Keywords:

Abstract:

RiVS: Reputation in VoIP Systems

Bruno Freitas Cruz®? and Bruno Sousa®®

Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

VolIP, SIP, IP PBX, Signalling, Reputation Systems, Internet Communications.

Voice-over-IP (VoIP) technology revolutionised telecommunications through inexpensive and flexible com-
munications. Its growing user base worldwide across various sectors, including business, healthcare, and
telecommunications, originates from the rising demand for VoIP services, which exposes VoIP systems to
multiple threats. RiVS combines a reputation system based on the Alpha-Beta distribution to further enhance
the security of VoIP systems to protect against toll fraud, authentication attacks, and Spam over Internet Tele-
phony (SPIT). RiVS is integrated with the Asterisk server (known as IP PBX or VoIP server) operating as an
intermediary between the VoIP server and the reputation system. RiVS is able to parse user authentication or
call attempts to determined if they should be flagged, dropped, or allowed through the system. The reputation
system keeps records of positive and negative actions. Experimental procedures were conducted to evaluate
system resources usage and response time. With results showing actions performed promptly with few system

resources, for consideration of cloud and on-premises deployments.

1 INTRODUCTION

Over the years, Voice-over-IP (VoIP) technology’s
rapid expansion, due to its cost-effectiveness and flex-
ibility, has significantly increased the associated se-
curity threats. The convenience and accessibility of
VoIP systems made them appealing targets for mali-
cious activities such as Spam over Internet Telephony
(SPIT), unauthorised access, and toll fraud. Posing
a financial and privacy issue. Several reports (busi-
nessWire, 2023; Association, 2023; Insights, 2023;
Carter, 2023; gra, 2016) endorse these developments.
Reputation systems are capable of continuously
assessing the behaviour of network participants,
allowing real-time identification and response to
threats, and are capable of incorporating dynamic and
adaptive security solutions. Allowing for more tar-
geted and efficient security management and evaluate
users based on ongoing behaviour. RiVS analyses the
actions performed, the call source, and the duration of
the call, among other parameters that are used to es-
tablish the reputation score of the reputation system.
To evaluate RiVS performance, the Asterisk VoIP
server was chosen, as it is open source and widely
used as an IP PBX solution in enterprises. RiVS was
integrated with the Asterisk server and with the rep-

https://orcid.org/0009-0000-7873-7203
@ https://orcid.org/0000-0002-5907-5790

Cruz, B. F. and Sousa, B.

RiVS: Reputation in VoIP Systems.

DOI: 10.5220/0013133300003899

Paper published under CC license (CC BY-NC-ND 4.0)

utation system to provide real-time monitoring, to re-
port activities and automatically handle activity based
on reputation scores of both Internet Protocol (IP) ad-
dresses and users. RiVS was evaluated in a Proof-of-
Concept (PoC) considering different types of threads
such as toll fraud, authentication attacks, and Spam
over Internet Telephony (SPIT). SPIT can be broad-
cast to any IP phone or server connected to the In-
ternet, and these calls continue to increase rapidly.
The idea is to create a genuine-looking message ca-
pable of deceiving protection mechanisms to gener-
ate spam calls or attempt to reach as many users as
possible to increase the chances of selling a product.
These calls can cause serious discomfort for the re-
cipients due to their intrusive nature. The Authenti-
cation attacks include attempts by bad actors to gain
unauthorised access by trying to register using default
manufacturer credentials or weak credentials. This is
commonly performed via brute-force or dictionary at-
tacks. The Toll Fraud refers to generating costs as-
sociated with using a hijacked user extension. An at-
tacker uses the IP PBX to make international calls or
calls to premium numbers, potentially using it to col-
lect revenue.

The remainder of this paper is organised as fol-
lows. Section 3 provides information on the reputa-
tion system. Section 4 describes the developed secu-
rity module, named VoIP WatchDog, which connects

167

In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 2, pages 167-175

ISBN: 978-989-758-735-1; ISSN: 2184-4356

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

being the bridge between Asterisk and the Reputation
System. Section 5 details the use cases for testing the
security module. Section 6 concludes the paper.

