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Abstract: This paper presents an automated system designed to streamline the creation of interactive real estate video
tours. These virtual walkthrough tours allow potential buyers to explore properties by skipping or focusing
on rooms of interest, enhancing the decision-making process. However, the current manual method for pro-
ducing these tours is costly and time-consuming. We propose a system that automates key aspects of the
walkthrough video creation process, including the identification of room transitions and room label extraction.
Our proposed system utilizes transformer-based video segmentation, addressing challenges such as the lack
of clear visual boundaries between open-plan rooms and the difficulty of classifying rooms in unfurnished
properties. We demonstrate in an ablation study that the combined usage of ResNet frame embeddings, and a
transformer-based temporal postprocessing that uses a separately trained doorway detection network as extra
input yields the best results for room segmentation and classification. This method improves the edit score by
+35% compared to frame-by-frame classification. All experiments are performed on a large real-life dataset
of 839 walkthrough videos.

1 INTRODUCTION

The process of searching for new property has in-
creasingly moved to digital platforms, with 76% of
people using their phones or tablets to explore poten-
tial properties and more and more people using social
media for their property search (Lautz et al., 2014).
This shift has prompted real estate sellers to adopt
digital representations more suited to mobile users.
Among these representations, interactive video tours
stand out by offering a comprehensive understanding
of a property’s structure and appearance compared to
separate images. These tours provide potential buyers
with an immersive experience, allowing them to get
a better feel of the property without physically being
there. Interactive video tours enable users to virtu-
ally walk through a property with the option to skip
to rooms of interest. This functionality allows view-
ers to bypass less interesting areas, such as hallways,
and focus on more important spaces like bathrooms
and bedrooms, effectively speeding up their decision-
making process. However, creating these interactive
tours is a labor-intensive task that involves two video
editing steps:
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• Cutting the video into smaller clips per room

• Labelling each clip with the correct room name

Despite the clear advantages of interactive video
tours, the manual process of creating them is time-
consuming and subject to human bias. These steps
require significant effort and expertise in video edit-
ing, which can be a barrier for many real estate pro-
fessionals.

In this work, we propose a system to automati-
cally process a walkthrough video into an interactive
video for real estate interactive tours. Our pipeline is
designed to: (1) identify transitions between rooms,
and (2) extract room labels for each video frame. Ex-
amples of such interactive video tours can be seen
at https://youtu.be/XQqFN4KsX A and https://youtu.
be/bZBrMz2eGtM.

The input to our pipeline is a video which is man-
ually captured with a mobile phone while walking
through the property for sale. This is typically done
by the real estate agent, who is given specific instruc-
tions. Every room in the house needs to be filmed,
including the street scene in front of the property, the
garden, terrace, etc.

Our automated approach aims to reduce the time
and effort required to produce high-quality interac-
tive video tours, thereby enhancing the efficiency of
real estate marketing. By leveraging advanced video
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segmentation and processing techniques, our system
promises to deliver consistent and accurate results,
making the creation of interactive video tours more
accessible and scalable. Instead of the 25 minutes the
fully manual process typically takes, our pipeline re-
duces the manual effort to a quick and simple quality
check of the automatically produced outcome.

The two tasks—room transition detection and
room classification—essentially boil down to a tem-
poral video segmentation and classification problem.
This is akin to the video action segmentation prob-
lem (Lea et al., 2016; Lea et al., 2017a; Miech et al.,
2020), with a high focus on exact transition place-
ment. Here, we divide long videos into their respec-
tive room segments, the “actions”. Doing this step
manually often requires multiple inspections of the
same video to get the labels and the transitions right,
making the process not scalable and expensive. An
automatic approach would be highly beneficial.

At first sight, a simple frame-by-frame room type
classifier would suffice to solve this problem. How-
ever, the problem is much more difficult as rooms
are not always clearly delineated from each other by
doors. For instance, in open-plan kitchens, there is
no clear point where the kitchen ends and the din-
ing room or living room starts. Moreover, from a
single frame view, the room type is indiscernible in
many cases because of too few room-specific items
in view. Often, houses are sold in unfurnished state,
which makes the room type classification even harder.

