
A Taxonomy of Change Types for Textual DSL Grammars

Hossain Muhammad Muctadir1 a, Jérôme Pfeiffer2 b, Judith Houdijk1, Loek Cleophas1 c

and Andreas Wortmann2 d

1Software Engineering and Technology cluster, Eindhoven University of Technology, Eindhoven, The Netherlands
2Institute for Control Engineering of Machine Tools and Manufacturing Units, University of Stuttgart, Stuttgart, Germany

Keywords: Change Taxonomy, Domain Specific Language, Textual DSL Grammar.

Abstract: Domain-Specific languages (DSLs) bridge the gap between the domain-specific problem space and the so-
lution space of software engineering. Engineering DSLs is a complex and time-intensive iterative process
involving exchanges with stakeholders who amongst others decide on the DSL’s syntax. Since in this process
the stakeholder requirements change frequently, so can the corresponding DSL. The subsequent changes to the
language specification may produce conflicts that language engineers need to be aware of and resolve. Current
research has not adequately answered the question which change operations for grammar-based syntax exist,
and which impact they have at meta-model and model level. To answer this question we develop a taxonomy
of change types for grammars of textual DSLs that includes the concepts typically found in grammar-based
language workbenches such as Xtext, MontiCore, and Neverlang, and lists the possible change operations that
can be performed. The taxonomy was built iteratively based on an Xtext based implementation of the Systems
Modeling Language v2 and evaluated in a case study that leverages the taxonomy to perform impact analysis.
The taxonomy presented in this paper will help language engineers to analyse the impact of changes to the
grammar-based syntax specification of a language and to utilize this analysis, e.g., to perform historical change
impact analysis.

1 INTRODUCTION

In software system development, domain-specific
problems are often not easily represented with
general-purpose programming languages (GPLs).
Domain specific languages (DSLs) (Hölldobler et al.,
2017) in contrast allow for domain-specific descrip-
tion of the intended solution (Hölldobler et al., 2019).
While most DSLs are initially developed as small lan-
guages with limited syntax and capabilities (Butting
et al., 2020), they are typically extended to meet
the increasing demand as the DSLs are used for
real world problem solving (Thanhofer-Pilisch et al.,
2017; Mengerink et al., 2016; Zhang and Strüber,
2024). This evolution of DSLs often needs to be prop-
agated to various related artifacts, which is known
to be error prone (Meyers and Vangheluwe, 2011).
We focus on taxonomizing possible change types for

a https://orcid.org/0000-0002-2090-4766
b https://orcid.org/0000-0002-8953-1064
c https://orcid.org/0000-0002-7221-3676
d https://orcid.org/0000-0003-3534-253X

DSL grammar changes, as a first step for developing
a structured method for analysing the impact of and
propagating such changes.

Nowadays, the development and maintenance of
DSLs are accomplished using various language work-
benches (LWB). Most modern LWBs focus heavily
on reuse, allowing importing, inheritance, and exten-
sion of existing grammars and meta-models. We aim
to study the impact of changes made to textual gram-
mar definitions on other dependent grammars. For
this purpose, we developed a taxonomy of changes
for textual DSL grammars and utilised it in a case-
study, where we performed change impact analysis
(CIA) on Xtext-based1 grammar definitions of the pi-
lot implementation of the second version of SysML,
the Systems Modeling Language (SysML-V2) (Sei-
dewitz et al., 2023).

This paper is structured as follows. Section 2 cov-
ers related work on DSL evolution. In Section 3, we
detail our method for developing the taxonomy and
present it. Section 4 discusses the Xtext-based case-

1Xtext https://eclipse.dev/Xtext/

Muctadir, H. M., Pfeiffer, J., Houdijk, J., Cleophas, L. and Wortmann, A.
A Taxonomy of Change Types for Textual DSL Grammars.
DOI: 10.5220/0013127800003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 169-176
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

169

study and the applicability of the taxonomy to other
LWBs. Finally, Section 5 explores future works and
concludes the paper.

2 RELATED WORK

Evolution is critical for the lifecycle of most software-
based systems. Classifying the changes involved fa-
cilitates activities such as change propagation and
change impact analysis. In model-driven software en-
gineering (MDSE), several studies exist addressing
evolution of models, meta-models, and DSLs. The
co-evolution of related artifacts is also studied (Muc-
tadir et al., 2023; Zhang and Strüber, 2024), but is not
our focus here.