2 RiVS: REPUTATION IN VoIP
SYSTEMS

2.1 Reputation System

The reputation system framework is composed of two
distinct components, the reputation system itself and
RabbitMQ. RabbitMQ is an open-source and asyn-
chronous message broker that processes messages be-
tween systems and applications, routing messages ac-
cording to defined parameters. The reputation system
analyses the received data and calculates the score us-
ing the Alpha-Beta model. Reputation is calculated
by dividing the total number of positive events by the
sum of all positive and negative events, which means
that the result will vary between 0 and 1. However,
multipliers can change the range of these results. This
reputation model also contains an ageing factor that
is responsible for determining how much past actions
can influence new score calculations.

2.2 VoIP WatchDog - Security Module

The VoIP WatchDog Module is made up of six Python
scripts. The module is portrayed in Figure 1. Two
are related to Asterisk authentication, three to Call
Routing, and one to parse the Call Records/Reports.
The authentication scripts perform different actions.
The Call Routing scripts are fed by Asterisk with SIP
headers information. Call Tracker and Call Tracker
Cleaner complement each other, as without Cleaner,
the Tracker would not be viable in a test or production
environment. The Call Reports automatically fetch
data from Asterisk. This module bridges interactions
between Asterisk and the Reputation System, dynam-
ically blocks registration or call attempts, continu-
ously monitors for premium/international calls, and
tracks internal calls.

The main building blocks of the VoIP Watch-
Dog module include several components. The
CDR Parser automatically fetches and processes call
records when these are available in the Call Detail
Record (CDR) by going through the uniqueid, inter-
preting the database table. The Security.log Parser
will read and interpret the authentication logs of the
security.log file and send the information in JSON for-
mat to the Reputation System to determine the repu-
tation scores. The ACL Handler checks for IPs with

168

Call Reports
['
'

___________ security.log ' !

Parser : bR !
L]

h Parser '

[; '

' I . .

L) ' !
'

i I [ll
'
.
L

acl.conf __| VoIP
Handler WatchDog
\\ call
/ \ Handler
call o ____._ Call Tracker
Tracker Cleaner

Figure 1: Security Module Framework.

a reputation score below five points in the database of
the Reputation System. It also configures the acl.conf
file to add IPs that meet the aforementioned crite-
ria but remove them if the reputation score exceeds
five. The Call Handler is fed with information and
activated by Asterisk through the Dial Plan, when
a SIP INVITE message arrives. It will log into the
Reputation System database and check the user score
database, so if one of the users has a score lower than
five, the call is terminated. The Call Tracker is acti-
vated and fed by Asterisk through the dial plan, after
the SIP Header information is extracted. This com-
ponent tracks calls from internal users using the ac-
tive calls database, which is automatically fed when a
SIP INVITE message arrives from the internal users,
being used to prevent a user on an ongoing call from
performing multiple calls. The Call Tracker Cleaner
is similar to Call Handler and Call Tracker, this com-
ponent is also fed and triggered by Asterisk A Dial
Plan, but after one of the sides terminates the call and
receives the SIP BYE message. It ensures that the ac-
tive calls database is cleaned when an explicit call is
terminated.

3 EVALUATION
METHODOLOGY

3.1 Methodology

The experimental scenario consisted in different vir-
tual machines with an Asterisk Server and a SIP
(Session Initiation Protocol) trunk, machines to run
soft phone software (MicroSIP, Zoiper and Jitsi), a
machine with the reputation system and the Rab-

bitMQ instance, and a Kali machine for introducing
load or attacks in the remaining components. Three
experimental procedures were prepared to evaluate
the RiVS framework and system integration: Access
Control Lists, Flagging Users, and Call Monitoring.

3.2 Access Control Lists

Figure 2 represents the experimented scenario for
brute-force emulation, where the security module
identifies malicious authentication attempts, flags,
and blocks IPs. Two different IPs were used to test the
current scenario of the reputation-based access con-
trol list (ACL) configuration. The first Internet Proto-
col (IP), 10.0.0.5, has a score of 2,90 in the IP score
database, while 172.0.0.4, belonging to the Kali ma-
chine, has a score of 6. The first IP is an entry from
preparatory tests, and as a result, it is already present
in the acl.conf file with a low score.

