
Revisiting Permission Piggybacking of Third-Party Libraries in Android
Apps

Kris Heid a, Elena Julia Sonntag and Jens Heider b

Fraunhofer SIT — ATHENE - National Research Center for Applied Cybersecurity,
Rheinstraße 75, 64295 Darmstadt, Germany

{kris.heid, elena.julia.sonntag, jens.heider}@sit.fraunhofer.de

Keywords: Permission, Third-Party Libraries, Android, Static Analysis.

Abstract: Permissions have been employed to let the user decide on components an app can interact with. However,
apps typically consist of the main app along with several libraries to support the developer with various func-
tionality and tasks. The fact that libraries inherit the permissions of the main app gives these libraries often
more rights than needed for their core functionality. Many libraries do permission piggybacking and thus
probe available permissions without requesting permissions themselves and adapt their behavior accordingly.
Especially, advertisement and tracking libraries show high interest to collect as much user data as possible
through this technique. Many works have previously addressed this problem but no solution has made its way
into Android. This work delivers a novel analysis technique agnostic to the Android API level without manual
mapping effort like previous works. Our results show, that permission piggybacking remains a problem to be
urgently addressed.

1 INTRODUCTION

There exists a gigantic number of apps in the Google
Play Store for Android users to install on their phones.
They are easy to install and use, thus many services
offer an own app to the users. With so many apps
and some of relatively unknown developers, the users
demand control over which information and function-
ality an app is allowed to use. Thus, permissions
came up relatively early in the Android development
to inform the user about capabilities of the app before
installation. Later on, this system was refined with
runtime-permissions to let the user decide to provide
access to resources during runtime of the app. The
user must thus try to make an informed decision dur-
ing the app’s runtime if access to certain functionality
is appropriate or not, which is often difficult.

However, apps internally often use third-party li-
braries to offload some programming effort. With
the use of libraries, app development becomes faster
and easier but even app developers don’t know the
exact internals of the third-party libraries they use.
Third-party libraries can have background activities
running besides their advertised functionality. These

a https://orcid.org/0000-0001-7739-224X
b https://orcid.org/0000-0001-8343-6608

libraries then have the same access to functionality
and information as the main app since they run un-
der the same process in the OS. Thus, the permission
management system cannot distinguish the main app
from libraries(Stevens et al., 2012; Zhao et al., 2023).
There already exist numerous publications since circa
2015 (see section 2) on how to implement permissions
on finer granularity level and have different permis-
sions for the main app and third-party libraries to mit-
igate this issue. However, ever since none of such
solutions made it into the Android source-code. A
possible explanation might be that additional permis-
sion requests would be a big burden to the user for the
benefits it brings.

Before starting our research, we were already
aware of advertisement and tracking libraries to use a
technique one could call opportunistic permission us-
age or permission piggybacking. With this technique
third-party libraries don’t request permissions them-
selves, but use what is already granted to the main
app. As a result, such libraries get access to much in-
formation and critical functionality when used in an
app with high privileges.

In this publication, we want to find out the extent
of opportunistic permission usage by third-party li-
braries and thus if it is a serious problem which must
be addressed or a niche which would justify Google’s

Heid, K., Sonntag, E. J. and Heider, J.
Revisiting Permission Piggybacking of Third-Party Libraries in Android Apps.
DOI: 10.5220/0013126500003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 1, pages 39-46
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

39



reserve to implement proposed solutions into An-
droid.

The remainder of this paper is structured as fol-
lowing: In section 2 we will address related work
about this topic and what are the contributions of this
publication. Section 3 describes the concepts and im-
plementation details how we detect opportunistic per-
mission usage of third-party libraries. In section 5,
we analyze the top 1,000 apps on Google Play with
our detector and evaluate the results. The last section
gives a conclusion and outlook on future work.