A catalog of change operators for meta-models
and their impacts on instance models was presented
by (Herrmannsdoerfer et al., 2011). This catalog
was further improved by (Mengerink et al., 2016)
claiming its incompleteness. Although these studies
are conceptually similar to our work and focus on
the structured description of potential changes, prac-
tically they are different. We concentrate on con-
crete syntax (i.e., grammar definitions), whereas the
aforementioned studies focus on abstract syntax in the
form of meta-models.

Various evolution scenarios of modeling lan-
guages and related artifacts were discussed by (Mey-
ers and Vangheluwe, 2011). They also proposed a
framework and algorithm for co-evolving these arti-
facts with the languages.

A systematic mapping study by (Thanhofer-
Pilisch et al., 2017) focused on DSL evolution iden-
tifying 16 papers related to the evolution of DSL
grammars. Most of them focus on developing and
maintaining DSLs with a specific LWB. Through this
study, we identified two papers (Tratt, 2008; Aschauer
et al., 2010) relevant in the context of our work. (As-
chauer et al., 2010) reported on their experience of
an industry-academia collaboration, covering techni-
cal, domain-specific, and interpersonal complexities
of industrial DSL evolution. (Tratt, 2008) presented a
case-study showing DSL evolution along with chang-
ing requirements.

Taxonomising or classifying various change types
is also well-researched for GPLs. These studies typ-
ically focus on the evolution of code written with
GPLs as their syntax rarely changes. For example,
(Sun et al., 2010) present a change impact analysis
technique based on their proposed taxonomy classi-
fying changes to object oriented programs (i.e., Java).
We identified similar taxonomies in broader contexts.
For example, (Lehnert et al., 2012) proposed a taxon-

omy of atomic changes for software systems. They
also demonstrate how composite change types can be
represented as a set of atomic ones.

This literature review shows that the complexities
of artifact evolution are well-known in the software
engineering research community. Researchers have
classified these change possibilities into taxonomies,
many of which focus on GPLs. In the MDSE domain,
most classifications target meta-model changes and
our search for taxonomies of DSL changes yielded
limited results (Tratt, 2008; Aschauer et al., 2010).

3 TAXONOMY OF GRAMMAR
CHANGES

In this section we first discuss the method we fol-
lowed for developing the taxonomy and later present
the taxonomy itself.

3.1 Taxomony Development

Our method for taxonomy development is influenced
by the approach presented by (Nickerson et al., 2013)
and broadly falls into the intuitive category of taxon-
omy development methods mentioned in that work.
We created an initial taxonomy based on our under-
standing and experience with various textual LWBs.
This initial version went through several iterations
until the ending conditions were satisfied. The aim
of each iteration was to identify overlapping, over-
looked, or potentially unnecessary concepts, and ad-
dress them by merging or removing existing concepts
and adding new ones. For this purpose, we used
the Xtext-based SysML-V2 grammar definition. It
is open-source and its relatively large grammar def-
inition files with a long change history make it suit-
able for our purpose. The ending criterion was that
no modifications were made in the preceding itera-
tion, essentially indicating that the taxonomy could
describe all changes within the SysML-V2 repository.

3.2 Taxonomy of Grammar Change
Operators

This section presents our taxonomy for grammar
change operations. Table 1 highlights all the change
operators, including an example for the state before
and after the application of the respective change op-
erator. Furthermore, it shows the impact on M2—the
meta-model level—and on M1—the model level—
and shows possible solutions. Using the example of
Figure 1 we show the applicability of our taxonomy

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

170

grammar org.example.Automaton with common.Terminals

generate domainmodel "http://www.example.org/Domainmodel"

Automaton: ‘automaton’ name=ID

‘{’states=State* transitions=Transition* ‘}’;

State: ‘state’ name=ID

Transition: ‘transition’ source=ID ‘->’ target=ID

Xtext1

2

3

4

5

6

7

(a) A Xtext grammar defining the syntax of the automaton language.

