
Assessing the Effectiveness of an LLM-Based Permission Model for
Android

Roberto Milanese1,2,3 a, Michele Guerra1,2 b, Michele Daniele1,2, Giovanni Fabbrocino1 c and
Fausto Fasano1,2 d

1Department of Biosciences and Territory, University of Molise, Italy
2Mosaic Research Center, University of Molise, Italy

3Department of Control and Computer Engineering, Politecnico di Torino, Italy
roberto.milanese@polito.it, {michele.guerra, giovanni.fabbrocino, fausto.fasano}@unimol.it,

Keywords: LLM, MLLM, AI, UI, Security and Privacy, Application Security, App Permission, Android, Android
Permission Model.

Abstract: With the widespread use of mobile apps, users are frequently required to make decisions about app permis-
sions. However, most people lack the knowledge to fully understand the consequences of their choices. Apps
often request access to sensitive data, sometimes in the background and without clear justification, making
users the weakest link in the security chain. This inadvertently exposes them to privacy breaches and ma-
licious activities. Despite improvements, Android’s permission system remains inadequate in helping users
make informed, real-time decisions. In this paper, we investigate the feasibility of an approach to address this
critical gap that leverages the power of Large Language Models (LLMs) and Multi-Modal Large Language
Models (MLLMs). We propose a system that dynamically evaluates permission requests by analyzing the full
context of the UI on mobile app screens. Unlike traditional permission models, which rely on static rules or
user input, our approach integrates seamlessly into existing systems, interpreting the relationships between UI
elements and requested permissions to make aware, real-time decisions about whether the request is necessary
or potentially harmful. Our evaluation on 123,552 UI screens from 70 popular Android apps revealed promis-
ing results, reaching 81% accuracy. By reducing the cognitive load on users and offering real-time protection
against security threats or supporting a more informed choice by the user, our system can enhance existing
permission models, providing a step towards smarter and safer mobile ecosystems. This solution paves the
way for integrating intelligent permission systems that proactively shield users from risks while ensuring data
security without overwhelming them with complex decisions.

1 INTRODUCTION

Mobile applications today collect vast amounts of
sensitive data, making the privacy and security of
users a critical concern. As the dominant mobile plat-
form, Android relies on a permission-based system to
regulate access to personal data and device resources.
Despite continuous improvements, such as the run-
time permissions model, users remain ill-equipped to
make informed decisions about granting permissions,
frequently exposing themselves to privacy breaches

a https://orcid.org/0009-0009-8758-753X
b https://orcid.org/0009-0005-9990-234X
c https://orcid.org/0000-0002-4918-5398
d https://orcid.org/0000-0003-3736-6383

and malicious behaviors (Felt et al., 2012). This vul-
nerability makes users the weakest link, often un-
knowingly allowing apps to misuse their data.

At the heart of this problem is the complexity
of the modern app ecosystem. Malicious apps, as
well as non-malicious apps involved in user profil-
ing, often exploit Android’s permission system to
enable invasive behaviors. These behaviors include
tracking users, collecting sensitive information such
as location or contact data, and triggering unautho-
rized actions in the background. For example, (Felt
et al., 2012) demonstrated how apps can use exces-
sive permission requests to track users or send unau-
thorized messages, undermining user privacy and se-
curity. Faced with unclear permission requests, users
frequently approve them without fully understanding

36
Milanese, R., Guerra, M., Daniele, M., Fabbrocino, G. and Fasano, F.
Assessing the Effectiveness of an LLM-Based Permission Model for Android.
DOI: 10.5220/0013128100003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 2, pages 36-47
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



the risks. This kind of behavior is well known and de-
scribed as warning fatigue (Akhawe and Felt, 2013).
Existing solutions, including alternative permission
models and recommendation systems (Nauman et al.,
2015), runtime data leaks prevention (Ciobanu et al.,
2020), and exact permission usage detection (Fasano
et al., 2020) have aimed to mitigate these risks. How-
ever, these approaches often either rely heavily on
user input or fail to adapt dynamically to the context
of app interactions.

In this paper, we use Multi-modal Large Lan-
guage Models (MLLMs), which are capable of pro-
cessing both textual and visual inputs, providing a
comprehensive understanding of the context of user
interactions with mobile applications. For simplicity,
throughout the remainder of the paper, we will refer
to both Large Language Models (LLMs) and MLLMs
as LLMs, unless the distinction between the two is
specifically relevant. Our contribution is not a new
permission model per se, but rather a powerful en-
hancement that can be integrated into existing mod-
els or tools to make permission decisions more in-
formed and context-aware. Specifically, the approach
leverages LLMs to analyze both the textual and vi-
sual components of a UI screen, interpreting the re-
lationships between UI elements and the interactions
leading to permission requests. This contextual analy-
sis enables the system to recommend permissions that
align with the functionality presented on the screen.
Precisely, we executed real-world Android applica-
tions, manually analyzed the contexts in which per-
missions were requested, and created a dataset of
these contexts. Using this dataset, LLMs dynami-
cally assess whether a permission request is neces-
sary and appropriate based on the entire user interface
(UI) screen and the interactions occurring within it.
Additionally, our approach is specifically designed to
detect potentially malicious behaviors by identifying
inappropriate permission requests. This capability al-
lows the system to flag high-risk permissions that may
otherwise be granted unknowingly by users, offering
a layer of real-time protection against abusive apps.

A key innovation of our approach is that all deci-
sions made by the LLMs are stored in this dataset,
which can be further used by existing tools or in-
tegrated into dynamic analysis platforms like RPC-
DROID (Guerra. et al., 2023). Automating these de-
cisions could supports the system to make more in-
formed choices about permissions without requiring
user intervention. This enables a more secure and
privacy-conscious permissions management, address-
ing a critical gap in current solutions that often fail to
contextualize permission requests in real-time.

