of concerned lesion 
endoscopically, especially, for a lesion confined to the 
mucosal layer, the surface columnar epithelium and 
the first of four layers on the GI wall. In this 
procedure, a substance is injected first under the target 
to act as a cushion. Then a surgical plan by marking 
cutting lines is conducted. Finally, the dissection takes 
place at submucosal layer under the concerned lesion 
following the planning boundary. The key to success 
of this surgery is that the endoscopists have a clear 
view of the lesion, the planned lines and surroundings 
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from varying view angles throughout in order to 
perform precise dissection.  

The challenges here are that all the views are 
confined into a narrow (~2cm in diameter) cylindrical 
food path or tube where the endoscopic camera travels 
in one direction, resulting in some concerned tissues, 
anatomy and planned boundary being invisible. In 
addition, in this complex surgical scene, the 
endoscopist/surgeon/clinician has to compete with 
various motions coming from respiration, heartbeat, 
camera as well as muscles.  Because of this, at present, 
all these operations can only be conducted by expert 
endoscopists, which put significant amount of pressure 
in health care systems. Figure 1 demonstrates the 
process of resection of a polyp in the stomach 
endoscopically. While the lesion in Figure 1 is benign, 
if left untreated, it could progress into cancer. Hence 
resection is in need. Once the target is confirmed 
(Figure 1 (a)), an injection of a dedicated substance is 
carried out to highlight and alleviate the lesion whereby 
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a surgical planning can be made (Figure 1(b)). Then the 
lesion can be removed safely (Figure 1(c)). 

 
Figure 1: Demonstration of lesion resection endoscopically. 
(a) a lesion is detected; (b) cushion is injected; (c) successful 
removal of the concerned lesion. 

Hence reconstruction of 3D view of concerned 
lesions plays an important role in endoscopic surgical 
planning and lesion removal. 3D reconstruction for GI 
from endoscopic videos has been studied by a number 
of researchers. For example, Ali et al (Ali 2021a) has 
established a physical model of oesophagus that is 
applied to develop an AI system to quantify Barrett’s 
oesophagus. The researchers as detailed in (Prinzen, 
2015) has been established the shape of oesophagus to 
allow visualization of additional contextual and 
geometrical information of oesophagus, from 
panorama image to 3D points cloud then to regular 
triangulation mesh. Recently, 3D shape reconstruction 
of whole stomach based on structure-from-motion 
(SfM) (Widya 2019) is investigated by spreading 
indigo carmine (IC) dye on the stomach surface to 
present colour texture of the stomach. This is because 
endoscopic videos present weak texture of GI surface. 
On the other hand, the approach of SfM appears to 
present robust results when it comes 3D 
reconstruction from 2D videos. Further study for deep 
multi-view stereo for dense 3D reconstruction (Bae 
2020) is also conducted based on SfM and is consisted 
of 3 steps, which are sparse reconstruction via SfM, 
monocular depth estimation and embedding vector 
generation via patch embedding network. 

The steps to construct a 3D model from 2D image 
usually include image collection, feature or/and 
keypoint detection and extraction, keypoint tracking 
and matching, structure from motion to determine 
camera intrinsic, extrinsic and orientation parameters, 
and key point-cloud reconstruction, such as mesh 
reconstruction, mesh refinement and mesh texturing. 

With the current advances of state-of-the-art 
(SOTA) deep learning (DL) techniques, many 
innovative approaches have been developed towards 
reconstructing 3D deformable objects. 

In this study, 3D scene reconstruction based on 2D 
endoscopic videos is conducted based on SOTA 
neural radiance field (NeRF) so that a lesion can be 
viewed from all viewing angles, allowing correct 

recognition of concerned lesions, tissue types and 
related anatomy, leading to an assistant system in an 
operative room allowing multiple views while 
performing lesion removal. 

NeRF (Mildenhall 2020) addresses the long-
standing problem in computer vision field, which is to 
reconstruct a 3D representation of a scene from sparse 
2D images. NeRF method synthesizes a new view by 
directly optimising parameters of a continuous 5D 
scene representation to minimize the error of 
rendering a set of captured images.  NeRF represents 
a scene using a fulling connected deep network with 
an input of a single continuous 5D coordinate (i.e. 3D 
spatial + 2D view direction angles). The output of this 
network is the volume density and view-dependent 
emitted radiance at that spatial location.  