State

EString name

states

Automaton

EString name

Transition

EString source

EString target

transitions
**

(b) Meta-model produced for the abstract syntax of the grammar.

automaton PingPong {

state Ping state Pong

Ping -> Pong

Pong -> Ping

}

1

2

3

4

5

(c) A ping pong model conform to automaton grammar.

Figure 1: Running example of an automaton language.

with an automaton language specification in Xtext
where Figure 1a shows the textual grammar, Fig-
ure 1b shows the meta-model induced by the gram-
mar’s abstract syntax, and Figure 1c shows a model
conforming to the grammar. Xtext serves as a lan-
guage workbench for developing textual DSLs (Erd-
weg et al., 2013). Developers can define the syntax of
their DSLs within Xtext using a grammar definition
language that employs Extended Backus-Naur Form
expressions. Once a DSL is defined in Xtext, Xtext
generates a full infrastructure that includes a parser,
linker, type checker, compiler, and editor. Xtext
grammars define a set of production rules with a left
hand side providing the name of the nonterminal that
the production is defining, and a right-hand side defin-
ing the sequence of nonterminal references and termi-
nal symbols (cf. l. 4-7 in Figure 1a). Terminal sym-
bols are indicated by surrounding quotation marks
and nonterminal references are defined by a name fol-
lowed by an equation sign and the name of the nonter-
minal in the grammar. Furthermore, referenced non-
terminals can have a cardinality, e.g., the kleene star
defining a zero to many cardinality (cf. l. 5).
Keyword. Since keywords do not become part of the
meta-model, they only have impact on M1. We iden-
tify three different change operators: 1. Renaming the
keyword impacts level M1 as all models containing
the old keyword are no longer parseable. Instead the
new keyword must be used. 2. When deleting the key-
word, the model on M1 also becomes unparseable un-
less the former keyword is deleted. 3. Adding a key-
word also impacts the M1 level in the way that the
keyword must be used in the model. Concerning our
example from Figure 1 we could change the keyword
"automaton" (cf. Figure 1a l. 4) into simply "aut"
which would impact the concrete syntax in the model
Figure 1c requiring it to use the new keyword in order
to conform to the grammar again.
Sequence of Nonterminals and Terminals. For a

sequence of nonterminals and terminals, we could
change its order. Since the order is not reflected in
the meta-model it has no impact on M2. However, it
has impact on the concrete syntax of models where
the old order is not parseable anymore, and must be
adjusted to the new order. Considering our example
in Figure 1 we could change the order of "state" and
name (cf. Figure 1a l. 6), meaning that both defined
states in the model must be denoted as Ping state
and Pong state (cf. Figure 1c l. 2).
Cardinality of Nonterminals. Change operators af-
fecting the cardinality of nonterminals affect both M2
and M1. We distinguish between (1) changing the
multiplicity from * (zero to many), to + (one to many),
which has no effect on other concepts in M2, but on
M1, since there has to be at least one instance of
the nonterminal in the model, (2) deleting multiplic-
ity impacting both M2 and M1, where on M2 the as-
sociation between the metaclasses in the meta-model
loses its multiplicity and M1 must have only one oc-
currence of the nonterminal, and (3) adding multiplic-
ity which essentially has the reverse impact of delet-
ing. In our example we could change the mulitplicity
of states to + which would not affect the multiplic-
ity relation from class Automaton to Transition (cf.
Figure 1b), but would require at least one transition on
M1 in the automaton model (cf. Figure 1c).
Nonterminal Definition. Change operators to the non-
terminal definition can either (1) rename an existing
definition, (2) delete an existing definition, or (3) add
a new definition to the grammar. In the first case, this
affects the reference to the nonterminal in the gram-
mar and in most cases would yield an error when
parsing the grammar since there is no nonterminal
definition with the old name. Otherwise, this class
would be disconnected from the class that referenced
it before on M2. For instance, in Figure 1a renam-
ing the nonterminal Transition (cf. l. 7) into Trans
would make the reference in l. 5 invalid. The second

A Taxonomy of Change Types for Textual DSL Grammars

171

Table 1: The taxonomy for grammar change operators. Nonterminal (NT), Terminal (T), XT = supported by Xtext, MC =
supported by MontiCore, NL = supported by Neverlang.