In this paper, we present a multi-cue transformer-
based approach to solve this room video segmenta-
tion problem. We will train and test our approach
on a large dataset of real-life real estate walkthrough
videos, encompassing various types of houses in both
furnished and unfurnished states.

2 RELATED WORK

The two tasks central to our pipeline—room transition
detection and room classification—are fundamentally
temporal video segmentation and classification prob-
lems. This framing aligns closely with challenges ad-
dressed in video action segmentation, where the goal
is to identify and classify temporal boundaries of ac-
tions within a video. By adapting techniques from
this domain, we aim to robustly detect room transi-
tions and assign accurate room labels to each seg-
ment, leveraging the spatial and temporal cues inher-
ent in walkthrough videos.

Our main task is to split up the input walkthrough
video into clips, each containing only one room. The
boundaries of each segment should ideally be at the

moment the camera walks through the door open-
ing connecting one room to the next, or crossing
the imaginary line between different functions of an
open-plan room. Additionally, each time segment
should be labelled with the correct room type.

To the best of our abilities, we have not found pre-
vious work that was specifically targeted at real estate
videos. However, the task of video action segmen-
tation is very related. Here, an untrimmed video is
segmented in separate time segments, each contain-
ing a distinct action of the filmed subject. The differ-
ence with our problem is that the video does not need
to be segmented in terms of where it is captured (the
room), but what the subject is doing (the action). Typ-
ical benchmark datasets contain actions like cooking a
certain recipe (Kuehne et al., 2014; Fathi et al., 2011;
Stein and McKenna, 2013) or toy or furniture assem-
bly (Sener et al., ; Ben-Shabat et al., 2020; Ragusa
et al., 2020).

Action segmentation aims to classify each frame
of a video with a specific action label, akin to im-
age segmentation, where each pixel is assigned a la-
bel. This frame-by-frame classification allows for a
detailed temporal understanding of activities within a
video.

The challenge of action segmentation lies in its
need to handle varied action lengths, complex tran-
sitions between actions, and diverse video contexts.
Unlike static image segmentation, action segmenta-
tion must account for temporal dependencies and dy-
namic variations, requiring sophisticated models that
can learn and generalize from sequential data.

Current approaches split this task into extracting
low-level spatial features and applying a high-level
temporal classifier. There has been extensive work
on the former. For the temporal aspect, a sliding win-
dow technique is applied in (Rohrbach et al., 2016;
Ni et al., 2016). Building further upon the research
of LSTM, (Gammulle et al., 2017) uses the con-
volutional layer outputs as input for an LSTM ap-
proach to detect human actions. Proving that the
LSTM approach is suitable for the action segmenta-
tion task. Lea et al.(Lea et al., 2017b) use a convo-
lutional encoder-decoder strategy with temporal con-
volutions to improve the extraction of temporal infor-
mation, which outperforms the LSTM and is faster to
train.

Transformer networks, which leverage a self-
attention mechanism, have demonstrated remarkable
effectiveness in processing sequential data (Vaswani
et al., 2017). However, as noted by Yi et al. (Yi
et al., 2021), applying Transformers to the action seg-
mentation task presents several challenges. These
include the absence of inductive biases, which be-
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Figure 1: Example of a video tour sampled at 1 FPS (video
viewable at https://youtu.be/SxVyLtyndCk).

comes particularly problematic when working with
small datasets, difficulties in handling long input se-
quences due to the quadratic complexity of the self-
attention mechanism, and limitations in the decoder
architecture’s ability to model temporal relations be-
tween multiple action segments, which is crucial for
refining initial predictions. To address these issues, Yi
et al. propose an encoder-decoder architecture, refin-
ing the output sequence through incremental decod-
ing. Similarly, (Ji et al., 2022) introduces a multi-
modal Transformer, which uses a fusion of text and
image data to perform the temporal video segmenta-
tion task.