Using the Kali machine, a word list with random
passwords was used to emulate user enumeration,
where eight attempts were generated. The moment
VoIP WatchDog detects new entries in security.log, it
parses them and sends the appropriate information in
JSON to RabbitMQ, which will queue and route the
information to the Reputation System to calculate the
reputation score and allow it to be stored; so many at-
tempts caused the score to go lower than five (5). Af-
ter updating the newly calculated reputation score in
the Reputation System database and communicating
the updated score via RabbitMQ, the module updates
the acl.conf file. It reloads the Asterisk ACL mod-
ule as a new IP with a score less than five (5) can be
found. From here on, any authentication from these
IPs is no longer allowed.

172.0.0.4

P
Authentication attempt
exchange
1) Parse security logs ‘PREP‘“FTAT‘DN
k (IP authentication) P
security. resuit 5) caleulate
E log negative 3) Queue data score
— 2) Send JSON 4) Send JSON
m wa‘tlcer:;eg ‘ RabbitMa ‘ ‘ System
&) obtain scere‘

— 9) Addiremove
Astgrisk IPs 7) Update

1P score 7) IP | Score
- 10005290
- 172.0.0 4 | () > 3.33()
8) Check IPs and scores

9) deny=10.0.0.5,172.0.0.4 MysaL i=inicial score

f=final score

Figure 2: Access Control List Trial.

3.3 Flagging Users/Extensions

Figures 3 presents a scenario of identifying users
through Call Detail Records (CDR) for the identifi-
cation of spam. Extension 221 initiates the extension
call from behind Asterisk B. Asterisk A receives the
call request on the trunk and forwards it to extension

RiVS: Reputation in VoIP Systems

103. At this point, Asterisk already knows that the
call is externally sourced. The call lasted more than
thirty seconds, so after the call was finished, the CDR
was immediately filled with the records of that com-
munication. The VoIP WatchDog immediately parses
the new entry in the CDR. The user is flagged as posi-
tive, and the module sends a message to RabbitMQ in
JSON format. This queues and sends data to the repu-
tation system for reputation score calculation. A new
entry is created in the Reputation System database
with user scores if the user does not have a previous
record. As the first flag for extension 221 is positive,
it is assigned a reputation score of 6.

Asterisk B

yF 7
%/&,

5) calculate

Astelisk A

a— positive 3) Queue data

A 2) send JSON 4) Send JSON
E ~~~~~~~~~ b_lﬁyﬁ —) Sen | RabbitMQ ‘ | Reputation
ﬂ — d | ‘e) obtain scare‘ ¥
— 103

| 7) Update 1
user score 7) user | score
o @ (vsiore) <empty>

1) Parse call records (Users) (after)221| 6

CDR from-external
database billsec | result
(call records are filed »30 sec | positive
after termination)

MysaL
Figure 3: Flagging Users Positively.

Otherwise, if it were a negative flag for the first
time, the assigned reputation score would be 4. It
should be noted that the reputation score is initiated
with the value five (5) by default, which means that
there is not enough information to determine whether
an entity is trustworthy or not.

3.4 Call Monitoring

VoIP WatchDog always monitors the user score and
active calls. For the first scenario, the same user was
logged in to two different softphone applications. The
first call reached extension 221, filling the active call
database with the ongoing call information. When the
second call was initiated from the other application, it
was terminated, thanks to the existing entry for track-
ing calls; otherwise, it would have gone through. En-
tries are cleared by Asterisk right after the call has
been terminated, leading to the interception of multi-
ple calls from the same source.

Secondly, the call is automatically terminated if
any user in a call attempt has a score lower than five
(5). Scenario II considers that if both the source and
destination have a score equal to or higher than five
(5), the calls proceed (From: 102, To: 221); other-
wise, they are rejected (From: 598, To:102). This ap-
plies in both directions.