Grammar
Concept

Operation Example
(before)

Example
(after)

Impact on M2 Solution on
M2

Impact on M1 Solution on M1 XT MC NL

Keyword Rename A = ”o”
B

A = ”n”
B

None N/A Old keyword not
parseable

Change the key-
word

✓ ✓ ✓

Delete A = ”o”
B

A = B None N/A Old keyword not
parseable

Delete keyword ✓ ✓ ✓

Add A = B A = ”n”
B

None N/A New keyword miss-
ing

Add keyword ✓ ✓ ✓

Sequence
of NT/T

Change
order

A = B C A = C B None N/A Old order not
parseable

Correct order ✓ ✓ ✓

Cardinality
of NT

Change A = B* A = B+ None N/A Models without oc-
curence of NT are
not parseable

Add at least one
occurence to
model

✓ ✓ ✓

Delete A = B* A = B Association loses
multiplicity

N/A Models with multi-
ple NT occurences
unparseable

Use NT exactly
once

✓ ✓ ✓

Add A = B A = B+ Association gets
muliplicity

N/A None N/A ✓ ✓ ✓

NT
def. /
produc-
tion rule

Rename A = B,
B = ”b”

A = B,
B’ = ”b”

References to
class derived
from renamed
NT broken

Rename refer-
ences to class
derived from
renamed NT

None N/A ✓ ✓ ✓

Delete A = B,
B = ”b”

A = B References to
class derived
from deleted NT
broken

Remove refer-
ences to class
derived from
removed NT

Parts of model de-
rived from deleted
NT unparseable

Remove the un-
available parts

✓ ✓ ✓

Add A = B,
B = ”b”

A = B,
B = ”b”,
C = ”c”

Disconnected
class derived
from added NT

Reference NT None N/A ✓ ✓ ✓

NT ref-
erence

Rename A = b:B A =
b1:B

Association to
NT is renamed

N/A None N/A ✓ ✓ ✓

Delete A =
b:B c:C

A = c:C Association to
NT is not avail-
able

N/A Right hand side
(RHS) of NT un-
available

Remove the un-
available parts

✓ ✓ ✓

Add A = b:B A =
b:B c:C

Association to
NT is added

N/A Modified RHS
makes legacy mod-
els incompatible

Add new syntax
constructs

✓ ✓ ✓

Import Rename import
G1

import
G2

Import unresolv-
able, imported
NTs no longer
available

Revert change
or redefine
formerly im-
ported NTs

None N/A ✓ ✓ (✓)

Delete import
G1

Import unresolv-
able, imported
NTs no longer
available

Revert change
or redefine
formerly im-
ported NTs

None N/A ✓ ✓ (✓)

Add import
G1

Imported NTs
are available for
reuse

N/A None N/A ✓ ✓ (✓)

case, where we delete an existing nonterminal defini-
tion, would lead to the same error as in the first case
where all former references can no longer be resolved.
When a new nonterminal is added, this nonterminal
is expected to be referenced by another nonterminal.
Otherwise, it is disconnected from the other classes in
the derived meta-model, and therefore is not usable in
the model. In our example, a new nonterminal Guard
could enable modelers to define guards for transitions.
However, if not referenced, e.g., by the production
Transition the class would be added to the meta-

model without any reference to the other classes, and
hence would not be available in M1, too. For this last
change operator, most language workbenches throw a
warning.
Nonterminal Reference. When referencing nontermi-
nal definitions, we can (1) rename these references,
(2) delete them, or (3) add new ones. When we
rename a nonterminal reference, the association in
the meta-model is renamed. For instance, in Fig-
ure 1a consider renaming the nonterminal reference
states (l. 5) to statesList. Then the association in

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

172

Create changesets

Identify grammar

dependencies

Locate

grammar files

Calculate pairwise

frequency

changesets

user

input
grammar

locations

1

dependencies2

3

4

commit history

current

version

SysML V2

repo

Figure 2: The process followed for the CIA. The circled numbers indicate the order of the corresponding steps.