2 METHODOLOGY 

2.1 Image Pre-Process to Remove 
Artefact of Colour Misalignment  

Due to the confinement of narrow space of GI, it is 
quite common that as many as a quarter video frames 
contain several types of artefacts, such as water 
bubbles, instrument, and saturation. While these 
artefacts are present most of the time, the concerned 
image features are still visible. However, the artefact 
of colour misalignment, where coloured frames of red, 
green and blue are acquired at different locations 
because of the combination of movements when an 
endo camera travels, should be removed not only 
because most of interested contents are not present but 
also the presence of these artificial colours will affect 
the detection of camera light of rays, hence affecting 
the accuracy of training. Figure 2 illustrates a number 
of artefacts present in a video clip, where the top row 
 

 
Figure 2: Examples of frames with artefacts (arrow). (a) 
saturation; (b) instrument; (c) bubbles; (d)(e)(f) colour 
misalignment (all over images). 
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of artefacts (red arrows) still contains visible GI 
features but bottom row of colour misalignment 
(whole images) mis-represents GI contents. 

To detect artefacts, many deep learning-based 
systems are developed offering promising 
performance (Ali 2020, Ali 2021b, Bissoonauth-Daiboo 
2023). In this study, the processing time also plays an 
important role for the future development of real-time 
3D systems. Hence the real-time system, real-time 
instance segmentation system, YOLACT (Bolya 
2019, Gao 2023) is enhanced and applied for artefact 
classification. Figure 2 presents the architecture of the 
network to classify frames with normal or artefact 
features (instrument, bubbles, saturation or colour 
misalignment (CMA)). In this pre-processing stage, 
only frames with CMA will be discarded. This is 
because the subsequent 3D modelling and 
reconstruction of lesioned GI depends on the 
information of colour and intensity attributes, i.e. 
structure from motion and neutral radiance fields. 

 
Figure 3: The architecture of YOLACT network for 
detection and segmentation of artefact. The artefacts to 
distinguish are instrument, bubbles, saturation, and colour 
misalignment (CMA). The mask or ground truth of frames 
with CMA is the whole frame. 

For this end-to-end detection system of YOLACT 
(Bolya 2019) (Figure 3), the basic underline model 
employs ResNet101 to extract initial feature maps. 
The object segmentation is accomplished through two 
parallel subnets (ProtoNet and Prediction Head), 
which generate a set of prototype masks and predict 
per-object mask coefficients respectively.  

More specifically, ProtoNet employs a fully 
connected network (FCN) accommodating the largest 
pyramid feature layer (𝑃3), to produce a set of image-
sized prototype masks. These 𝑘 mask prototypes (𝑘 ൌ32 in this study) are then applied to deliver predictions 
for the entire image in relation to classification, 
segmentation and detection (Gao 2023).  

On the other hand, Prediction Head contains three 
branches, which are c class confidence (c=5 for 
‘Instrument’, ‘Bubbles’, ‘Saturation’, ‘artefact-text’, 
‘CMA’), 4 bounding box regressors (=[xtop-left-corner, 

ytop-left-corner, width, height])), and a vector of mask 
coefficients, one for each prototype to be processed in 
parallel. Subsequently, the branch of 
‘Crop+thresholding’ in Figure 2 delivers a vector size 
of 4 ൅  𝑐 ൅  𝑘 for each anchor or region of interest 
(RoI), As a result, for each instance, one or more 
masks will stem from that instance by linearly 
combining (plus or minus) the work from both 
prototype and mask coefficient strands, leading to the 
production of final masks ( 𝑀 ) by a sigmoid 
nonlinearity as formulated in Eq. (1). 𝑀 ൌ 𝜎ሺ𝑃𝐶்ሻ     (1) 

where 𝑃 is an ℎ ൈ 𝑤 ൈ 𝑘 matrix of prototype masks 
and 𝐶 is a 𝑛 ൈ  𝑘 matrix of mask coefficients for 𝑛 
instances that have passed score thresholding and 
initial 𝑁𝑀𝑆 , the maxima suppression technique 
(Bolya 2019). NMS determines whether an instance 
should be kept or discard. For example, duplicated 
detections are suppressed not only for the same class 
but also for cross-class boundary boxes depending on 
the probability of boxes, i.e. the box with higher 
probability suppresses the one with lower 
probability. In Eq. (1), 𝐶் indicates the transpose of 𝐶 Matrix. 