Third, it tracks whether a bad actor is maliciously
trying to establish calls from a network other than the
Asterisk A local network (192.168.1.0/24). This call

169

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

is prevented and the source IP signalled with a nega-
tive flag. Otherwise, without this procedure, the call
will be registered as sourced from Asterisk A, result-
ing in costly fees. So, even if the trunk credentials get
exposed for unknown reasons, or there is an unknown
exploit that would allow generating a call externally,
this provides an additional security layer. Allows re-
jection and flagging of calls from unknown IPs that
could self-identify as internal users, as shown by Fig-
ure 4.

Bad actor
(172.0.0.4)
1=
Hae/

INVITE

Intercept call attempt

IP | src | dst | channel
172.0.0.4 | 100 | 500 | PJSIP/trunk=xxxxxxxxx
(rejected and IP signalled) JSON

exchange
———————————— IPREPUTATION
172"; 0.4 b3) Galculate
result

b2) Send

_a—
=1) negafive ‘ ‘ JSON ‘ Reputati
VoIP eputation
— . RabbitMQ >
m - a) Tracks | WatehDog [bi) Send JSON ‘ ‘ b4) Obtain ‘ system
active calls score

? active calls

Ast] isk database b5) Update IP score

_/,‘,ﬁ/, - IP | score

— 3) Check user and score - (before) <empty>
103 wysqL (after) 172.0.04 | 4

Figure 4: Call monitor - Scenario III.

4 EVALUATION RESULTS

4.1 Access Control Lists

The time achieved for Step 1 - Parse security logs and
Step 2 - Send information to RabbitMQ is between
0.001 and 0.005 milliseconds (ms) to parse each row
individually. The time discrepancy is related to the
amount of content parsed when searching for the rel-
evant conditions.

The results achieved for Step 4 - Send information
to the reputation system, Step 5 - Calculate the reputa-
tion score, and Step 6 - Propagate the reputation score
took on average 2 ms to complete the message request
for the RabbitMQ score calculation and send it back
to update the IP score database.

Step 7, which refers to updating the score database
in RabbitMQ docker, is not available. However, fol-
lowing previous observations and tests, it should not
take more than a few milliseconds. This characteristic
is shared by all scenarios. Figure 5 refers to steps 8
and 9 of figure 2.

* In red are the IPs fetched from the IP score
database in RabbitMQ docker. Connecting to the
database and fetching all IPs and respective scores
took 6.397 ms. In another attempt, the same ac-
tion took only 2.805 m:s.

* In orange is how long the module took to config-
ure the acl.conf file with the newly founded IP,
taking only 0.159 ms.

170

* In yellow is the time to reload the Asterisk ACL
module after reconfiguring the ACL file, taking
only 5,812 ms. It takes 5,971 ms to configure
acl.conf and reload the Asterisk ACL module for
the new configuration to take effect.

* In blue is the CPU utilisation. The CPU usage
was always recorded as less than 1% remaining
at 0. 00% the whole time. With cycle process-
ing time representing the entire cycle time, from
data extraction from the database to configuring
acl.conf and reloading the Asterisk ACL module
for the configuration to take effect.

* In green is the RAM usage. Under normal oper-
ations, the ACL component only uses 23.43 Mb
and, at most, would make use of 31.79 Mb.

Disk read / write is at 0.00 Mb; however, writing
is at 0.01 Mb, which should correspond to editing the
acl.conf file. The network utilisation is shown at 0.00
Mb.

- |Fetched

- |Fetched

- |Fetched

- |Fetched

- |Fetched 127.127.0.1, Sco:
- |Fetched 169.254.104 . 21

- |Fetched 2.0.0.3, Sc

- |Fetched

- |Fetched

- |Fetched

9.99, Score: 5.079363887572246

00 onds

Cycle processing time: 0.012604 seconds
PU time for cycle: @
onds with 2 CPUs|

B, VMS=31.79 MB]
ite=0.01 MB
- Network Sent=0.00 MB, Received=0.00 MB

Figure 5: ACL benchmarking.