The use of LLM, specifically GPT-4 Vision,

is particularly advantageous in this context due to
its ability to process both text and visual informa-
tion, providing a comprehensive understanding of
the app behavior. Moreover, recent studies have
shown that LLMs, such as GPT-4, significantly con-
tribute to enhancing security by detecting vulnera-
bilities and preventing malicious activities. For in-
stance, LLMs, including GPT-4, have been success-
fully employed to identify malware and generate
security tests, achieving higher accuracy compared
to traditional tools (Yao et al., 2024).This positions
GPT-4 Vision as a valuable asset in our approach
to improving permission management on mobile plat-
forms, where rapid and accurate detection of security
risks is crucial.

To demonstrate the effectiveness of our approach,
we conducted a comprehensive empirical study, ex-
ecuting 123,552 UI screens from 70 real-world An-
droid applications. The data used for app functionali-
ties and permission requests were manually reviewed
and validated by two experts to ensure consistency in
the dataset. We then compared the predictions made
by LLMs against this expert validation, assessing the
models’ ability to make accurate permission decisions
based on the context in which the requests were made.
This dataset of contexts and LLM decisions forms
the basis for further integration into existing secu-
rity frameworks, offering a scalable solution for auto-
mated, context-aware permission management. Our
empirical evaluation demonstrated the model’s poten-
tial for real-time protection in everyday mobile use.
Specifically, our results showed that the model consis-
tently predicted permissions with an overall accuracy
of 81%, and for high-risk resources such as the micro-
phone (RECORD AUDIO), accuracy exceeded 95%. Ad-
ditionally, we extended our analysis to a set of well-
known malicious apps, applying the same experimen-
tal procedure. In each case, our approach effectively
evaluated permission requests, predicting when they
were unnecessary or potentially harmful. The model
provided context-aware rationales, helping to explain
why certain permissions, such as those for SMS or
location access, were inappropriate given the app’s
functionality. This demonstrates the system’s poten-
tial to assist users in making informed decisions and
prevent the granting of permissions that could lead to
harmful behaviors.

In summary, our contributions are twofold:

• We investigated the effectiveness of a novel ap-
proach using LLMs to enhance the accuracy and
context-awareness of permission decisions, by an-
alyzing the full scope of UI screens and user inter-
actions. This approach reduces unnecessary per-
mission grants, thereby strengthening both secu-

Assessing the Effectiveness of an LLM-Based Permission Model for Android

37



rity and privacy in mobile applications.

• We created a dataset1 containing 123,552 UI
screens from 70 Android apps (46 commercial
and 24 open source) and the corresponding UI in-
teractions and requested permissions, which can
serve as a foundation for future research in au-
tomating permission management.

2 BACKGROUND AND RELATED
WORK

2.1 Android Permissions

The Android permission system is a cornerstone
of the platform’s security architecture, designed to
regulate applications’ access to sensitive resources
and maintain a balance between usability and secu-
rity (Fang et al., 2014). These resources include user
data (e.g., contacts, messages, call history) as well
as hardware components (e.g., camera, microphone,
GPS). To access them, applications are required to de-
clare the permissions they require in the MANIFEST
file. Permissions may either be automatically granted
— when deemed low-risk — or require explicit user
consent for those categorized as high-risk for privacy
and security (Almomani and Khayer, 2020).

Before Android 6.0, users were forced to accept
all requested permissions at install time in an inflexi-
ble, all-or-nothing approach, where refusing a single
permission halted the installation (Wijesekera et al.,
2015). This practice raised significant concerns. First,
users often felt forced to grant unnecessary permis-
sions just to continue using an application. Second,
once installed, users had no way to review or change
their choices. These limitations increased the poten-
tial for misuse of sensitive data. The introduction
of runtime permissions in Android 6.0 was a game
changer. Instead of requesting permission during in-
stallation, applications now prompt users for permis-
sion when they attempt to access a resource. More-
over, users gained the ability to revoke previously
granted permissions in the system settings, giving
them continuous control over their data and resource
access (Zhauniarovich and Gadyatskaya, 2016). Al-
though this increases transparency and gives users a
clearer understanding of what they agree to, there
remains a crucial limitation. Permissions are still
granted for the entire application, rather than for the
specific features that require them. Consequently,
applications may access resources like the micro-
phone for messaging purposes but later use them for

1https://github.com/mosaic-research-center/ICISSP-25

other features without user awareness (Malviya et al.,
2023), leading to potential privacy concerns.

2.2 Large Language Models

LLMs represent a breakthrough in deep learning, par-
ticularly for tasks involving natural language under-
standing and generation (Zhao et al., 2023). They are
built upon Transformer architectures (Vaswani et al.,
2017), employing an encoder-decoder mechanism.
The encoder translates the input sequence into fixed-
length internal representations through multiple lay-
ers, each consisting of multi-headed attention mecha-
nisms and feed-forward networks. The decoder sub-
sequently uses these internal representations to gen-
erate output sequences token-by-token, with each de-
coder layer containing additional multi-head atten-
tion sub-layers to handle previously generated to-
kens (Rush, 2018). The Large in LLMs denotes not
only the sheer number of parameters in these models,
but also the extensive volume of textual data used to
train them (Minaee et al., 2024). A remarkable fea-
ture of LLMs is their emergent abilities, which allow
them to solve complex problems they were not explic-
itly trained for, through mechanisms like in-context
generalization, where a model adapts to new tasks by
observing a few examples in natural language (Dong
et al., 2024).

MLLMs extend the capabilities of traditional
LLMs by integrating multiple data types beyond text
to include images, audio, and video (Caffagni et al.,
2024). For instance, GPT-4 (Achiam et al., 2023),
with its vision capabilities, can process both text and
images as inputs, allowing for a more holistic un-
derstanding of information. This multi-modality en-
ables MLLMs to outperform single-modal models in
complex tasks and improve common-sense reasoning
across diverse contexts (Wu et al., 2023).