Figure 1b between Automaton and State would be
named accordingly. Deleting a reference in the gram-
mar has the effect that the corresponding association
is deleted in the meta-model, too, and also that the
right-hand side of the referenced nonterminal is not
available at M1 and, therefore, legacy models need to
be adjusted to be parseable again. Adding a new non-
terminal reference adds a new association to M2. Fur-
thermore, the right-hand side of the newly referenced
nonterminal needs to be instantiated in the right place
in the models at M1.
Grammar Import. Importing grammars impacts M2
and enables the reuse of their nonterminals, facilitat-
ing reuse and modular language development. (1) Re-
naming the import, i.e., replacing the import by an-
other one, entails that the formerly imported nonter-
minals are no longer available for use in the import-
ing grammar. This can only be solved by import-
ing another grammar with the same definitions or by
redefinition of the formerly imported nonterminals.
(2) Deleting an import entails the same impacts as
changing it. (3) When adding a new import, the im-
ported nonterminals become available for reference or
in the importing grammar. For instance, in our au-
tomaton language (cf. Figure 1) we could import a
grammar defining boolean expressions that we could
leverage for guards on our transitions.

4 CASE STUDY

The frequent evolution of DSLs and co-evolution
of related artifacts is a well-known research
topic (Durisic et al., 2014; Hebig et al., 2017). The
identification of impacted artifacts is a prerequisite
for performing any manual or (semi-)automated co-
evolution. CIA is defined as the identification of the
consequences of proposed software changes (Bohner,
1996). In this case-study we analyze the impacts of
changing DSL grammar definition on other related
grammars and nonterminals. For this purpose, we
choose to perform historical CIA (Li et al., 2013) on
the Xtext-based grammar definitions for the SysML-
V2. The goal of this case-study is to demonstrate an
highly relevant example usage of the taxonomy in a
real-world context. Here we use various Xtext spe-
cific terms, explained in (Efftinge and Spoenemann,

2024), omitting explanations for brevity. Addition-
ally, we also explore the applicability of the taxonomy
to two other LWBs.

4.1 Historical CIA on SysML-V2
Repository

In our historical CIA implementation, we analyze the
commit history of the SysML-V2 repository to de-
termine the frequency of grammar files being mod-
ified concurrently. Using this information, we in-
form the user about the possible impact of changes
made to a nonterminal of a certain grammar defini-
tion. Figure 2 depicts the steps we follow to per-
form the CIA. First, we locate all grammar defini-
tion files within the SysML-V2 repository. After-
wards, we look for two specific types of dependen-
cies among these files: (1) A grammar definition ex-
ports an ecore meta-model that is imported by another
grammar; (2) A grammar definition imports another.
In the next step, we create changesets for all commits
in the master branch of the repository. Such a set con-
tains references to the changed files, the correspond-
ing commit hash, and details of the changes, including
the names of the rules that had undergone changes ac-
cording to our taxonomy (cf. Section 3.2). The mod-
ifications made to the import statement are indicated
using the term $Grammar Mixin$ in the change de-
tails. If related grammar files are changed in the same
commit, their changesets are merged.

{

"File": "KerMLExpressions.xtext",

"Hash": "9b1216c0ec6a3ec1f07fe7092ea194239020a8d7",

"Changeset": ["BodyParameter”],

"External_File": "SysML.xtext",

"External_Changeset": ["Identification",

"ConnectorEnd", "InterfaceEnd"]

}

JSON1

2

3

4

5

6

7

8

Figure 3: A changeset created from SysML-V2 repository.

Figure 3 shows an example of such a change-
set in JSON format where two dependent grammars
KerMLExpressions.xtext and SysML.xtext were
changed. This changeset also contains the names of
the modified rules and specifies that the former gram-
mar imports the latter.

These changesets are used to calculate the impacts
of changing an existing grammar rule or nonterminal.
To achieve this, the user needs to specify the name of

A Taxonomy of Change Types for Textual DSL Grammars

173

Please provide tool with input.

File.extension: KerMLExpressions.xtext

Rule name: OwnedExpression

Change action:

1. Changing keyword

2. Adding keywords

3. Delete keywords

4. Change sequence order

5. Change feature cardinality

6. Change feature name

7. Change feature assignment

8. Change rule name

9. Delete rule

10. Change rule call

11. Add rule call

12. Delete rule call

Change action nr.: 1

Changing a rule with this change action will not cause an error.