The calculation of the loss function is the same as 
for YOLACT (Bolya 2019). Three loss functions are 
utilised to train this end-to-end detection model as 
formulated in Eq. (2), which are classification loss 
(ℒ௖௟௔௦௦ሻ, box regression loss ( ℒ௕௢௫ሻ and mask loss ሺℒ௠௔௦௞ሻ where the weights of 1, 1.5, and 1.5 are 
applied for them respectively to give more weight to 
classification. ℒ ൌ ℒ௖௟௔௦௦ ൅ 1.5 ℒ௕௢௫ ൅ 1.5 ℒ௠௔௦௞ (2) 

In particular, ℒ௠௔௦௞ ൌ 𝐵𝐶𝐸ሺ𝑀, 𝑀௚௧ሻ   (3) 

where the binary cross entropy 𝐵𝐶𝐸  is formulated 
using Eq. (4). 𝐵𝐶𝐸ሺ𝑝, 𝑦ሻ ൌ  െ ଵே ∑ ሾ𝑦௜ logሺ𝑝௜ሻ ൅ ሺ1 െே௜ୀଵ 𝑦௜ሻlog ሺ1 െ 𝑝௜ሻሿ 

 (4) 

where 𝑦  represents the label and 𝑝  is the predicted 
probability of the point being a label for all 𝑁 points. 𝑀 and 𝑀௚௧ are calculated in Eq. (1). 

After removing the frames with CMA artefact, the 
remaining are applied to train the 3D model takes 
place based on NeRF. 
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2.2 3D View Reconstruction for 
Concerned Lesioned GI Based on 
NeRF 

For 3D scene modelling, neural radiance fields 
(NeRFs) (Mildenhall 2020) takes 5-degree 
coordinates as an input. The 5D refer to each 3D point 
at (𝑥, 𝑦, 𝑧) when viewing with a camera ray of light 
emitting direction at (𝜃, 𝜙 ). Hence, NeRF enables 
learning novel view synthesis, scene geometry and 
reflectance properties by optimising a deep fully-
connected neural network as a multilayer perceptron 
(MLP). As such, NeRF represents this 5D function by 
regressing from a single 5D coordinate (𝑥, 𝑦, 𝑧, 𝜃, 𝜙ሻ 
to a single volume density and view-dependent RGB 
colour. As a result, to render NeRF from a specific 
viewpoint, camera rays are marched through the 
scene, and a neural network produces colours and 
densities for 3D points, which are then accumulated 
into a 2D image. 

Figure 4 schematically illustrates the process of 
representing scenes as neural radiance fields for view 
synthesis. 

 
Figure 4: The process flow of NeRF. (a) 5D input; (b) 4D 
output; (c) volume rendering at a new viewing direction. 

Firstly, a scene (Figure 4(a)) is represented using a 
5D vector-valued function with an input of a 3D 
location 𝒙 ൌ ሺ𝑥, 𝑦, 𝑧ሻ and 2D viewing direction 𝒅 ൌሺ𝜃, 𝜙ሻ. The output of this function is an emitted colour 𝒄 ൌ  ሺ𝑟, 𝑔, 𝑏ሻ and volume density  (Figure 4(b)) at 
each ray. This 5D function is approximated applying 
a multilayer perceptron (MLP) network 𝐹஀: ሺ𝒙, 𝒅ሻ →ሺ𝒄, 𝝈ሻ to optimise its weights  in order to map each 
input 5D coordinate to its corresponding volume 
density and directional emitted colour. Finally, based 
on the classical volume rendering approach (Kajiya 
1984), the colour of any light ray passing through the 
scene is rendered (Figure 4(c)) whereas the volume 
density 𝝈ሺ𝒙ሻ  is interpreted as the differential 
probability of a ray terminating at location 𝒙. Hence 
the expected colour 𝐶ሺ𝒓ሻ of camera ray light 𝒓ሺ𝑡ሻ ൌ𝒐 ൅ 𝑡𝒅 , starting at the original location 𝒐, with near 