2.3 Related Work

2.3.1 Permission Recommender Systems

Over time, a number of studies have focused on un-
derstanding user interaction with permissions. (Felt
et al., 2012) pointed out that users pay little attention
to permission requests and show little understanding
of the risks associated with granting certain permis-
sions. (Bonné et al., 2017) found that, on average,
users grant permissions six times more often than
they deny them, and are more likely to revoke per-
missions in the system settings than when prompted
at runtime. Many users choose to grant permissions
even when they seem unnecessary, often because they

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

38



fear that the application will stop working, or sim-
ply want to quickly dismiss the pop-up. This phe-
nomenon is known as warning fatigue (Akhawe and
Felt, 2013). Privacy indicators, small colored dots
that appear in the status bar when an application ac-
cesses the camera, microphone or user location, also
proved ineffective. (Guerra et al., 2023) showed that
these notifications are least helpful when they are
most needed, such as when resource usage occurs un-
expectedly. This is largely because privacy indicators
are designed to be minimally intrusive, and as a result
are often almost invisible (Guerra et al., 2024).

For these reasons, several approaches have been
proposed to assist users in choosing which permis-
sions to grant, and even to automate this process. (Liu
et al., 2014) conducted a study of the privacy settings
of 4.8 million devices. They found that while individ-
ual user preferences may appear to differ, it is possible
to derive a small number of privacy profiles. Based on
these profiles, they were able to predict with over 87%
accuracy whether or not the user would grant permis-
sion to a specific application. A fully automated ap-
proach based on these profiles can automatically de-
cide on permission requests. Other approaches learn
from the user’s previous choices without explicitly
classifying them into profiles. (Oglaza et al., 2017)
developed a permission manager that allows users to
set policies to control access to sensitive resources on
their device. The tool can automatically suggest high-
level policies based on the user’s past preferences.
Using a dataset of 8,500 runtime permission decisions
collected from 41 real-world users, (Olejnik et al.,
2017) trained an ML classifier that accurately pre-
dicts user choices. This reduced the number of incor-
rect decisions by approximately 50% compared to the
native Android permission model. In addition, their
SMARTPER tool introduces a third Obfuscate option,
which is also integrated into the privacy preference
function that decides which permissions to grant.

In contrast, (Rashidi et al., 2018) developed a
crowdsourcing-based framework for permission man-
agement that offers recommendations based on expert
decisions. This enables even inexperienced users to
make safer, low-risk choices with a high accuracy.
(Gao et al., 2019) proposed an NLP-based method
that mines app descriptions to analyze the relation-
ship between an application’s features and required
permissions, so that users receive recommendations
without relying on their past decisions. While these
solutions help users make informed choices, permis-
sions are still managed at a coarse-grained level.

2.3.2 UI Elements and Permission Decisions

User interface design has a direct impact on how
users perceive an application’s access to their per-
sonal data and influences their decisions. (Micinski
et al., 2017) analyzed 150 Android applications to
understand whether access to sensitive resources is
consistently tied to user interaction. They found that
some resources are almost always used interactively,
following a UI event or when they are the main fo-
cus of the screen. This is the case for the camera
and microphone, among others. In contrast, other re-
sources are mainly used in the background. For ex-
ample, the location and call history fall into this cat-
egory. In a study involving over 950 participants, the
authors confirmed that users are more likely to expect
resource access after an interaction. The study also
revealed that when users first encounter an interactive
resource usage, they do not expect future background
access. (Roesner et al., 2012) introduced the concept
of user-driven access control, where permissions are
granted as part of user actions. In this model, sensi-
tive resources are linked to permission-granting UI el-
ements. When users interact with these gadgets, their
intent is captured, and the system configures the ac-
cess control policy accordingly. However, implemen-
tation would require changes at the operating system
level, making it challenging to apply in practice.

Some interesting approaches have focused on au-
tomatically mapping permissions to UI elements to
overcome this obstacle. One of these is ICONINTENT
by (Xiao et al., 2019), which relies on static analysis
and image classification to match icons to eight cate-
gories of sensitive data, outperforming previous solu-
tions that relied on text analysis. (Xi et al., 2019) com-
bined both techniques to achieve better detection ac-
curacy. Their tool DEEPINTENT exploits deep learn-
ing and program analysis to associate UI elements
with specific resources and then automatically detect
discrepancies between perceived and actual applica-
tion behavior. Analyzing over 1,000 top-ranked apps
in the Play Store, (Li et al., 2023) found this behavior
in 28% of them. This shows that misleading icons are
common in real-world apps. Although these solutions
are a good starting point, they never evaluate the UI
as a whole. A more comprehensive approach would
provide a better level of contextualization.

3 PROPOSED APPROACH

Our approach analyzes entire application UI screens
to extract rich contextual information about the fea-
ture they represent, based on both the visual and tex-

Assessing the Effectiveness of an LLM-Based Permission Model for Android

39



Figure 1: Overview of our proposed approach.

tual elements they contain. This context is then used
to predict the permissions required by that specific
feature. Unlike traditional methods that examine UI
elements in isolation, our approach captures the in-
teractions between components on the screen, provid-
ing a holistic view of how these interactions influence
permission requirements and potential security risks.

We selected GPT-4 Vision for its ability to pro-
cess both textual and visual inputs. While newer
models, such as OpenAI’s o1, have been released,
they do not currently support multi-modality. In con-
trast, GPT-4 Vision excels at interpreting images,
allowing it to analyze the relationships between vi-
sual and textual elements in UI screens, which is
critical for accurate permission prediction. In addi-
tion, GPT-4 has demonstrated superior performance
on security-related tasks, such as vulnerability detec-
tion and malware identification, compared to tradi-
tional approaches (Yao et al., 2024). Leveraging pre-
trained LLMs provides significant advantages over
building a custom model from scratch, with contex-
tual understanding and decision making capabilities
that allow them to generalize well across domains.

Figure 1 illustrates the two primary phases of our
solution: (i) image pre-processing, where raw screen-
shots are transformed into analyzable formats, and (ii)
context extraction, where the processed images, along
with a carefully engineered prompt, are input into the
LLM to generate context-aware predictions about the
necessary permissions.

3.1 Image Pre-Processing

In the first phase, the images of the UI screens taken as
input are transformed to be analyzed more effectively.

Screenshots are resized using proportional scal-
ing ❶ to maintain consistency across different device
resolutions and aspect ratios. This ensures that the vi-
sual integrity of UI components is preserved for accu-
rate analysis, while shrinking images to reduce com-
putational overhead.