(a)

Change action nr.: 8

Look at the following rules in descending order in

org.omg.kerml.expressions.xtext/src/org/omg/kerml/expressions/xtext/KerMLExpressions.xtext

SequenceExpression:1

ExpressionBody:1

BodyExpression:1

PrimaryExpression:1

ExpressionBodyMember:1

BaseExpression:1

Look at the following rules in descending order in

org.omg.sysml.xtext/src/org/omg/sysml/xtext/SysML.xtext

ExpressionBody:2

Look at the following rules in descending order in

org.omg.kerml.xtext/src/org/omg/kerml/xtext/KerML.xtext

ExpressionBody:2

(b)

Figure 4: Console output from an example run of our historical CIA tool. Figure (a) shows that changing keyword at
rule OwnedExpression in grammar KerMLExpressions.xtext will not cause any error. For the same grammar and rule,
Figure (b) shows that changing the rule name can have internal and external consequences.

the Xtext grammar file and the rule name they want
to modify. Using these inputs and the previously cre-
ated changesets, we generate a list containing pairs
of rule names along with the frequency of their con-
current modifications in the same commit. One of
the elements of each pair of the list is the rule name
specified by the user. This list, ordered decreasingly
by frequency, provides insight into which other rules
frequently undergo simultaneous modifications with
the rule the user intends to change. The calculation
of the pairwise frequency incorporates the aforemen-
tioned dependency information, ensuring that it cov-
ers grammar dependencies. However, this implemen-
tation heavily utilizes the commit history, making the
method highly dependent on the availability and qual-
ity of these data.

An example console output from running our his-
torical CIA tool is shown in Figure 4. During an exe-
cution, the user can provide the name of a grammar
file, a rule name within it, and the type of change
operator to apply to the rule. Figure 4a demon-
strates an example run where the user wants to change
a keyword of the rule OwnedExpression contained
in grammar KerMLExpressions.xtext. Analysing
historical data, the tool suggests that this is a safe
change, as this has not historically affected any other
artifacts. However, renaming the aforementioned rule
is deemed unsafe due to various historical dependen-
cies as shown in Figure 4b.

With this brief yet highly relevant case-study we
demonstrate the applicability and usefulness of the
taxonomy presented in Section 3, which plays a cen-
tral role in the case-study. We use the taxonomy
for creating the changesets, forming the basis for
performing the historical analysis. Furthermore, the
change action menu presented to the user while exe-
cuting our CIA tool (cf. Figure 4a) is also based on
our taxonomy.

4.2 Applicability to Other LWBs

MontiCore (Hölldobler et al., 2021). It is an LWB
to define textual external DSLs with a grammar-based
syntax definition. An example for a grammar specifi-
cation is given in Figure 5.

grammar Automaton extends de.monticore.types.Types {

Automaton = "automaton" Name "{"

states:State* transitions:Transition* "}";

State = "state" Name;

Transition = source:Name "->" target:Name;

}

MCG1

2

3

4

5

6

Figure 5: A MontiCore grammar (MCG) defining the syn-
tax of an automaton language.

Concepts appearing are similar to those in Xtext.
Via language inheritance, a grammar can extend ex-
isting grammars (cf. l. 1). The grammar then defines
nonterminals that each have a left-hand and right-
hand side. The left-hand side defines the name of
the nonterminal, and the right-hand side defines a se-
quence of nonterminals and terminals (cf. ll. 2-3).
Here keywords can be defined by quotation marks.
Other nonterminals can be referenced, e.g., State (cf.
l. 3, and l. 4). The * indicates that arbitrary many
states and transitions can be defined. Since Monti-
Core includes at least all grammar concepts included
in our taxonomy, we consider the latter to be applica-
ble to MontiCore.
Neverlang (Vacchi and Cazzola, 2015). It is an
LWB that enables modular development of textual ex-
ternal DSLs. Its syntax specification is also based on
grammar rules that can be defined in so called mod-
ules. Figure 6 shows an example of a syntax for an
automaton language similar to the one in Figure 5.