Ten samples were retrieved to calculate how
quickly IPs are blocked from initial detection to score
calculation and acl.conf file configuration. Further-
more, it always considers updating the file with any
IPs that should be added, removed, or kept, depend-
ing on the database scores.

ACL configuration and Module Reload Response Times

0.006 = ¥ - -

0.002 Standard Deviation = 0.000264 s

Time (Seconds)

jon = 0006381 5
0058525

1 2 3 7 8 9 10

4 5 6
Sample Number

Figure 6: ACL response times.

According to figure 6, it took an average of 6.116
ms, with a variation of 0.0264 ms. The longest time
was 6.381 ms and the lowest was 5.5852 ms. Such
values indicate an acceptable performance for ACL
functionalities in the RiVS framework.

4.2 Flagging Users/Extensions

This section documents the performance and utilisa-
tion of the resources of the figures 3 Steps 1 and 2.

The CPU utilisation varies. The processing of
1605 lines took 260 ms with a CPU utilisation of
40.45%. This includes the parsing and sending in
JSON format to RabbitMQ. The processing of a new
line, leads to CPU utilisation at 0.00%. The RAM
utilisation, under normal operations, the ACL com-
ponent only utilises 27.57 Mb and, at most, would
make use of 107.64 Mb. The Disk I/O read is at
0.00 Mb, however, writing is at 0.36 Mb, this value
should correspond to the module logging the parsing
and sending of each line of the CDR database. And
network utilisation is shown with a value of 1.17 Mb
after sending 1605 JSON messages.

The operation of fetching a new CDR record has
the following resource utilisation. The RAM utilisa-
tion increased by 0.02 Mb, but since it is the same
module and running continuously, it could be related
to a momentary memory speak. The Disk I/O write
operation increases to 0.37 Mb. This is because the
module logging will print data related to fetching the
CDR every 5 seconds.

The performance of performing Step 1 - Parsing
call records depicted in Figure 3 relies on the step 1
average and deviation response times for parsing 1716
rows in the Call Detail Record (CDR) database. An
average response time of 270 ms was achieved, which
translates to 0.1573 ms to process each row. The
samples always matched the same processing time,
without deviation, that is, the standard variation is
0.000000 ms.

The steps Step 4 - Send information to reputation
system, Step 5 - Determine reputation score, Step 6
- Communicate reputation score the achieved values
to determine the reputation score rely on the order of
2 ms, which is inline with the value achieved in the
access control list scenario.

Figure 7 presents the average and deviation re-
sponse times for the reputation system score calcu-
lations, which lead to an average of 2.1 ms. The hor-
izontal red line indicates an average response time of
2.1 ms. For most requests, the response times reside
close to the average line, indicating consistency. The
standard variation is 0.567646 ms. Even if most sam-
ples reside close to the average processing time, there

RiVS: Reputation in VoIP Systems

are a few outliers. This could be related to a few
events that occasionally impact response times within
the system.

s Reputation System score calculation Response Times

3.0

Time (Milliseconds)
5 5 8

o
n

o
°

1 2 3 7 8 9 10

i 5 6
Sample Number

Figure 7: Reputation System score calculation response
times.

The performance values achieved were in line
with the results of the access control list scenario.
This shows stability in the RiVS framework in assess-
ing the reputation score for VoIP information.

4.3 Call Monitoring

The utilisation of resources of scenario I with re-
spect to active call tracking includes the time to query
data from the database, the CPU and RAM utilisa-
tion rates. Connecting to the active call database took
3.209 ms. And querying for any active call source
from extension 103 took only 0.0384 ms. The time it
took to fill the database with the ongoing call is 1.335
ms. However, it can be obtained by subtracting the
database query and the database connection time from
the overall processing time. The measured CPU rate
is on the order of 0. 00%, while the RAM usage under
normal operations, the call tracking component only
uses 26.60 Mb and, at most, would use 106.84 Mb.