Then, we employed perceptual hashing ❷ to
account for the inherent dynamism of mobile UIs,
where elements can change frequently without chang-
ing the overall screen context (e.g., an advertisement
displayed in a banner at the bottom of the screen
may change at any time, yet the application feature
remains the same). Unlike cryptographic hashing,
where minimal input changes produce vastly different
outputs, perceptual hashing generates similar hashes
for visually similar images (Sabahi et al., 2018). We
set a 3-bit Hamming distance2 threshold of on percep-
tual hashes to detect duplicates and near-duplicates.
This way, if a UI screen has already been analyzed,
the list of expected permissions is retrieved from the
history, avoiding the need to prompt the model again.

3.2 Context Extraction

In the second phase, the pre-processed images are
used as input for the LLM ❸ to extract relevant in-
formation about the application’s feature represented
on the UI screen and to generate context-aware sug-
gestions for the permissions that are likely to be re-
quired. A crucial aspect of our approach is the ability
of the LLM to accurately interpret the context of a UI
screen by analyzing it in addition to the user interac-

2The Hamming distance between two strings of equal
length is the minimum number of substitutions required to
change one string into the other

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

40



tions leading to that screen, such as button presses or
menu selections. This contextual understanding en-
ables the model to associate the relevant permissions
with the specific functionality represented on the UI
screen, providing recommendations that are both pre-
cise and aligned with user behavior.

A carefully crafted text prompt ❹ is used to in-
struct the LLM on the task and describe the desired
format for the output. The initial prompt was pro-
gressively refined through extensive manual effort to
achieve an accurate and desired result, in a process
known as prompt engineering (Ye et al., 2024). The
final prompt is shown below. For brevity, the list of
available permissions has been omitted.

Final Prompt

You are an expert in security and privacy.

Given a UI screen of an Android application,
and knowing that 〈user interaction, if any〉,
show me, in this order and following this
structure:

- Description: A description of the feature
represented in the screen, using no more than
300-350 characters.

- Permissions: A list of permissions you
expect to be required by the feature, giving
for each the technical name, a description of
no more than 6 words, and your confidence
level in the prediction.

Example: (CAMERA, Access the device
camera, 100%), (RECORD AUDIO, Record
audio from the device microphone, 85%)

- Danger: The level of risk to the user’s
privacy and security from the use of the
expected privileges, both as a percentage and
as a description of no more than 6 words.

Example: (10%, Low risk as expected)

You are only interested in runtime permis-
sions because they are high-risk and you can
choose to grant them or not.

The permissions you can choose from are:
〈permissions〉.

Rather than relying on traditional fine-tuning, our
approach uses in-context learning, which allows the

model to adapt dynamically to new tasks based solely
on the prompt (Dong et al., 2024). This significantly
reduces the computational overhead associated with
fine-tuning large models and ensures that the model
remains flexible and responsive to real-time secu-
rity needs. We applied a zero-shot methodology, in-
structing the model to infer permission requirements
directly from the provided UI screenshots, without
explicit task-specific training data. By harnessing
the generated knowledge technique, the model pro-
duces contextual predictions that are both reliable and
security-focused (Chen et al., 2024). In addition, we
employed role-prompting, guiding the model to as-
sume the role of a security and privacy expert, thereby
improving the quality and precision of the recommen-
dations (Kong et al., 2024).

Our approach focuses on predicting these high-
risk permissions due to their direct implications on
privacy and security. The Android 15 operating sys-
tem defines 311 permissions3, of which only 40 are
classified as high-risk requiring explicit user approval
at runtime. By restricting our analysis to this avail-
able permissions subset, we ensure that the LLM tar-
gets the permissions that pose the most significant risk
to user data and security, providing users with action-
able insights to mitigate potential threats.

We designed the LLM output format to be struc-
tured and consistent, facilitating subsequent interpre-
tation and analysis. By providing clear instructions
and examples within the prompt, we have ensured that
the LLM responses are not only reliable but also eas-
ily usable for both human review and automated pro-
cessing. For this task, we ask the model to return:

1. A description of the feature represented in the UI
screen. This provides a clear context and helps the
model itself to reason.

2. A list of high-risk permissions expected for the
feature.

3. A percentage score indicating the perceived risk
associated with the expected permissions. This
information can help inform the user if the risk
is notably high.

Once the model generates its output ❺, it is pro-
cessed and stored in a relational database ❻. This
includes not only the predicted permissions, but also
additional information such as the prompt itself, the
user action that led to the specific screen, and all re-
lated connections. This allows patterns and insights to
be tracked over time, enabling comprehensive evalu-
ations of permission usage across different applica-
tions and features. This data is also associated with

3https://developer.android.com/reference/android/Mani
fest.permission

Assessing the Effectiveness of an LLM-Based Permission Model for Android

41



the perceptual hash of the input image. As previously
mentioned, when a new screenshot is processed, its
hash is compared to existing ones in the database. If
a match is found, the corresponding permissions are
assigned to the similar UI screen directly, without in-
voking the model.

We implemented our approach in a Python script.
For image pre-processing, we chose the PIL4 library
to manipulate images and the ImageHash5 library to
generate perceptual hashes and identify visually sim-
ilar UI screens. For context extraction, we employed
the gpt4-vision model, which combines both im-
age and text processing capabilities in a unified frame-
work. The model was accessed and prompted via the
OpenAI Python API6.

4 EMPIRICAL STUDY AND
EVALUATION

To assess the effectiveness of our approach, we con-
ducted a comprehensive evaluation focusing on two
key aspects: (i) the model’s accuracy in predicting the
permissions required by a specific UI screen, and (ii)
its ability to discern whether a requested permission
is contextually appropriate or potentially malicious.
Our investigation was structured around the follow-
ing research questions:

• RQ1: How effective is an LLM-based approach
in interpreting and analyzing UI screens to accu-
rately extract their contextual meaning and recom-
mend permissions to grant for the feature in use?

• RQ2: To what extent can an LLM-based approach
effectively prevent malicious behavior by analyz-
ing UI screens, identifying misused permissions,
and providing a rationale for denial?