Similar to Xtext and MontiCore the syntax specifi-
cation is rule based with the nonterminal name on the
left-hand side and the sequence of nonterminals and
terminals on the right-hand side. In contrast to Xtext
and MontiCore, however, cardinalities can only be ex-
pressed by recursive rule statements (cf. ll. 5-7). Fur-

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

174

module Automaton {

reference syntax {

Program <-- "automaton"

Identifier "{" States Transitions "}";

States <-- State States;

States <-- State;

State <-- "state" Identifier;

//…

}

}

NL1

2

3

4

5

6

7

8

9

10

Figure 6: A Neverlang (NL) module defining the syntax of
an automaton language.

thermore, modules in Neverlang do not import other
grammars or modules themselves, but, instead, mod-
ules are composed in a higher level meta-language
that defines a language out of a combination of dif-
ferent modules. Besides these different approaches,
Neverlang supports all other grammar concepts that
we identify in our taxonomy. As such Neverlang is
compatible, too, and language engineers employing
this LWB can benefit from our results.

5 CONCLUSION AND FUTURE
WORK

This paper presents a taxonomy for grammar change
operators and discusses their impact on the meta-
model level M2 and modeling level M1. Furthermore,
we provide solutions to the impacts that may produce
conflicts on the respective levels. In our case study,
we implemented a tool to demonstrate that our tax-
onomy can be leveraged to perform historical CIA
and we argued why our taxonomy is applicable to
grammar-based language workbenches beyond Xtext.
In the future we plan to extend the taxonomy to recog-
nize impacts of grammar changes on other language
constituents, e.g., on well-formedness rules or code
generators. Furthermore, we plan to extend it to a tool
that can automatically derive dependency graphs from
grammars that then can be leveraged for change prop-
agation and can assist language engineers to maintain
DSLs in an ever evolving system context.

ACKNOWLEDGEMENTS

This research was partially funded by NWO (the
Dutch Research Council) under the NWO AES Per-
spectief program, project code P18-03 P3. The
authors of the University of Stuttgart were sup-
ported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) [grant number
441207927].

REFERENCES

Aschauer, T., Dauenhauer, G., and Pree, W. (2010). A mod-
eling language’s evolution driven by tight interaction
between academia and industry. Proceedings - Inter-
national Conference on Software Engineering, 2:49–
58.

Bohner, S. A. (1996). Impact analysis in the software
change process: a year 2000 perspective. In 1996
Proceedings of International Conference on Software
Maintenance, pages 42–51, USA. IEEE.

Butting, A., Pfeiffer, J., Rumpe, B., and Wortmann, A.
(2020). A compositional framework for systematic
modeling language reuse. In Syriani, E., Sahraoui,
H. A., de Lara, J., and Abrahão, S., editors, MoD-
ELS ’20: ACM/IEEE 23rd International Conference
on Model Driven Engineering Languages and Sys-
tems, Virtual Event, Canada, 18-23 October, 2020,
pages 35–46. ACM.

Durisic, D., Staron, M., Tichy, M., and Hansson, J. (2014).
Evolution of Long-Term Industrial Meta-Models – An
Automotive Case Study of AUTOSAR. In EUROMI-
CRO Conference on Software Engineering and Ad-
vanced Applications, pages 141–148.

Efftinge, S. and Spoenemann, M. (2024). Xtext - The
Grammar Language — eclipse.dev. https://eclipse.
dev/Xtext/documentation/index.html. [Accessed May
23, 2024].

Erdweg, S., van der Storm, T., Völter, M., Boersma, M.,
Bosman, R., Cook, W. R., Gerritsen, A., Hulshout,
A., Kelly, S., Loh, A., Konat, G. D. P., Molina, P. J.,
Palatnik, M., Pohjonen, R., Schindler, E., Schindler,
K., Solmi, R., Vergu, V. A., Visser, E., van der Vlist,
K., Wachsmuth, G., and van der Woning, J. (2013).
The state of the art in language workbenches - con-
clusions from the language workbench challenge. In
Erwig, M., Paige, R. F., and Wyk, E. V., editors, Soft-
ware Language Engineering - 6th International Con-
ference, SLE 2013, Indianapolis, IN, USA, October
26-28, 2013. Proceedings, volume 8225 of Lecture
Notes in Computer Science, pages 197–217. Springer.