2 RELATED WORK

We divide this section into three parts. In the first
part, we present works which analyze permissions of
third-party libraries. The second part presents con-
cepts to separate the permissions of the main app and
the libraries for fine granular control over the libraries
abilities. In the third part, we highlight the planned
contributions of this work in contrast to former publi-
cations.

2.1 Permission Analysis

Stevens et al. (Stevens et al., 2012) compared in-
browser and in-app advertising regarding user privacy
and found that in-app advertising is more likely to
compromise user privacy. They examined 13 popular
Android advertising libraries to determine the risk of
privacy violations concerning permissions, categoriz-
ing them into required, optional, and undocumented
permissions. These undocumented permissions are
dynamically checked and used by libraries, allow-
ing access to additional sensitive data if the applica-
tion has these permissions. Using the Stowaway tool
(Felt et al., 2011), they discovered additional undocu-
mented permissions and confirmed their actual usage
via manual checks, using a hybrid analysis approach
(Zhan et al., 2021).

Book et al. (Book et al., 2013) studied the evo-
lution of advertising libraries in Android concerning
permissions and their impact on privacy and security.
They used PScout (Au et al., 2012) to analyze system
calls requiring permissions and found that advertising
libraries increasingly exploit permissions requested
by the main app. This concept was further refined
by Backes et al. (Backes et al., 2016) to cover new
Android versions and improve accuracy.

Grace et al. (Grace et al., 2012) also investigated
privacy and security risks from embedded advertis-
ing libraries in Android apps. Analyzing 100,000
apps, they identified 100 advertising libraries and

used the AdRisk tool to identify potential risks. Un-
like (Book et al., 2013), this study includes An-
droid API calls not requiring permissions and identi-
fies ”Permission Probing”, where advertising libraries
opportunistically use APIs requiring permissions, ei-
ther by checking permissions in advance or handling
SecurityException. More than half of the exam-
ined libraries exhibit this behavior.

2.2 Third-Party Library Permission
Isolation

Bin Liu et al. (Liu et al., 2015) introduced PEDAL to
de-escalate the privileges of advertising libraries, with
two components: the Separator and the Rewriter. The
Separator identifies advertising libraries by analyzing
Java bytecode and separates them from app logic.
The Rewriter controls resource access by advertis-
ing libraries and prevents permission inheritance.
They identified features for classifying advertising
libraries, including APIs for permission checking like
android.content.Context.check*Permission().
Analysis revealed that five of 30 libraries use undoc-
umented permissions (Zhan et al., 2021).

Several publications present tools to isolate third-
party libraries from the host app, with two ap-
proaches: separating libraries into independent pro-
cesses (1) and interrupting communication between
libraries and host apps (2) (Zhan et al., 2021). Tools
like AdSplit (Shekhar et al., 2012), AdDroid (Pearce
et al., 2012), SanAdBox (Kawabata et al., 2013),
AFrame (Zhang et al., 2013), NativeGuard (Sun and
Tan, 2014), and FLEXDROID (Seo et al., 2016) fol-
low approach (1), while PEDAL(Liu et al., 2015) and
LibCage (Wang et al., 2016) follow approach (2). For
completeness, recent research by Zhan et al. (Zhan
et al., 2021) provides a comprehensive overview.

2.3 Contribution

This work does not aim to show another third-party
library permission isolation approach. Instead, we
want to analyze how widespread the opportunistic
permission usage is in all third-party libraries, not
limited to advertisement libraries as many previous
publications. Previous works often use a complex
”required permission” to ”restricted API-call” map-
ping (Stevens et al., 2012; Felt et al., 2011; Book
et al., 2013; Grace et al., 2012) optionally with call
graph reachability analysis(Backes et al., 2016) to
find out where permissions are requested and used.
This, approach becomes outdated each year with new
Android versions and therewith new permissions and
APIs and is thus cumbersome to manually go through

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

40



API changes and keep the mapping up to date es-
pecially considering that Backes et al.(Backes et al.,
2016) mentioned many undocumented APIs.