4.1 RQ1: Identifying Expected
Permissions

For RQ1, we evaluated the effectiveness of the ap-
proach in identifying high-risk permissions required
for specific application features based on UI screen-
shots. We compared the model’s predictions to
expert-validated ground truth data, allowing us to
measure the alignment between the model’s outputs
and the permissions that a security expert would rea-
sonably expect in each context.

4https://pypi.org/project/pillow
5https://pypi.org/project/ImageHash
6https://pypi.org/project/openai

4.1.1 Methodology

To answer RQ1, we built a dataset of 123,552 UI
screens from 70 Android applications. Our selection
included the most popular applications across differ-
ent categories to ensure a diverse set of real-world use
cases. We considered both commercial applications
from the Google Play Store and open source appli-
cations from F-Droid. To automate the execution of
the target applications and capture the screenshots, we
used RPCDROID (Guerra. et al., 2023), a dynamic
analysis tool that generates random inputs to interact
with the UI while recording permission usage data. In
this way, for each application, we collected:

• A database of UI events, including user interac-
tions with graphical elements and transitions be-
tween application screens. Each event is logged
with a unique identifier, event type, timestamp and
other relevant data.

• A database of permission requests, including all
high-risk permissions used by the application.
Each request is logged with a unique identifier,
permission name and timestamp.

• A set of UI screens that are captured each time an
event occurs or a permission-protected resource is
accessed. Each screenshot is linked to the associ-
ated record for contextual analysis.

Duplicates in the set of UI screens were filtered
as described in Section 3.1. Two experts manually
labeled the remaining UI screen in the dataset to de-
termine the expected permissions relevant to its con-
text. Starting with the permission log returned by
RPCDROID, they mapped each UI screen to the per-
missions used by the application, and then consid-
ered only those really needed for the feature in use.
In addition, based on the event log, they mapped
each UI screen to the specific user actions that trig-
gered the behavior. For evaluation, the model’s pre-
dictions were compared against the expert-labeled
ground truth using the following metrics:

• True Positive (TP): The model correctly predicted
a permission that was required.

• True Negative (TN): The model correctly ex-
cluded a permission that was not required.

• False Positive (FP): The model predicted a per-
mission that was not needed.

• False Negative (FN): The model failed to predict
a required permission.

We calculated accuracy (ACC), recall (true pos-
itive rate, TPR), and specificity (true negative rate,
TNR) to evaluate the model’s performance. Higher

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

42



Table 1: Performance of expected permissions identification.

Permission TP TN FP FN ACC (%) TPR (%) TNR (%)

ACCESS COARSE LOCATION 20 1,077 7 2 99.2 90.9 99.4
ACCESS FINE LOCATION 2,705 15,987 8,200 656 67.9 80.4 66.1
CALL PHONE 3 48 52 1 49.0 75.0 48.0
CAMERA 369 12,841 1,810 140 87.1 72.5 87.6
READ CONTACTS 61 2,796 25 7 98.9 89.7 99.1
READ PHONE STATE 32 7,519 2 103 98.6 23.7 99.9
READ SMS 7 336 5 0 98.6 100.0 98.5
RECORD AUDIO 117 3,378 35 24 98.3 82.9 98.9

Total 3,314 43,982 10,136 933 81.0 78.0 81.3

scores indicate better alignment with expert predic-
tions and more reliable permission identification.

4.1.2 Results

Table 1 summarizes the performance across various
permissions. It is worth noting that the number of
TNs is quite high because it includes the screenshots
captured during the execution of applications, regard-
less of the use of a dangerous privilege. Most of these
do not actually need to access any resources and are
therefore classified as TNs.

In general, our approach achieved an accuracy of
81.0% in identifying the expected permissions, with
a TPR of 78.0% and a false positive rate (FPR) of
18.7%. On closer inspection, the prediction accuracy
is at or above 90% for most permission types. This
is the case for highly critical resources such as micro-
phone, contacts and messages, which also have high
TPR.

However, the model’s performance for the
ACCESS FINE LOCATION permission was far less sat-
isfactory, mainly due to a high number of FPs. This
could be explained by the fact that many applications
use location services in the background rather than in-
teractively, leading the model to predict resource ac-
cess even when it is not explicitly linked to a visible
UI element. Confirming our hypothesis, for most re-
sources that are mainly used interactively, i.e. after a
user action on the UI or when they are the main focus
of the screen, the false negative rate (FNR) is as low
as 5%. The only exceptions are the CALL PHONE and
CAMERA permissions, which allow an application to
initiate a call without going through the dialer UI, and
to take pictures or record video without going through
the gallery or the system camera, respectively. For
these permissions, the TNR falls below 90%. In the
first case, we suspect that the model misinterpreted
the intent of this permission, as it is not required
when a phone number is automatically dialed after
being tapped, which is the typical case. In the sec-

ond case, it is likely that the model mistook camera
access for all those screens that display the gallery’s
media picker UI. In fact, if the application is not ac-
cessing the camera directly, then the corresponding
permission is not required, and READ MEDIA IMAGES
and READ MEDIA VIDEO are used instead.

Again, for the READ PHONE STATE permission,
the performance of our approach is below average.
However, this time it is due to the high number of
FNs, which reduces the TPR to 23.7%. As with
CALL PHONE, we suppose that the model has no prac-
tical knowledge of when this permission is needed, in
part because it is rarely used in practice, as our num-
bers show.

Overall, these results indicate that our approach
is effective in predicting most high-risk permissions,
particularly those associated with direct user interac-
tion, where prediction accuracy is consistently high.
Addressing the high false positive rates in cases where
permissions are used in the background will be key to
refining the model.

4.2 RQ2: Detecting Misused
Permissions

For RQ2, we evaluated how well the approach helps
detect the misuse of high-risk permissions in mali-
cious applications. We compared the model’s predic-
tions with expert-validated ground truth data to deter-
mine whether all suspiciously used permissions were
actually deemed unnecessary by the model.