Despite these advancements, challenges such as
long sequence processing, inductive bias, and effec-
tive temporal modelling remain central to the action
segmentation problem. Various approaches, includ-
ing encoder-decoder architectures and multimodal
Transformers, underscore the flexibility of these mod-
els, but there remains significant potential for improv-
ing the capture of long-range dependencies and refin-
ing segment predictions across diverse video contexts.
In this work, we build upon these foundations by in-
troducing a ResNet-Transformer approach, which in-
tegrates transition detection with the output sequence
to enhance segmentation accuracy.

3 DATASET

The dataset used in this work is custom-made by the
company that creates these interactive videos. It en-
compasses a diverse array of properties, including vil-
las, houses, flats, offices, and student dorms. Specif-
ically, the dataset includes 839 different properties,

Figure 2: Challenges in room type classification because of
ambiguous labels. left: a living room and a bedroom. right:
a bedroom and an attic.

Figure 3: Histogram of room type labels in the dataset
(room label colour codes are consistent through all figures
in this paper).

each captured in multiple videos that have been la-
belled for the room classification task.

3.1 Room Classification Labels

For each property, the videos were manually labelled
to identify various rooms. This process involved seg-
menting the videos and assigning appropriate room
names to each segment. Unfortunately, as the prob-
lem is complex and sometimes ambiguous, we noted
inconsistencies in the room labels. In Figure 2 we
can see similar visual content representing different
rooms. In total, we have a set of 22 room classes
with a highly imbalanced distribution, as shown in
Figure 3.

The others class contains all exotic classes like
stables, swimming pool, technical room, treehouse,
elevator, bicycle storage, library, etc. The classes
are highly imbalanced, with nearly, 107500 hallway
frames and only 4200 frames that show an attic. This
labelled dataset supports the development and evalu-
ation of our temporal segmentation model.

We split up the dataset using Stratified Random
Sampling (May et al., 2010) to ensure a balanced rep-
resentation of the dataset across training, validation,
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and test sets. This approach ensures that the distri-
bution of key attributes (e.g., class labels, video du-
ration, number of different rooms, FPS, ...) is pre-
served in each split. By employing this technique, we
avoid potential biases introduced by uneven class dis-
tributions and ensure that all models are evaluated on
a representative sample of the data. For this study,
we split the dataset into 70% real estate properties
for training, 15% properties for validation, and 15%
properties for testing. Figure 1 shows an example of
an entire house sampled at 1FPS.

4 METHOD

In the following section, we will discuss the proposed
methods for solving the smart video editing task. We
will split the pipeline up in two distinct tasks: room
classification (section 4) and transition detection (sec-
tion 4)

To address the room type classification problem,
we propose a ResNet-Transformer network. In our
approach, a ResNet18 model serves as the frame-
based spatial feature extractor, while a Transformer
is used to capture temporal information and refine the
output. Each frame in the video is processed by the
ResNet18, which converts it into a 512-dimensional
latent vector. These latent vectors, derived from a se-
quence of consecutive frames (sequence length), are
then fed into a Transformer encoder to capture tem-
poral dependencies.

The Transformer model consists of 5 encoder lay-
ers, each with 2 attention heads and a feed-forward
dimension of 2048. Positional encodings are added
to the input latent vectors to preserve the temporal or-
der of the frames. The output from the Transformer
encoder is passed through a classification head, which
predicts the room type for each frame in the sequence.

The entire network is trained for 37 epochs end-to-
end, using sequences of 23 frames and a batch size of
16. The model is optimized with a fixed learning rate
of 1e-6, and data augmentation techniques are applied
to the input frames to mitigate overfitting. The whole
approach is shown in Fig 4.

To refine the outputs of the room classification
network, we integrate doorway detections as a post-
processing step. Doorframes act as distinctive visual
cues, helping to clarify room boundaries and enhance
classification accuracy. Our doorway detection sys-
tem is built on a ResNet18 architecture for feature ex-
traction, followed by a fully connected network that
models temporal dependencies across a sliding win-
dow of multiple frames. Figure 5 gives an overview
of the used technique.

Figure 4: Architecture overview of the proposed network
for room classification. Colour legend for room types: see
Fig. 3.

Figure 5: Architecture overview of the proposed network
for doorway detection.