and far bounds 𝑡௡  and 𝑡௙  , is expressed in Eq. (5) 
(Mildenhall 2020). 𝐶ሺ𝑟ሻ ൌ ׬ 𝑇ሺ𝑡ሻ𝜎൫𝒓ሺ𝑡ሻ൯𝑐ሺ𝒓ሺ𝑡ሻ, 𝒅ሻ𝑑𝑡௧೑௧೙          (5) 

where 𝑇ሺ𝑡ሻ ൌ exp ሺെ ׬ 𝜎௧௧೙ ൫𝒓ሺ𝑠ሻ൯𝑑𝑠ሻ  (6) 

As pointed out by Mildenhall et al [6], operating a 
network 𝐹஀  directly on 𝑥𝑦𝑧𝜃𝜙  can result in poorly 
rendering performance when colour and geometry 
have high-frequency variations. Hence, 𝐹஀  is 
formulated as a composite of two functions, i.e., 𝐹஀ ൌ 𝐹஀ᇱ ∘ 𝛾   , where 𝐹஀ᇱ  is learned applying a regular MLP 
network, from which the estimated colour 𝐶መ௖ሺ𝒓ሻ can 
be expressed in Eq. (7) as a weighted sum of all 
sampled colours 𝑐௜ along the ray.  𝐶መ௖ሺ𝒓ሻ ൌ ∑ 𝑤௜𝑐௜ே೎௜ୀଵ      (7) 
where  𝑤௜ ൌ 𝑇௜ሺ1 െ expሺെ𝜎௜𝛿௜ሻሻ     (8) 𝑇௜ ൌ exp൫െ ∑ 𝜎௝𝛿௝௜ିଵ௝ୀଵ ൯     (9) 

and 𝛿௜ ൌ 𝑡௜ାଵ െ 𝑡௜         (10) 𝛿௜ in Eq (10) refers to the distance between adjacent 
samples. 
On the other hand, 𝛾   is not learnt but a mapping from ℝ  space into a higher dimensional space ℝଶ௅  as 
computed in Eq. (11). 𝛾ሺ𝑝ሻ ൌ ሺsinሺ2଴𝜋𝑝ሻ , cosሺ2଴𝜋𝑝ሻ , … , sinሺ2௅ିଵ𝜋𝑝ሻ , cos ሺ2௅ିଵ𝜋𝑝ሻሻ

 (11) 

Where 𝑝 ൌ 𝑥, 𝑦, 𝑧, 𝜃, 𝜙  respectively. 𝐿 ൌ 10  when 𝑝 ൌ 𝑥, 𝑦, 𝑧, 𝜃, 𝜙 and 𝐿 ൌ 4 when 𝑝 ൌ 𝜃, 𝜙 . 

Hence the loss between ground true colour 𝐶ሺ𝒓) 
and predicted pixel colours for both coarse 𝐶መ௖ሺ𝒓ሻ and 
fine 𝐶መ௙ሺ𝒓ሻ renderings is calculated in Eq. (12). ℒ ൌ ∑ ሾฮ𝐶መ௖ሺ𝒓ሻ െ 𝐶ሺ𝒓ሻฮଶଶ ൅௥∈ℛ ฮ𝐶መ௙ሺ𝒓ሻ െ 𝐶ሺ𝒓ሻฮଶଶሿ

 (12) 

where ℛ is the set of rays in each batch. 

2.3 Implementation 

To model 3D view of endoscopic view based on 
NeRFs, Nerfstudio (Tancik 2023) is implemented. 
Nerfstudio tools are a repository collecting an family of 
simple python-based extensive application programing 
interface (API) functions to allow visualisation of 
modelling of scenes based on neural radiance fields 
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(NeRFs). By providing a simplified end-to-end process 
of creating, training and testing NeRFs, these APIs 
allow viewing and interacting these processes through 
an internet browser. 