Figure 8 provides the performance and use of re-
sources of Scenario II. The utilisation of resources of
scenario II includes the same metrics as in scenario 1.
The connection to the database takes only 0.059 mil-
liseconds. The time to fetch the extension score is
0.83 milliseconds. The hangup action includes log-
ging into AMI (Asterisk Management Interface) and
executing the hangup command, taking only 0.181
ms. The CPU utilisation is 0.00% and the RAM util-
isation under normal operations, the hangup compo-
nent only utilises 23.49 Mb and, at most, would use
31.86 Mb.

Figure 9 provides the results of the use of re-
sources in scenario III provides the performance and
use of the resources in Figure 4. The connection to
the database to check active calls took 3.248 ms, and
querying for active calls took 0.305 ms. The detec-
tion of incoming call IP trying to reach extension 221
and block the malicious attempt and sending a JSON

171

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

-|Getting connection from pool

-|Connection pool acquisition time: @.000059 seconds
-[Checking score for from_ extension: 598

-|Query time for from_extension: ©.000588 seconds|

-| from_extension: 598, from_score: 4.0

-|Checking score for to_extension: 102

-|Query time for to_extension: ©.000242 seconds
-|to_extension: 102, to_score: 6.666666666666666

-[Fanging up call on channel: PJSIP/trunk-0000000]

L hanag e “sovoter sconss |
- CPU times start: user=0.0400, system=0.0100

CPU times end: user=0.0400, system=0.0100

Number of CPUs detected: 2

Overall processing time: @.003041 seconds

Total CPU time: 0.000000 seconds

- |CPU usage: 0.0 over 0.003041 seconds with 2 CPUs
- |Memory usage: RSS=23.49 MB, VMS=31.86 MB

-|Disk usage: Read=0.00 MB, Write=0.00 MB

- [Database connection acquisition time: 0.003248
- |Database query execution time: 0.000305 seconds
59 - |Active calls for trunk: ()
59 - Hanging up call on channel: PJSIP/trunk-00000000 due to disallowed T
don: 221
- Time taken to hang up call on channel PJSIP/trunk-00000000: 0.000123

', 'result'

70 - Overall processing tim 0.014074 seconds

70 - Total CPU time: 200 seconds

ith 2 CPUs

7 D: e: Read=0.00 MB, Write=0.0'
70 - 01 MB, Received

Figure 9: Hangup Scenario III benchmarking.

message took 10.4 ms, which correlates with a TLS
connection. The CPU usage is 0. 00%, while us-
ing RAM under normal operations, this part of the
hangup component only uses 26.71 Mb and, at most,
would use 178.84 Mb. The network data display both
0.01 Mb, which can be correlated to receiving calls
and sending the call termination packets.

Figure 10: Call Monitor response times.

Figure 10 presents the average and deviation re-
sponse times for the Call Routing component of VoIP
WatchDog. The blue dots represent the sample num-
ber. The X-axis is the sample number and the Y-axis
is the response time in ms. The horizontal red line
represents the average. The horizontal red line indi-
cates an average response time of 2.932 ms. Most of
the time, response times reside close to the average
line, indicating consistency. The standard variation is
1.423231 ms. Response times spread across a rela-
tively significant area, suggesting considerable varia-
tion. Most response times reside within the variation
area, especially in the lower parts, and some are close
to the average.

The average response time is higher in this sce-
nario, as it includes the processing from the Watch-
Dog component in the RiVS framework, compared to

172

the previous scenarios. Notwithstanding, the achieved
results (i.e., 2.932ms) are still acceptable for VoIP
communications.

4.4 RabbitM(Q Messaging

In order to test RabbitMQ capabilities, the CDR sent
3242 lines of information in individual JSON mes-
sages. At its peak, RabbitMQ successfully processed
more than 800 messages per second without dropping
any of them, as shown in Figure 11. RabbitMQ took
20 seconds to process all 6484 messages. This means
that processing of each message takes 3.083 ms in av-
erage.

Message rates last ten minutes 7

1000

800 /s

20005

20:36 2037 20:38 20:39 20:40 20:41 20:42 20:43 20:44 20:45

Figure 11: RabbitMQ - Messages processing rate.

The choice of RabbitMQ demonstrates that it is
possible to have a reliable communication channel be-
tween the components of the RiVS framework.