This network is trained on a subset of the original
dataset, selecting transitions between “hall” and other
room types, as these always involve a door. Figure
6 shows two samples of this subset. This approach
ensures that only actual doorways are used, avoid-
ing “open” transitions that could confuse the model.
While this means we miss doorframes outside of hall
transitions, this limitation is mitigated by the net-
work’s ability to easily recognize door frames, allow-
ing effective training even with a smaller dataset.

The network used for doorway detection em-
ploys a ResNet backbone to extract spatial features
from individual frames, followed by three fully con-
nected layers that aggregate information across mul-
tiple frames to capture temporal relationships. After
initial experimentation, we empirically chose the win-
dow size for doorway detection to be eleven frames.
An overview of this method is illustrated in Figure 5,
a video example can be viewed here: https://youtu.be/
2JpKkCI5dGc.

Once doorways are detected, their information
is used in the post-processing stage to refine the

Figure 6: two samples that show a doorway transition.
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segmentation borders predicted by the Transformer-
based room classification network. We employ hand-
crafted rules to integrate the doorway detections into
the room classification pipeline. The detection of a
doorway signals the boundary between two different
rooms, prompting an adjustment in the room classifi-
cation output. Once we detect a doorway, we use a
sliding window between two detected doorways. Ad-
ditionally, we merge segments that are too small with
their neighbouring segments respecting doorway po-
sitions, if applicable. With the help of these simple
rules, we improve the predictions, aligning them more
closely with the ground truth annotations.

As we will demonstrate in Section 5, this com-
bination of deep learning-based doorway detection
and rule-based post-processing enables more accu-
rate segmentation of indoor environments by refining
room classifications based on explicit structural cues.

5 RESULTS

5.1 Evaluation Metrics Used

In the temporal segmentation domain, several com-
mon metrics are used to assess the performance of
models. We chose to report the F1 score, frame-wise
accuracy, and the edit score, providing a comprehen-
sive evaluation of both appearance-based and tempo-
ral prediction quality.

5.1.1 Frame-Wise Accuracy

Frame-wise accuracy measures the percentage of
frames in the video that are correctly classified. While
this metric provides a straightforward measure of
classification performance, it can be misleading in
temporal segmentation tasks. A model may achieve
high frame-wise accuracy by correctly classifying the
majority of frames, yet fail to capture the correct
transitions between segments. Moreover, spikes and
fast glitches are not penalized. Thus, while useful,
frame-wise accuracy should be interpreted with cau-
tion when assessing temporal consistency.

5.1.2 F1 Score

The F1 score balances precision and recall by cal-
culating the harmonic mean between the two. For
temporal segmentation tasks, the F1 score is com-
puted by comparing each predicted time segment with
the ground truth through the Intersection over Union
(IoU). A predicted segment is considered a true pos-
itive (TP) if its IoU with the corresponding ground

truth segment exceeds a certain threshold. To cap-
ture the model’s performance across different levels
of strictness, we report F1 scores at three IoU thresh-
olds: F1@0.10, F1@0.25, and F1@0.50.

However, one limitation of the F1 score is that
it focuses on individual segments and does not cap-
ture the sequence-level structure of the predictions.
It may overlook how well the overall segmentation
aligns with the true sequence of events.

5.1.3 Edit Score

The edit score (Lu and Elhamifar, 2024) offers a com-
plementary perspective by evaluating the sequence
structure of predicted segments in relation to the
ground truth. It measures the number of operations
required to transform the predicted segmentation into
the correct ground truth segmentation. Specifically,
it uses the Levenshtein distance. The fewer opera-
tions required to correct the predicted segmentation,
the higher the edit score. A key advantage of the edit
score is its alignment with human post-processing ef-
fort. The operations counted by the edit score (inser-
tion, deletion, replacement) directly correspond to the
actions a human would need to take to manually cor-
rect the model’s output.

By jointly observing the F1 score, frame-wise ac-
curacy, and edit score, we obtain a more holistic view
of model performance, balancing frame-level preci-
sion with the consistency and correctness of predicted
segment sequences.