In this study, the input data are a clip of endoscopic 
video containing RGB frames. After removal of  
artefact of CMA as explained in Section A, these 
frames/images are analysed to extract needed 
information, including ground truth information such as 
camera intrinsic and extrinsic data. To obtain the 
endoscopic camera information, COLMAP system is 
employed. COLMAP (Schonberger 2016) is the 
structure-from-motion (SfM) package that can be 
employed to estimate the ground truth information 
regarding to camera poses, camera intrinsic parameters, 
and scene boundaries. In addition, this pre-processing 
stage converts those input images into a format that is 
compatible with NerfStudio 1, i.e. a JSON format.  

Then training takes place based on the pre-
processed images to create a configuration file and a 
model. 

2.4 Similarity Measurements 

Three common measures are employed to calculate 
the similarity between original (ground truth) and 
rendered images, which are structural similarity 
(SSIM) (Wang 2004) (Eq. (13)), peak signal-to-noise 
ratio (PSNR) (Eq. (14)), and more recently Learned 
Perceptual Image Patch Similarity (LPIPS) (Eq.(15)). 𝑆𝑆𝐼𝑀ሺ𝑥, 𝑦ሻ ൌ ሺଶఓೣఓ೤ା௖భሻሺଶఙೣ,೤ା௖మሻሺఓమೣାఓ೤మା௖భሻሺఙమೣାఙ೤మା௖మሻ  (13) 

In Eq. (13) of SSIM, 𝜇௫ , 𝜇௬ are the averages of  𝑥, 𝑦 , with 𝜎௫ ଶ , 𝜎௬ଶ  being the variances of 𝑥 , 𝑦 
respectively and 𝜎௫,௬ the covariance of 𝑥  and 𝑦. The 
variables of 𝑐ଵ  and 𝑐ଶ  are applied to stabilize the 
division when a small denominator occurs and are set 
to be ሺ0.01𝐿ሻଶ and ሺ0.03𝐿ሻଶ respectively, whereby L 
stands for the dynamic intensity range of an image, 
e.g. L=255 for an 8-bit image. 𝑥 , 𝑦 refer to original 
and rendered images respectively. 

For PSNR, Eq. (14) is calculated. 𝑃𝑆𝑁𝑅 ൌ 20 logଵ଴ 𝑀𝐴𝑋ூ െ 10 logଵ଴ 𝑀𝑆𝐸  (14) 
where 𝑀𝐴𝑋ூ refers to the maximum possible value of 
the image (e.g. 255 for 8-bit) and 𝑀𝑆𝐸  the mean 
squared error between two concerned images. 

In addition, LPIPS (Zhang 2018) metric refers to 
Learned Perceptual Image Patch Similarity and is 
formulated in Eq. (15). LPIPS is calculated by 
comparing the activations of two image patches using 
pre-defined neural network features. Specifically, it 

 
1 https://docs.nerf.studio. 

computes the distance between the feature 
representations of the patches. The lower the LPIPS 
score is, the more perceptually similar the patches are. 
The distance between reference and rendered 
patches 𝑥, 𝑥଴ with network ℱ is calculated in Eq. (15) 
where 𝐻, 𝑊, 𝐶 refer to image patch high, width, and 
channel. 𝑑ሺ𝑥, 𝑥଴ሻ ൌ ∑ ଵு೔ௐ೔ ∑ ฮ𝑤௟ ⊙ ሺ𝑦ො௛௪௟ െ 𝑦଴ෞ௛௪௟ ฮଶଶ௛,௪௟     (15) 

The feature stacks are extracted from layer 𝐿 
where unit-normalization ( 𝑦ො , 𝑦଴ෞ  corresponding to 𝑥, 𝑥଴  respectively) in the channel dimension takes 
place, and for layer 𝑙 , 𝑦ො௟ , 𝑦଴ෞ௟ ∈ ℝு೗ൈௐ೗ൈ஼೗ . The 
weight 𝑤௟ is performing element-wise multiplication 
(⨀ሻ, which is equivalent to computing cosine distance 
(Zhang 2018). 

3 RESULTS 

Figure 5 demonstrates the training processing 
implemented via Nerfstudio. The training processing 
is visualised live on a browser, which allows users to 
select any camera ray direction as exemplified at 
Figure 5 (a)(b) to view detailed training (5(a)) as well 
as each individual training image (5(b)) with a specific 
camera location (Figure 5(c)). 