4.2.1 Methodology

To answer RQ2, we selected 8 Android applications
known to conceal malicious behavior. We manually
analyzed the logs generated by RPCDROID for each
application, focusing on the context in which permis-
sions were requested. This included tracing specific
UI events and screens where these permissions were

Assessing the Effectiveness of an LLM-Based Permission Model for Android

43



triggered. Next, we decompiled all of the applica-
tions and carefully inspected their source code to un-
cover any suspicious or inappropriate use of permis-
sions that might indicate malicious intent.

Two experts manually labeled each UI screen col-
lected during this process and identified the permis-
sions used maliciously in the corresponding feature.
We then evaluated the model’s ability to accurately
detect and flag malicious permission usage. Specif-
ically, we checked whether the labeled permissions
appeared in the list of permissions that the model con-
sidered necessary for the given UI screen. Finally, we
asked the model to explain the rationale behind its de-
cision with the prompt shown below.

Rationale Prompt

Why do you think the use of the 〈permission〉
permission is 〈appropriate / not appropriate〉
at this time?
Explain your decision using no more than 300
characters.

4.2.2 Results

Table 2: Performance of permissions misuse detection.

Application # Misuses

com.excelliance.dualaid 3
com.ksa.passbook 1
com.opera.A.install 2
com.opera.B.installer 6
com.ps.yams 1
com.sileria.alsalah 2
com.sohu.inputmethod.sogou 4
com.ydbl.kudou 5

Total 24

The results are presented in Table 2. They suggest
that the model is effective at both identifying neces-
sary permissions and detecting potential misuse. In
every case where we identified a permission as mali-
cious, the model consistently excluded it from the list
of permissions deemed necessary for the correspond-
ing UI screen. This further remarks the soundness of
our approach to making privacy-preserving decisions.

As a motivating example, we present the case of
com.opera.A.install, a rogue Opera browser in-
staller that covertly accesses and reads SMS messages
without the user’s knowledge. Our analysis revealed
that this malicious behavior is triggered when the user
taps the “OK” button on the UI screen in Figure 2.

Figure 2: UI screen of the com.opera.A.install applica-
tion misusing the READ SMS permission.

The model correctly identified that the READ SMS per-
mission was unnecessary for downloading a browser
and flagged it as potentially harmful, explaining that
such a permission could be exploited by malicious
apps to secretly subscribe users to premium services.

Rationale Output

The app requests SMS permission, which
could charge you via premium services with-
out clear consent for each transaction. It’s a
common tactic in scam apps.

A key advantage of our approach is its ability
not only to detect inappropriate permission requests
but also to provide meaningful explanations for why
those permissions are suspicious. For example, in the
case of the browser installer, the model flagged the
SMS permission as inappropriate and linked its mis-
use to common phishing and spam tactics. This could
be integrated into a real-time tool that alerts users to
security risks, allowing them to make informed de-
cisions about permission requests and revoke them
when necessary.

5 THREATS TO VALIDITY

In this section, we outline potential threats to the va-
lidity of our study and the measures taken to mitigate
them. These threats are categorized into internal, ex-
ternal, construct, and conclusion validity.

Internal validity concerns the degree to which
the study results are attributable to the methods and
not other factors. One potential threat to internal va-

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

44



lidity in our evaluation lies in the manual labeling
of the dataset. Although two experts annotated the
UI screens, human error and bias could still influ-
ence the results. To mitigate this, we used a rigor-
ous labeling process, involving cross-validation be-
tween the two experts to ensure consistency. Addi-
tionally, any disagreements between annotations were
resolved through discussion and re-evaluation.

Finally, the dynamic analysis tool RPCDROID,
which was used to capture UI events and permission
requests, may not capture all runtime behaviors, es-
pecially those triggered under specific conditions not
covered in a single execution. To mitigate this, we
executed each app multiple times and combined the
logs from these executions. This approach allowed us
to capture a broader range of behaviors and interac-
tions, ensuring more comprehensive coverage of run-
time conditions.

External validity refers to the generalizability of
our results to other contexts, such as different appli-
cations, operating systems, or devices. Our study was
conducted using a sample of 70 popular Android ap-
plications, which may limit the generalizability of the
results to less popular or more niche applications that
may exhibit different behavior in permission usage.

Another limitation to external validity is the fo-
cus on Android as the target operating system. While
Android is the most widely used mobile platform, the
findings of our study may not directly apply to other
platforms, such as iOS, where the permission man-
agement and security architecture differ significantly.
Further research is needed to evaluate the applicabil-
ity of our approach to other operating systems.

Conclusion validity refers to the reliability of
the inferences drawn from the study. One threat to
conclusion validity is the size and diversity of the
dataset. While we collected and analyzed a substan-
tial dataset of 123,552 UI screens, more diversity in
app categories, user behavior, and interaction patterns
could strengthen the generalizability of the conclu-
sions. Our dataset does not fully represent the di-
versity of all Android applications and user contexts,
particularly for apps with uncommon functionalities
or those using advanced permission schemes. In ad-
dition, the large number of TNs, caused by the pre-
dominance of interactions that did not require access
to dangerous resources, certainly affected the results
obtained, but we preferred to include all the screen-
shots captured to avoid biasing the LLM due to the
unusual presence of permission requests during ap-
plication interactions.

Finally, the results of our study may not reflect
the full range of real-world scenarios, especially un-
der adversarial conditions or complex attack vectors

that were not part of our evaluation. Future work
should incorporate a broader range of apps and sce-
narios, particularly those involving real-time user in-
teraction and adaptive behaviors by malicious apps.

6 CONCLUSIONS AND FUTURE
WORK

As mobile applications become increasingly sophisti-
cated, users face growing challenges in managing app
permissions effectively. This often results in users un-
intentionally granting access to sensitive data, which
can lead to privacy risks or malicious exploitation.
Despite improvements in permission systems, the bur-
den of making critical security decisions still falls
largely on users, many of whom lack the necessary
technical expertise.

In this study, we investigated the feasibility of an
approach leveraging LLMs to dynamically analyze
app user interfaces and provide predictions regarding
the appropriateness of permission requests. Our aim
was twofold: (1) to evaluate the model’s ability to pre-
dict dangerous permissions within diverse UI contexts
(RQ1), and (2) to assess its effectiveness in evaluating
permission requests in malicious applications (RQ2).