In contrast, our approach tries to
find checkPermission(...) and
requestPermission(...) pairs inside libraries and
match them. Normally, a library would check the
same permissions as it requests. The price to pay of
not having API-call to permission mapping is missing
out on permission probes which make restricted API
calls and catch the security exception. The advantage
of this method is its remaining compatibility with
future Android releases. An additional contribution
is, that we not only focus on advertisement libraries
like previous publications, but any library. We prove
the applicability of our approach on the top 1,000
apps on Google Play.

3 CONCEPT AND GOAL

To classify libraries as normal or opportunistic
permission usage, the checkPermission() and
requestPermission() calls must be compared with
the permissions passed to these calls.

For an APK, all its third-party libraries must be
identified. All classes of this library are examined for
checkPermission() and requestPermissions()
calls. If a checkPermission() call is found,
the checked permission is added to a list for
this library. The same procedure is applied for
requestPermissions() calls and all requested per-
missions are added to a list for this library. A library
with opportunistic permission usage would have more
items in the check permissions list than in the request
permissions list. All methods and classes to check and
request permissions are shown in Table 2.

The following example in Table 1 should be
an APK that has integrated two third-party libraries
com.library1 and com.library2.

Table 1: Library Permissions.

permission
Library checked requested
com.library1 RECORD AUDIO RECORD AUDIO
com.library2 FINE LOCATION RECORD AUDIO

RECORD AUDIO

com.library1 would be “normal” privileged, as
both lists for requested and checked permissions
contain the same elements (permissions). How-
ever, com.library2 would be count as permission
piggybacking, as the checked permissions contains
the FINE LOCATION permission, which is not found
in the requested permissions. The library would

thus probably like to piggyback on the main app’s
FINE LOCATION permission.

Table 2: API Methods to check or request permissions.

Method Class

checkPermission()
Context

PackageManager
PermissionChecker

checkSelfPermission()

ContextCompat
ActivityCompat

Context
PermissionChecker

checkCallingOrSelfPermission() Context
PermissionChecker

requestPermissions() ActivityCompat
Activity

3.1 Resolve Arguments

So far, it has been assumed that constants in the
form of strings are passed to the permission func-
tion calls, which is not necessarily the case. Some-
times permissions are assigned to variables before-
hand, which are then passed to the function calls.
That is, calls like checkSelfPermission(context,
permissions) or requestPermissions(context,
permissions, requestCode). However, to com-
pare specific, readable permissions, these variables
must be resolved. In easy cases the call site of the
function call to for example checkPermission(...)
needs to be found. In complex cases the data flow
has to be chased through various function calls and
variable assignments or even through Java reflections.
Since not all data flows are resolvable in a static anal-
ysis, we add a list of unresolvable variables for each
checked and requested permissions. In section 4.6 we
will go into further detail how libraries can be iden-
tified in some cases as permission piggybacking even
though containing unresolved variables. At this point
unresolvable arguments might seem as a big draw-
back, but as later shown in the evaluation section 5,
the situation rarely happens in practice.

4 IMPLEMENTATION

In this section we will explain the details of our im-
plementation. Before starting with an implementation
we researched for fitting tools to get the job done.

4.1 Tool Selection

Due to several previous works, there should presum-
ably be some analysis tools available to use. Our re-

Revisiting Permission Piggybacking of Third-Party Libraries in Android Apps

41



quirements for the tool are:

1. Handle Android APK files

2. Ability to search in Java classes for specific func-
tion calls

3. Call graph analysis abilities to resolve function
call arguments (permissions)

4. Easy to use and install

From our literature research in section 2 it would be
easiest to take an existing tool and slightly adopt it
for our use case. However, it was barely possible:
Stowaway (Stevens et al., 2012) source-code was no
longer available on the internet and they direct users
towards using PScout. PScout in turn remains un-
maintained since its initial commit 9 years ago, thus
probably no good choice either. The slightly later re-
leased Axplorer (Backes et al., 2016) has a github1

with permission to API call mappings, but unfortu-
nately no source-code. The source-code from other
tools was not published like for (Grace et al., 2012) or
the adDetect tool (Narayanan et al., 2014). However,
most of these tools also relied on common Java or
Android APK analysis frameworks such as WALA2,
soot3, APKtool4 or randoop5. Randoop is a Java unit
test generator used by Grace et al.(Grace et al., 2012)
as a search engine for function calls. However, this
tool doesn’t offer fancy analysis functionality like call
graph analysis and many more. Additionally, tools
like APKtool need to be used to decompile the app.
APKtool used by Narayanan et al.(Narayanan et al.,
2014) in turn only decompiles without any code anal-
ysis functionality. Better suited seems WALA used
by Backes et al.(Backes et al., 2016), which seems to
have all source-code analysis functionality we need.
After looking at the documentation, we saw that even
for the simple ”getting started” examples, several
hundreds lines of code are required, which seems like
a big overhead. Additional steps like APKtool would
also be necessary to analyze APKs. Soot is used in-
ternally by many tools like Stowaway or PScout, and
it would also provide required code analysis function-
ality. After looking through the code we realized the
frequent use of singletons which prevents paralleliza-
tion, which we would want when analyzing 1,000
apps. JADX6 is also a very popular APK analysis tool
including a decompiler. Recently, it also separated its
core functionality from the GUI which now makes it

1https://github.com/reddr/axplorer
2https://github.com/wala/WALA
3https://github.com/soot-oss/soot
4https://apktool.org/
5https://github.com/randoop/randoop
6https://github.com/skylot/jadx

APK

JADX Parser

Permission Visitor Lib Consolidator

Argument Resolver

Permission Analyzer

JSON Output

launch pass all package names

if permission
in variable

resolved
args/permissions

results

consolidated
packages/libs

if const
permission

Figure 1: Analysis tool flow chart.

a good tool for programmatically interact with APK
files. Interestingly, it wasn’t used yet in related work.
With its ease of used all our requirements are met and
is thus the tool for our analysis.

4.2 Implementation Details

In this chapter, the structure and implementation of
our analysis tool are described. First, a brief expla-
nation of the general flow of a program run is given.
Then, the most important components of the program
are discussed in detail.

At the beginning, an Android app (APK) is
fed into the tool. The JADX parser starts analyz-
ing and decompiling the APK to reflect all com-
ponents in its internal representation. The Per-
mission Visior is our own analysis pass which
runs after several JADX integrated passes have
finished. The Permission Visitor searches all
classes for calls to checkPermission(...) and
requestPermission(...) function calls. For each
found call, the permission and the class package
it was found in is passed to the Permission Ana-
lyzer. However, if the argument of the permission
request/check function call is not directly a constant,
the argument has to be resolved through the Argu-
ment Resolver. The Argument Resolver traces back

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

42



possible data flows and tries to find the definition of
the argument. This process is well-supported through
the JADX representation. The Lib Consolidator runs
in parallel to the previous steps. It receives a list
of all package names of the contained classes in the
APK and tries to merge them together. For example,
if the provided package names are com.main.app,
org.lib.asd, org.lib.fu the packages are con-
solidated to com.main.app, org.lib. Afterward,
the Permission Analyzer has a list of requested and
checked permissions per package. Through the con-
solidation, the packages are grouped to library names
and the permission piggybacking analysis can start.
In the easiest case, the requested permissions equal
the checked permissions. If permission piggyback-
ing occurs, the request permission list don’t match the
check permission list of a library package. More dif-
ficult cases arise of permission names that cannot be
resolved through the Argument Resolver which will
be explained in detail in section 4.6. When the anal-
ysis finishes, a JSON output is created with the anal-
ysis results, containing libraries with permission pig-
gybacking and which permissions are piggybacked.