5.2 Model Architectures

Below, we describe the various model architectures
tested out in our experiments, ranging from a base-
line ResNet frame-by-frame model to more sophisti-
cated temporal models utilizing fully connected lay-
ers, LSTMs, and transformers.

5.2.1 ResNet Frame-Based Classifier

As a baseline, we utilized a pre-trained ResNet-18
model to classify individual video frames (He et al.,
2015). ResNet-18 was selected for its demonstrated
ability to capture detailed appearance information, es-
sential for distinguishing between different types of
rooms. In this setup, each frame was treated as an in-
dependent entity without any form of temporal pro-
cessing or sequential modeling. This approach al-
lowed us to assess the model’s performance based
solely on appearance features, serving as a point of
comparison for subsequent models incorporating tem-
poral dynamics.
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5.2.2 ResNet + Temporal Modeling via Fully
Connected Network

In this variation, temporal relationships between
frames were captured using a dense fully connected
network. After extracting embeddings from each
consecutive frame using the pretrained ResNet from
sec. 5.2.1, the frame sequences were passed through
three fully connected layers. This approach enables
the model to aggregate spatial information across
multiple frames, offering a richer and more dynamic
representation of the scene. By processing frame se-
quences, the dense layers can capture short-term tem-
poral dependencies and improve overall accuracy in
scene classification tasks. We used a sequence length
of 23 frames and two fully connected layers with a
dimension of 1024 and 512 respectably.

5.2.3 ResNet + Temporal Modeling via LSTM

To capture more complex and long-term tempo-
ral dependencies, we employed a Long Short-Term
Memory (LSTM) network. In this architecture,
the ResNet-extracted embeddings from consecutive
frames were fed into the LSTM, allowing the model
to learn the temporal dynamics inherent in video se-
quences. This is particularly advantageous in under-
standing gradual transitions and movements between
rooms, as the LSTM can retain information from ear-
lier frames and use it to inform later predictions. The
ability to model long-range temporal dependencies
offers improved robustness, especially in scenarios
where frame-by-frame spatial features alone may be
insufficient to capture room transitions.

5.2.4 ResNet + Temporal Modeling via
Transformer

To further enhance the modeling of temporal relation-
ships, we experimented with a transformer-based ar-
chitecture. Transformers have been shown to excel
in sequence modeling tasks, primarily due to their
self-attention mechanism, which can capture both
short- and long-range dependencies. In this setup,
the ResNet-extracted frame features were processed
by transformer layers, allowing the model to attend
to multiple frames simultaneously and to better cap-
ture context across a video sequence. Positional en-
coding was applied to preserve the sequential nature
of the frames, and the model processed batches of 23
frames at a time. This setup provided a more context-
aware interpretation of the video and significantly im-
proved the understanding of the temporal structure of
the scene.

5.3 Post-Processing Strategies

In addition to the different model architectures, we
explored various post-processing techniques to fur-
ther refine the temporal predictions made by the mod-
els. These strategies focus on improving robustness
against frame-level misclassifications and ensuring
that the model captures the transitions between differ-
ent rooms more accurately. In table 1 the base value
is without any post-processing.

5.3.1 Sliding Window with Majority Voting

In this approach, we introduced a sliding window
method that applies majority voting across consec-
utive frames. For each segment of the video, the
model’s predictions over the sliding window are ag-
gregated, and the most common prediction is assigned
to the middle frame. This technique improves tempo-
ral consistency by smoothing out short-term misclas-
sification spikes and ensuring that the final prediction
is representative of the broader context. After exper-
imentation, a window size of 8 frames was found to
provide the best balance between smoothing and re-
sponsiveness to changes in the video sequence.

5.3.2 Transition Detection with Post-Processing
Refinement

To further enhance the accuracy of transition place-
ment, we employed the doorway detection network
described in section 4 in conjunction with the room
classification model. By combining the outputs of
both the doorway detection and the sliding window
based room classification models, we were able to ap-
ply rule-based logic to significantly improve perfor-
mance. The post-processing step corrects the model’s
predictions by adjusting segment boundaries, ensur-
ing that detected transitions correspond more accu-
rately to actual changes in the environment, such as
when moving between rooms. This integration of ap-
pearance and transition cues proves highly effective
in reducing misclassifications during room changes
and refining the overall segmentation logic, leading
to more precise and robust scene interpretations.