The results are promising. For RQ1, our approach
demonstrated an overall accuracy of 81% and ex-
celled at predicting permissions for critical resources
such as the microphone, where accuracy exceeded
95%. However, considering only UI screens to extract
contextual information about the feature in use may
not always be enough, especially for permissions used
in the background. In these cases, the model strug-
gles to determine when a permission that is mostly
requested non-interactively can actually be used. In
addition, UI elements can be misleading, causing the
model to predict the use of permissions that are not
actually needed. We intend to address these issues in
future work, extending the analysis of UI screens to
user flow data and levels of interactivity.

Regarding RQ2, the model successfully evalu-
ated permission requests in contexts where malicious
behaviors were known or suspected. Not only did
the model accurately predict when permissions were
unnecessary or potentially harmful, but it also pro-
vided detailed rationales for its decisions. For exam-
ple, in cases of suspected phishing or spam behavior,
the model was able to explain why certain permis-
sions, such as SMS or location access, should be de-
nied, linking these requests to common malicious pat-
terns. This ability to offer context-aware explanations
makes the model particularly valuable for enhancing
user trust and transparency.

Assessing the Effectiveness of an LLM-Based Permission Model for Android

45



6.1 Future Directions

Although our results are promising, several areas of-
fer opportunities for further refinement:

Enhancing contextual understanding of user
flows. Although the model performs well on individ-
ual UI screens, future work could focus on improv-
ing its ability to analyze complex user flows that span
multiple screens. This would provide a more nuanced
understanding of how permission requests evolve as
users interact with various app features over time.

User-centric explanations. To enhance usabil-
ity and transparency, future iterations should focus on
generating explanations that are not only technically
accurate but also easily understandable by non-expert
users. This would empower users to make informed
decisions, improving trust in the model’s recommen-
dations and enhancing the user experience.

Integration into real-world tools. Moving from
research to real-world deployment is crucial. Integrat-
ing this approach into tools like RPCDroid (Guerra.
et al., 2023) or directly into the Android permission
model would create an automated system that can an-
alyze and manage permission requests in real-time or
provide suggestions for a more informed user deci-
sion leveraging user feedback to further refine the sys-
tem’s accuracy and address unforeseen challenges.

In conclusion, our study shows that integrating
LLMs into permission management offers a signifi-
cant step forward in terms of both accuracy and secu-
rity. By automating the decision-making process and
dynamically evaluating the appropriateness of per-
missions in real-time, we reduce the cognitive load
on users and enhance privacy protections. The abil-
ity to detect and mitigate malicious behavior further
positions this approach as a powerful tool for the fu-
ture of mobile security. Our findings offer a strong
foundation for refining and expanding this model to
create a robust, scalable, and cross-platform solution
for mobile privacy and security.

ACKNOWLEDGEMENTS

This work has been co-funded by the European Union
- NextGenerationEU under the Italian Ministry of
University and Research (MUR) National Innovation
Ecosystem grant ECS00000041 -VITALITY-CUP
E13C22001060006, the DiBT Startup Project, grant
number INTELLIGENZA ARTIFICIALE - Dynamic
Permission Management in Android Using Artificial
Intelligence Models and is part of the project PNRR-
NGEU which has received funding from the MUR –
DM 118/2023.

REFERENCES

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., et al. (2023). Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Akhawe, D. and Felt, A. P. (2013). Alice in warningland:
A Large-Scale field study of browser security warning
effectiveness. In 22nd USENIX Security Symposium
(USENIX Security 13), pages 257–272, Washington,
D.C. USENIX Association.

Almomani, I. M. and Khayer, A. A. (2020). A comprehen-
sive analysis of the android permissions system. IEEE
Access, 8:216671–216688.

Bonné, B., Peddinti, S. T., Bilogrevic, I., and Taft, N.
(2017). Exploring decision making with Android’s
runtime permission dialogs using in-context surveys.
In 13th Symposium on Usable Privacy and Security,
pages 195–210, Santa Clara, CA. USENIX Ass.

Caffagni, D., Cocchi, F., Barsellotti, L., Moratelli, N., Sarto,
S., Baraldi, L., Baraldi, L., Cornia, M., and Cucchiara,
R. (2024). The revolution of multimodal large lan-
guage models: A survey.

Chen, B., Zhang, Z., Langrené, N., and Zhu, S. (2024). Un-
leashing the potential of prompt engineering in large
language models: a comprehensive review.

Ciobanu, M. G., Fasano, F., Martinelli, F., Mercaldo, F.,
and Santone, A. (2020). Accidental sensitive data
leaks prevention via formal verification. In Furnell,
S., Mori, P., Weippl, E. R., and Camp, O., editors, Pro-
ceedings of the 6th International Conference on Infor-
mation Systems Security and Privacy, ICISSP 2020,
Valletta, Malta, February 25-27, 2020, pages 825–
834. SCITEPRESS.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia, H.,
Xu, J., Wu, Z., Chang, B., Sun, X., Li, L., and Sui, Z.
(2024). A survey on in-context learning.

Fang, Z., Han, W., and Li, Y. (2014). Permission based
android security: Issues and countermeasures. Com-
puters & Security, 43:205–218.

Fasano, F., Martinelli, F., Mercaldo, F., and Santone, A.
(2020). Android run-time permission exploitation
user awareness by means of formal methods. In Fur-
nell, S., Mori, P., Weippl, E. R., and Camp, O., edi-
tors, Proceedings of the 6th International Conference
on Information Systems Security and Privacy, ICISSP
2020, Valletta, Malta, February 25-27, 2020, pages
804–814. SCITEPRESS.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., and
Wagner, D. (2012). Android permissions: user atten-
tion, comprehension, and behavior. In Proceedings of
the Eighth Symposium on Usable Privacy and Secu-
rity, SOUPS ’12, New York, NY, USA. ACM.