4.3 Permission Visitor

The Permission Visitor is responsible for going
through all the methods of a class that is cur-
rently being decompiled and identify and filter out
the permission calls checkPermission(...) and
requestPermissions(...) within these methods.
Before the permissions are handed over to the Permis-
sion Analyzer, the Permission Visitor check whether
the permissions in the respective function calls are
passed as constants or variables. If a variable is passed
to the permission functions, the Argument Resolver is
called to tries to resolve this variable. If constants are
passed, they can be directly collected and passed to
the Permission Analyzer.

The Permission Visitor works closely with
the JADX Parser to enable the decompilation and
analysis of APK files. The JADX Parser initializes
and loads the APK file, prepares the necessary envi-
ronment, and adds the Permission Visitor as a cus-
tom Dex tree visitor. The Permission Visitor is
added as a custom pass to the list of Dex tree visitors
(passes) of the JadxDecompiler. When the Dex tree
of the APK is traversed, the JadxDecompiler calls the
visit method of the Visitor object on each method in
the APK, which performs the check for a permission
call.

4.4 Argument Resolver

The task of the Argument Resolver is to resolve the
value of arguments which are not constants. Mostly,
permission requests directly use the provided permis-
sion constants. However, one could also define a vari-
able and assign the constant or the variable could be
passed through the arguments of a wrapper function
and many more scenarios are thinkable. As possibil-
ities are manifold. We use a pragmatic approach and
target to resolve 90% of the real-world cases and ditch
corner cases. Such corner cases like calls through re-
flection, indexed array access or loops are extremely
difficult or yet impossible to properly resolve in our
chosen static context. For example, symbolic execu-
tion is one research topic to resolve such variables.
Since such techniques are not the focus of this paper
we allow ourselves to omit such cases.

Our implemented resolver can thus resolve lo-
cal variables, instance variables, class variables as
well as invoked functions to return the permission(s)
and permissions passed through the arguments of a
wrapper function. The Argument Resolver uses re-
cursive resolving and therewith trace back the per-
missions. For example, if a permission is assigned
from a class variable to a local variable and then to
a checkPermission(...) function call, the Argu-
ment Resolver is called twice recursively first to re-
solve the local variable and a second time to resolve
the class variable. It is also possible to have multi-
ple data sources which could resolve the permission
arguments.

After running our resolver on the top 1,000 apps
on Google Play, we have evaluated that we can re-
solve 90% of the permissions passed to respective per-
mission functions. These results are considered good
enough for the purpose of showing the feasibility of
our approach but could be further improved in the
margins of what is possible in a static context.

4.5 Lib Consolidator

Library consolidation is necessary, since our per-
mission analysis search only returns in which
classes request or check permission calls are
found. These calls can be spread over multi-
ple classes but are dedicated to the same library.
For example, class com/lib/sub1/one.class and
com/lib/sub1/one.class in fig. 2 are located in
different packages (com/lib/sub1 and com/lib/sub2)
but are part of the same library (com/lib). Through
observation of naming conventions, we were able to
constitute a few heuristics which we use to consoli-
date library names:

Revisiting Permission Piggybacking of Third-Party Libraries in Android Apps

43



APK
com/lib/

sub1/
One.class

sub2/
Other.class

Main.class
org/other

MyMain.class

Figure 2: Folder Structure and package hierarchy in APKs.

• Library names are at least two levels deep
(com.library)

• Ascending directories, the folder with the first
class file defines the library name. All class files
in lower directories are part of this library.

With this heuristic, we would extract the two li-
braries: com.lib and org.other from an example
APK shown in fig. 2. When obfuscation is applied,
typically package flattening is done. Thus, prior rules
are not applicable any more and a library consolida-
tion not useful and therewith skipped.