Hebig, R., Khelladi, D. E., and Bendraou, R. (2017). Ap-
proaches to co-evolution of metamodels and models:
A survey. IEEE Transactions on Software Engineer-
ing, 43:396–414.

Herrmannsdoerfer, M., Vermolen, S. D., and Wachsmuth,
G. (2011). An extensive catalog of operators for the
coupled evolution of metamodels and models. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 6563 LNCS:163–182.

Hölldobler, K., Kautz, O., and Rumpe, B. (2021). Mon-
tiCore Language Workbench and Library Handbook:
Edition 2021. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 48. Shaker Verlag.

Hölldobler, K., Michael, J., Ringert, J. O., Rumpe, B., and
Wortmann, A. (2019). Innovations in model-based
software and systems engineering. Journal of Object
Technology, 18(1):1–60.

Hölldobler, K., Roth, A., Rumpe, B., and Wortmann, A.
(2017). Advances in modeling language engineer-

A Taxonomy of Change Types for Textual DSL Grammars

175

ing. In Ouhammou, Y., Ivanovic, M., Abelló, A.,
and Bellatreche, L., editors, Model and Data Engi-
neering - 7th International Conference, MEDI 2017,
Barcelona, Spain, October 4-6, 2017, Proceedings,
volume 10563 of Lecture Notes in Computer Science,
pages 3–17. Springer.

Lehnert, S., ul-ann Farooq, Q., and Riebisch, M. (2012). A
taxonomy of change types and its application in soft-
ware evolution. In 2012 IEEE 19th International Con-
ference and Workshops on Engineering of Computer-
Based Systems, pages 98–107, Serbia. IEEE.

Li, B., Sun, X., Leung, H., and Zhang, S. (2013). A sur-
vey of code-based change impact analysis techniques.
Software Testing, Verification and Reliability, 23:613–
646.

Mengerink, J., Serebrenik, A., Schiffelers, R., and van den
Brand, M. (2016). A Complete Operator Library for
DSL Evolution Specification. In 2016 IEEE Interna-
tional Conference on Software Maintenance and Evo-
lution (ICSME), pages 144–154, USA. IEEE.

Meyers, B. and Vangheluwe, H. (2011). A framework for
evolution of modelling languages. Science of Com-
puter Programming, 76:1223–1246.

Muctadir, H. M., König, L., Weber, T., Amrani, M.,
and Cleophas, L. (2023). Co-evolving meta-models
and view types in view-based development. In
2023 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Compan-
ion (MODELS-C), pages 954–963, Sweden. IEEE.

Nickerson, R. C., Varshney, U., and Muntermann, J. (2013).
A method for taxonomy development and its applica-
tion in information systems. European Journal of In-
formation Systems, 22:336–359.

Seidewitz, E., Miyashita, H., Wilson, M., de Kon-
ing, H. P., Ujhelyi, Z., Gomes, I., Schreiber, T.,
Bock, C., Grill, B., Zoltán, K., Marquez, S., Piers,
W., Adavani, A., and Graf, A. (2023). SysML-
v2-Pilot-Implementation. https://github.com/
Systems-Modeling/SysML-v2-Pilot-Implementation.
[Accessed October 2, 2024].

Sun, X., Li, B., Tao, C., Wen, W., and Zhang, S. (2010).
Change impact analysis based on a taxonomy of
change types. In 2010 IEEE 34th Annual Computer
Software and Applications Conference, pages 373–
382, Korea (South). IEEE.

Thanhofer-Pilisch, J., Lang, A., Vierhauser, M., and Ra-
biser, R. (2017). A Systematic Mapping Study on
DSL Evolution. In 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications
(SEAA), pages 149–156, Austria. IEEE.

Tratt, L. (2008). Evolving a DSL Implementation, pages
425–441. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

Vacchi, E. and Cazzola, W. (2015). Neverlang: A
framework for feature-oriented language develop-
ment. Computer Languages, Systems & Structures,
43:1–40.

Zhang, W. and Strüber, D. (2024). Tales from 1002 Repos-
itories: Development and Evolution of Xtext-based
DSLs on GitHub. In SEAA’24: Euromicro Confer-

ence Series on Software Engineering and Advanced
Applications.

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

176