Gao, H., Guo, C., Wu, Y., Dong, N., Hou, X., Xu, S.,
and Xu, J. (2019). Autoper: Automatic recommender
for runtime-permission in android applications. In
IEEE 43rd Annual Computer Software and Applica-
tions Conference, volume 1, pages 107–116.

Guerra, M., Milanese, R., Deodato, M., Perozzi, V., and
Fasano, F. (2024). Visual attention and privacy in-

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

46



dicators in android: Insights from eye tracking. In
Proceedings of the 10th International Conference on
Information Systems Security and Privacy - Volume 1:
ICISSP, pages 320–329. INSTICC, SciTePress.

Guerra., M., Milanese., R., Oliveto., R., and Fasano., F.
(2023). Rpcdroid: Runtime identification of permis-
sion usage contexts in android applications. In Pro-
ceedings of the 9th International Conference on Infor-
mation Systems Security and Privacy - ICISSP, pages
714–721. INSTICC, SciTePress.

Guerra, M., Scalabrino, S., Fasano, F., and Oliveto, R.
(2023). An empirical study on the effectiveness of pri-
vacy indicators. IEEE Transactions on Software En-
gineering, 49(10):4610–4623.

Kong, A., Zhao, S., Chen, H., Li, Q., Qin, Y., Sun, R., Zhou,
X., Wang, E., and Dong, X. (2024). Better zero-shot
reasoning with role-play prompting.

Li, L., Wang, R., Zhan, X., Wang, Y., Gao, C., Wang, S.,
and Liu, Y. (2023). What you see is what you get? it
is not the case! detecting misleading icons for mobile
applications. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing
and Analysis, ISSTA 2023, page 538–550, New York,
NY, USA. ACM.

Liu, B., Lin, J., and Sadeh, N. (2014). Reconciling mo-
bile app privacy and usability on smartphones: could
user privacy profiles help? In Proceedings of the 23rd
International Conference on World Wide Web, WWW
’14, page 201–212, New York, NY, USA. ACM.

Malviya, V. K., Tun, Y. N., Leow, C. W., Xynyn, A. T.,
Shar, L. K., and Jiang, L. (2023). Fine-grained in-
context permission classification for android apps us-
ing control-flow graph embedding. In 2023 38th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1225–1237.

Micinski, K., Votipka, D., Stevens, R., Kofinas, N.,
Mazurek, M. L., and Foster, J. S. (2017). User in-
teractions and permission use on android. In Proc. of
the 2017 CHI Conference on Human Factors in Com-
puting Systems, CHI ’17, page 362–373, New York,
NY, USA. ACM.

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M.,
Socher, R., Amatriain, X., and Gao, J. (2024). Large
language models: A survey.

Nauman, M., Khan, S., Othman, A. T., and Musa, S. (2015).
Realization of a user-centric, privacy preserving per-
mission framework for android. Security and Commu-
nication Networks, 8(3):368–382.

Oglaza, A., Laborde, R., Zaraté, P., Benzekri, A., and
Barrère, F. (2017). A new approach for man-
aging android permissions: learning users’ prefer-
ences. EURASIP Journal on Information Security,
2017(1):13.

Olejnik, K., Dacosta, I., Machado, J. S., Huguenin, K.,
Khan, M. E., and Hubaux, J.-P. (2017). Smarper:
Context-aware and automatic runtime-permissions for
mobile devices. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 1058–1076.

Rashidi, B., Fung, C., Nguyen, A., Vu, T., and Bertino,
E. (2018). Android user privacy preserving through

crowdsourcing. IEEE Transactions on Information
Forensics and Security, 13(3):773–787.

Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang,
H. J., and Cowan, C. (2012). User-driven access con-
trol: Rethinking permission granting in modern oper-
ating systems. In 2012 IEEE Symposium on Security
and Privacy, pages 224–238.

Rush, A. (2018). The annotated transformer. In Park, E. L.,
Hagiwara, M., Milajevs, D., and Tan, L., editors, Proc.
of Workshop for NLP Open Source Software (NLP-
OSS), pages 52–60, Melbourne, Australia. ACL.

Sabahi, F., Ahmad, M. O., and Swamy, M. N. S. (2018).
Content-based image retrieval using perceptual im-
age hashing and hopfield neural network. In 2018
IEEE 61st International Midwest Symposium on Cir-
cuits and Systems (MWSCAS), pages 352–355.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S.,
Wagner, D., and Beznosov, K. (2015). Android
permissions remystified: A field study on contex-
tual integrity. In 24th USENIX Security Symposium
(USENIX Security 15), pages 499–514, Washington,
D.C. USENIX Association.

Wu, J., Gan, W., Chen, Z., Wan, S., and Yu, P. S. (2023).
Multimodal large language models: A survey. In 2023
IEEE International Conference on Big Data (Big-
Data), pages 2247–2256.

Xi, S., Yang, S., Xiao, X., Yao, Y., Xiong, Y., Xu, F.,
Wang, H., Gao, P., Liu, Z., Xu, F., and Lu, J. (2019).
Deepintent: Deep icon-behavior learning for detect-
ing intention-behavior discrepancy in mobile apps. In
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19,
page 2421–2436, New York, NY, USA. ACM.

Xiao, X., Wang, X., Cao, Z., Wang, H., and Gao, P. (2019).
Iconintent: Automatic identification of sensitive ui
widgets based on icon classification for android apps.
In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 257–268.

Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., and Zhang, Y.
(2024). A survey on large language model (llm) se-
curity and privacy: The good, the bad, and the ugly.
High-Confidence Computing, 4(2):100211.

Ye, Q., Axmed, M., Pryzant, R., and Khani, F. (2024).
Prompt engineering a prompt engineer.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. (2023).
A survey of large language models.

Zhauniarovich, Y. and Gadyatskaya, O. (2016). Small
changes, big changes: An updated view on the an-
droid permission system. In Monrose, F., Dacier, M.,
Blanc, G., and Garcia-Alfaro, J., editors, Research
in Attacks, Intrusions, and Defenses, pages 346–367,
Cham. Springer International Publishing.

Assessing the Effectiveness of an LLM-Based Permission Model for Android

47