4.6 Permission Analyzer

The Permission Analyzer takes the results from the
previous steps and consolidates the permissions to
the grouped library names. For each library in the
app, there exist four lists: checked permissions, re-
quested permissions, unresolved checked permissions
and unresolved requested permissions. If no unre-
solved permissions exist, the check is simple and can
be achieved by checking if the set of checked per-
missions is contained in the set of requested permis-
sions. If this holds true, no permission piggybacking
is found and if it is false, permission piggybacking is
found. However, since unresolvable permissions are
possible, we set up a truth table in table 3 on how to
proceed in every possible scenario. A ”1” in the table
marks where the respective list contains entries and
the ”0” indicates an empty list. Most cases are self-
explanatory, only rows 14 and 15 might require more
explanation:

Row 14: In this step, first checked permissions and
requested permission lists are checked for equiva-
lence. If they are equal, one can safely say that no
permission piggybacking appears. If they are not
equal, the unresolved permission might contain
the necessary permission, but one cannot surely
say, and thus we would justify it as unknown.

Row 15: Again we first compare checked permis-
sions and requested permission lists for equiva-

Table 3: Truth table to judge for piggybacking with unre-
solvable permissions. ((U)chk=(unresolvable) check per-
mission, (U)req=(unresolvable) request permission).

chk req Uchk Ureq perm. piggybacking
1 0 0 0 0 no
2 0 0 0 1 no
3 0 0 1 0 yes
4 0 0 1 1 unknown
5 0 1 0 0 no
6 0 1 0 1 no
7 0 1 1 0 unknown
8 0 1 1 1 unknown
9 1 0 0 0 yes

10 1 0 0 1 unknown
11 1 0 1 0 yes
12 1 0 1 1 unknown
13 1 1 0 0 regular check
14 1 1 0 1 no or unknown
15 1 1 1 0 yes or unknown
16 1 1 1 1 unknown

lence. If they are not equal, permission piggy-
backing does happen. If they are equal, the un-
resolvable checked permissions might already be
contained in the checked permission list or not,
and thus the result would be unknown

5 EVALUATION

For the evaluation, we used the top 1,000 apps7 from
Google Play and run our analysis on them to see
how widespread permission piggybacking is. Out of
all processed apps, a total of 851 different libraries
were found. In fig. 3 50% of the libraries exhib-
ited permission piggybacking, while 36% of the li-
braries either did not check for permissions or also
requested permissions which were checked. 14% of
the libraries were not safely assessable due to unre-
solvable permissions. These numbers are similar to
the ones found by Grace et al.(Grace et al., 2012)
in 2012. Which means that seemingly Google didn’t
find it necessary to tackle this problem. Considering
that, as noted in the introduction, libraries make up
about 60% of the app code, this observation is quite
alarming. Although checking for permissions with-
out a subsequent pop-up does not necessarily mean
that this library exhibits privacy-threatening behavior,
it has the potential to do so. For example, it could spy
on, collect user data, and send it to other third parties
or external servers.

The permissions which are most often checked
without also requesting permission are the fine and
coarse location as well as read phone state. From

7https://42matters.com/top-charts-explorer

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

44



No piggybacking

36%

Piggybacking

50%

Unknown
14%

Figure 3: Analysis results for libraries piggybacking per-
missions.

0 10 20 30 40 50 60 70

CALL PHONE

READ SMS

READ CONTACTS

BLUETOOTH CONNECT

ACCESS BACKGROUND LOCATION

RECORD AUDIO

GET ACCOUNTS

POST NOTIFICATIONS

READ EXTERNAL STORAGE

CAMERA

ACCESS MEDIA LOCATION

WRITE EXTERNAL STORAGE

ACCESS COARSE LOCATION

READ PHONE STATE

ACCESS FINE LOCATION 62

44

42

38

30

30

23

16

12

12

7

7

6

5

5

Figure 4: Popular permissions while piggybacking.

a privacy perspective, these results are quite alarm-
ing. Especially the location permission allows li-
braries for example to track the user location. Also,
the READ PHONE STATE permission allows the li-
brary to collect some identifiers which are quite pop-
ular for device fingerprinting(Heid and Heider, 2024).
That means that with the three most piggybacked per-
mission a library can uniquely identify a device and
therewith a user and also track the movement. Look-
ing at the 15 most popular piggybacked permissions,
it becomes obvious that 10 out of these 15 are de-
clared dangerous permissions in Android terminol-
ogy.