 
Figure 5: The illustration of training process. (a)(b) training 
takes place at varying camera rays. (c) An individual 
training sample selected from (b) with a specific camera ray 
direction. 
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Figure 6 demonstrates the montage of training data 
set (a) and the new view angle (b) rendered using the 
trained model. The needed view path can be selected, 
defined or requested through the visualisation tool 
presented in Figure 5. 

 
(a) 

 
(b) 

Figure 6: Demonstration of training data (a) and rendered 
data (b) at a specific view direction for a polyps in the 
stomach. 

While the rendered data (Figure 6(b)) have some 
background information missing due to the lack the 
sufficient data, the concerned lesion can be rendered 
and viewed at any needed viewing angle, which is 
important in a clinical setting as an endoscopic camera 
can only travel in one direction within the narrow food 
path whereas clinicians need to know all the 
surrounding information for a surgical planning. 

The accuracy of rendered images using the 
aforementioned three metric measures is provided in 
Table 1, which is based on two sets of data. The initial 
video frames with 10 minutes each contains over 
30,000 frames each. After pre-process for detection of 
colour misalignment artefact, 6000 frames are kept. 
When extracting camera ray information using 
COLMAN approach, only 2600 images are found 
related due to poor image quality, e.g. blurry with 
floating objects or noise/artefact. 

Table 1: The measurement of similarity between ground 
truth (original) and rendered images. for psnr and ssim, 
higher value implies more similar whereas lower lpips 
referring more similar between the two. 

Data 
set

Image 
number

PSNR SSIM  LPIPS 

2 2600 19.46 ± 
2.56

0.70 ± 
0.054 

 0.49 ± 
0.05

Figure 7 presents a mesh and point cloud for the 
concerned lesion shown in Figure 5, which can be 
views at any viewing angle or camera light ray. 

 
Figure 7: Demonstration of mesh (top) and point cloud 
(bottom) of the concerned lesion shown in Figure 5. 
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4 CONCLUSION 

This study investigates the feasibility of 
reconstruction of 3D scene of GI from 2D endoscopic 
videos as an end-to-end process, i.e. from an input 2D 
video to an output 3D model, without the prior 
knowledge of camera information of location, 
intrinsic and extrinsic data. SOTA NeRF approach is 
applied. Because of the challenges facing acquisition 
of endoscopic video with less texture information on 
the GI surface, the camera positional information 
extracted from videos requires images with varying 
view angles, which in our case, is limited. Hence the 
ground truth images after pre-processing only contain 
10% of the original input. However, even with only 
1000 images for each lesion as one training dataset, 
the 3D model is able to render high quality images 
with various viewing angles. For the two training data 
sets, the averaged measures of SSIM, PSNR and 
LPIPS between original (ground truth) and rendered 
images are 19.46 ± 2.56, 0.70 ± 0.054, and 0.49 ± 0.05 
respectively. In comparison with the work of NeRF 
where 31.01, 0.947 and 0.081 are obtained for natural 
images [6], our results appear to be less performed. 
However, in [6], around 100 views are acquired for 
each filmed object with known camera information. In 
our study, this information has to be extracted from 
endoscopic videos themselves with much less viewing 
angles due to the constraints of viewing space in the 
food passage, leading to less image frames are 
employed. In addition, because of the combination of 
movements while performing endoscopic filming, 
including heartbeat, respiration, and camera, many 
images appear blurry to a certain extent. These blurry 
images are usually ignored when applying COLMAP 
library to track camera locations. This is because the 
tracking of motion based on optical flow, i.e. the same 
spot would appear similar intensity level in the 
subsequent images, which is not the case for blurry 
images. 

In the future, more datasets will be evaluated. In 
addition, post processing will be conducted including 
to remove noises or ghostly artefact as recommended 
more recently by Warburg et al (Warburg 2023). 
Specifically, to make use as many video frames as 
possible, especially for medical applications with 
limited dataset, a new algorithm will be developed to 
establish camera information based on the existing 
available but less clear images through the application 
of human vision models. While many frames are burry 
with regard to motion tracking, human vision can still 
perceive these motions easily and clearly. In this way, 
the developed system will also become more 
transparent. 
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