5.4 Results Overview

Table 1 shows an overview of our temporal room seg-
mentation and classification ablation study, where the
final row demonstrates the superiority of our proposed
method, scoring best on all evaluation metrics. We
both compare four different model architectures (de-
scribed in Section 5.2), each combined with three dif-
ferent post-processing steps used (handled in Section
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Table 1: Evaluation of different models with various post-processing methods. Acc refers to frame-wise accuracy, while F1
scores are reported at three different IoU thresholds. The Edit score reflects the sequence-level correction needed for a perfect
model output.

Model Post-Processing Method ID Acc F1@0.10 F1@0.25 F1@0.50 Edit

ResNet only
None A 0.65 0.23 0.20 0.13 0.15
Sliding Window B 0.66 0.43 0.39 0.28 0.31
S.W. + Transition Detection C 0.66 0.51 0.47 0.35 0.38

ResNet + Fully Connected
None D 0.61 0.25 0.23 0.17 0.20
Sliding Window E 0.61 0.48 0.45 0.34 0.39
S.W. + Transition Detection F 0.61 0.57 0.54 0.41 0.48

ResNet + LSTM
None G 0.44 0.24 0.19 0.09 0.18
Sliding Window H 0.45 0.32 0.27 0.14 0.25
S.W. + Transition Detection I 0.46 0.36 0.30 0.16 0.27

ResNet + Transformer
None J 0.65 0.38 0.35 0.26 0.29
Sliding Window K 0.66 0.57 0.52 0.40 0.47
S.W. + Transition Detection L 0.66 0.61 0.56 0.43 0.51

Figure 7: Resulting room segmentation timelines of the different model and post-processing method combinations from
table 1 on a test video. From top to bottom: pipeline IDs ordered in increasing Edit Score order. GT: Ground Truth. (Input
video viewable at https://youtu.be/SxVyLtyndCk?si=Hz3ZEoOw6HhqQrGt. Colour legend for room types: see Fig. 3).

5.3) to refine the model output. Both model and post-
processing method increase in complexity in towards
the bottom of the table. The quantitative evaluation
measures used are defined in section 5.1.

As a qualitative result, Figure 7 shows the output
of each of the models in this ablation study on a video.
As can be observed, our final pipeline (pipeline ID
”L”) consisting of a ResNet frame-based embedding
extractor, Transformer-based temporal modelling and
a refinement stage using our custom trained doorway
detector matches best with the ground truth room la-
bel sequence. An second output example, with in-
dication of room labels (ground truth in red, predic-
tions in blue) can be viewed here: https://youtu.be/
KBeduh7AjaA.

All our models are trained on the dataset described
in Section 3. Each video was annotated with the cor-
responding room types at each frame, forming the
ground truth labels necessary for training and evalua-
tion. Each frame of a video was resized to 224×224
pixels, we also performed data augmentation tech-
niques, such as colour jitter, random cropping, etc., to
enhance the model’s robustness. All the videos were
subsampled from 60FPS to 12FPS in order to view a
larger timeframe and prevent overfitting.
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6 CONCLUSION

This work presents an effective automated system
for creating interactive real estate video tours by
addressing room classification and transition detec-
tion. The ResNet-Transformer network demonstrated
strong capabilities in capturing both spatial and tem-
poral features for accurate room classification. The
Transformer-based model improved more than 20%
as compared to a more traditional LSTM sequence
processing. The integration of door transition de-
tection as a post-processing step enhanced the per-
formance across all models. Indeed, detected door
transitions contribute essential structural information,
particularly aiding in the accurate delineation of room
boundaries when doors were present. This approach
improved the overall precision and ensured more con-
sistent room layout predictions, paving the way for
more sophisticated applications in automated video
editing systems, particularly in real estate domain. In
future work, we plan to do user satisfaction studies.
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