In the next step we analyzed most popular libraries
doing permission piggybacking. We don’t want to
call out any names for legal reasons, but the top ten
list exclusively contained libraries known for adver-
tising, tracking and statistics. This seamlessly blends
into the types of the checked permissions of the previ-
ous part. From Heid et al. (Heid and Heider, 2024) we

know that such libraries typically transmit a lot per-
sonal identifiable information available through such
permissions to their servers. A finer granular permis-
sion system on library level would solve such issues
and is desirable from what we’ve seen.

The only library on the top list but not fitting into
the picture is androidx.appcompat. This library is
part of the Android Jetpack libraries and provides a
set of support libraries that allow developers to access
new APIs in older platform API versions and help
create modern Android apps that are compatible with
older Android versions8.

5.1 Comparing Numbers from Related
Work

By comparing our results with previous related work
we are on the one hand able to reflect the evolution of
Android permissions and also the evolution of apps.

Even though Stevens et al.(Stevens et al., 2012)
and Grace et al. (Grace et al., 2012) have solely con-
centrated on advertisement apps, the permission types
which are commonly piggybacked remain even after
12 years the same. Both works list the location and
reading phone status as the most piggybacked per-
missions just like we discovered. Interestingly, Grace
et al. say that seldom dangerous APIs in respect to
the required dangerous permission are used. In con-
trast, we identified that mostly dangerous permissions
were piggybacked. This might be since throughout
the last 10 Android versions many new permissions
were added, some were deprecated, and others were
split into more granular permissions increasing the
number of dangerous permissions.

Comparing the performance of our tool with
Grace et al. we can process the top 1,000 apps at
an average rate of 6 seconds per app on a 13th gen i7
processor, while their tool took 15 seconds per library.
However, these numbers are not comparable due to a
12 year newer processor. Also, their tool works on al-
ready decompiled libraries, while the majority of our
time goes into app decompilation.

6 CONCLUSION & FUTURE
WORK

Six to twelve years old publications have already
shown that there is a huge gap in protecting user pri-
vacy and security with Androids current permission
system. Works have shown suggestions to resolve
this, but until today no such concepts found their way

8https://developer.android.com/jetpack/androidx

Revisiting Permission Piggybacking of Third-Party Libraries in Android Apps

45



to mainstream Android. In this work, we revisited the
extent of permission piggybacking in libraries. Our
proposed method works on any Android version and
is, in contrast to other work, not reliant on the tedious
manual API extraction and mapping to permissions.
However, we have shown that our approach deliv-
ers identical evaluation result compared to previous
publications. In our evaluation we were able to an-
alyze all libraries on the top 1,000 apps on Google
Play and did not limit our search to advertisement li-
braries. Even though, most piggybacking libraries we
discovered fell into advertisement and tracking cate-
gory. Most popular piggybacked permissions remain
almost identical to the ones prevalent 12 years ago.
Also, the most alarming number that 50% of all li-
braries use permission piggybacking remain constant
throughout the years.

To change this practice, this topic needs more at-
tention in the media to become relevant for Google
to implement means into Android. What changed in
the past 12 years is that privacy has gained more at-
tention among normal users of digital platforms. The
previous Android releases had strong privacy focus,
like for example Scoped Storage in Android 11 or the
Privacy Dashboard in Android 12. Thus, if permis-
sion piggybacking comes into focus again, maybe it
would draw Googles attention with their recent pri-
vacy initiatives. Another option would be to imple-
ment a permission piggybacking prevention system in
privacy focused custom ROMs such as GrapheneOS.
It wouldn’t be the first feature finding its way from a
custom ROM into the official Android version.

ACKNOWLEDGEMENTS

This research work was supported by the National
Research Center for Applied Cybersecurity ATHENE
and the Hessian Ministry of the Interior and Sports.

REFERENCES

Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. (2012).
Pscout: analyzing the android permission specifica-
tion. In ACM CCS, pages 217–228.

Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D.,
and Weisgerber, S. (2016). On demystifying the an-
droid application framework: Re-Visiting android per-
mission specification analysis. In USENIX Security,
pages 1101–1118, Austin, TX.

Book, T., Pridgen, A., and Wallach, D. S. (2013). Lon-
gitudinal analysis of android ad library permissions.
arXiv:1303.0857.

Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D.
(2011). Android permissions demystified. In ACM
CCS, pages 627–638.

Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R.
(2012). Unsafe exposure analysis of mobile in-app
advertisements. In ACM WiSec, pages 101–112.

Heid, K. and Heider, J. (2024). Haven’t we met before?
- detecting device fingerprinting activity on android
apps. EICC ’24, page 11–18. ACM.

Kawabata, H., Isohara, T., Takemori, K., Kubota, A., Kani,
J., Agematsu, H., and Nishigaki, M. (2013). Sanad-
box: Sandboxing third party advertising libraries in a
mobile application. In ICC, pages 2150–2154. IEEE.

Liu, B., Liu, B., Jin, H., and Govindan, R. (2015). Efficient
privilege de-escalation for ad libraries in mobile apps.
In MobiSys, pages 89–103.

Narayanan, A., Chen, L., and Chan, C. K. (2014). Addetect:
Automated detection of android ad libraries using se-
mantic analysis. In IEEE ISSNIP, pages 1–6.

Pearce, P., Felt, A. P., Nunez, G., and Wagner, D. (2012).
Addroid: Privilege separation for applications and ad-
vertisers in android. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communi-
cations Security, pages 71–72.

Seo, J., Kim, D., Cho, D., Shin, I., and Kim, T. (2016).
Flexdroid: Enforcing in-app privilege separation in
android. In NDSS.

Shekhar, S., Dietz, M., and Wallach, D. S. (2012).
{AdSplit}: Separating smartphone advertising from
applications. In USENIX Security, pages 553–567.

Stevens, R., Gibler, C., Crussell, J., Erickson, J., and Chen,
H. (2012). Investigating user privacy in android ad li-
braries. In Workshop on Mobile Security Technologies
(MoST), volume 10, pages 195–197.

Sun, M. and Tan, G. (2014). Nativeguard: Protecting an-
droid applications from third-party native libraries. In
Proceedings of the 2014 ACM conference on Secu-
rity and privacy in wireless & mobile networks, pages
165–176.

Wang, F., Zhang, Y., Wang, K., Liu, P., and Wang,
W. (2016). Stay in your cage! a sound sandbox
for third-party libraries on android. In Computer
Security–ESORICS 2016: 21st European Symposium
on Research in Computer Security, Heraklion, Greece,
September 26-30, 2016, Proceedings, Part I 21, pages
458–476. Springer.

Zhan, X., Liu, T., Fan, L., Li, L., Chen, S., Luo, X., and
Liu, Y. (2021). Research on third-party libraries in
android apps: A taxonomy and systematic literature
review. IEEE Transactions on Software Engineering,
48(10):4181–4213.

Zhang, X., Ahlawat, A., and Du, W. (2013). Aframe: Iso-
lating advertisements from mobile applications in an-
droid. In Proceedings of the 29th Annual Computer
Security Applications Conference, pages 9–18.

Zhao, K., Zhan, X., Yu, L., Zhou, S., Zhou, H., Luo, X.,
Wang, H., and Liu, Y. (2023). Demystifying privacy
policy of third-party libraries in mobile apps. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pages 1583–1595. IEEE.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

46