4.5 Docker Container’s

The resource utilisation figures presented here were
taken during the previous section scenario exercise
of processing 3242 data lines from the CDR. Consid-
ering message processing capabilities, the number of
lines took around four (4) seconds to receive and pro-
cess through the Reputation System. Any additional
processing time is related to post-JSON data. In the
upcoming figures, a dot represents the start, and a line
at the end of the 3242 lines that were processed. Past
that point, it is related to post-JSON actions, which
involve reputation update routing policies. In the fig-
ures, red is the CPU utilisation, followed by the RAM
in orange and network utilisation in green.

Reaching a spike of 0.4 in the Cores axis of Rab-
bitMQ indicates that 20% of the processing power
was utilised during an average time frame of around
4 seconds (Asterisk A is running with 2 cores). With
figure 13 running stable slightly above 0, on standby,
and innately increasing when data needs to be pro-
cessed.

RabbitMQ in figure 15 and the Reputation System
in figure 16 showed RAM (Random Access Memory)
efficiency. But the same cannot be said about MySQL
database in figure 17.

Cores

8:42:10PM 8:4220PM 84230 PM 8:4240PM B:4250 PM 8:4300PM 8:4310PM 843:20PM 8:43:30 PM
uTCHL UTC+L uTCHL UTC+L uTC+L UTC+L uTCHL UTC+L uTCHL
— Total

Figure 12: RabbitMQ CPU.

06

04

N

Jul 1, 2024, 8:43:15 PM
= Total: 0.063

Cores.

02

00
84230PM 84240 PM 8:4250PM 84300 PM 8:4310PM 84320 PM 8:4330PM 8:4340PM 8:43:50 PM
uTCHL UTCH+L uTC+1 uTC+L UTCHL uTC+1 uTCHL UTCH uTC+1
— Total

Figure 13: Reputation System CPU.

Cores

0.09
84220 PM 8:4230PM 84240 PM 8:4250PM 8.4300PM 84310PM 8:43:20PM 8:43:30PM 8:43:40 PM

uTC+L uTCHL UTCHL uTC+1 uTCHL uTCH uTCHL uTCHL UTCHL
— Total

Figure 14: MySQL CPU.

When queuing and processing over 3242 JSON
packets, RabbitMQ used 175 megabytes (Mb) of
memory, spiking slightly above 200 megabytes when
routing traffic for the Reputation System and between
score updates in between the MySQL database and
the Reputation System.

In these Memory figures, Total represents all
the memory allocated to the container, regardless of
whether it is utilised. At the same time, Hot refers to
the amount of memory actively used.

After initialisation, the Reputation System was ac-
tively using 60 Mb of RAM, from a maximum of 100
Mb if required. After processing the 3242 packets, it
started actively using 125 Mb and around 170 Mb and
remained stable throughout further experiments.

The MySQL database in figure 17 was using
slightly more than 475 Mb and was increasing close to
487,5 Mb but capable of reaching more than 500 Mb
in use. The reason for so much RAM is related to not
only containing asterisk records but also information
for RabbitMQ and the Reputation System.

150 /
125

34210PM B4220PM aAzaoPM 84240PM 542 GPM 343UOPM sAawPM 84320PM 84330PM

Megabytes

— Tu(al — Hot

Figure 15: RabbitMQ Memory.

The network utilisation is very low and will not
easily cause network congestion. In Figure 18,
3242 JavaScript Object Notation (JSON) messages

RiVS: Reputation in VoIP Systems

200

150 /

100 /
50

84230PM 8:4240PM 8:4250PM B4300PM 84310PM 84320PM 843:30PM B:4340PM 84350 PM

uTCH uTCH uTC1 uTCHL uTCH uTCH uTCH uTCH1 uTCH
—Total — Hot

Megabytes

Figure 16: Reputation System Memory.

Megabytes

8:4220PM 8:42:30PM 8:4240PM 84250 PM 8:43:00PM 84310PM 8:4320PM 8:43:30PM 8:43:40 PM
uTC+L uTC+1 uTCHL uTC+L UTC+1 uTCHL uTCH1 uTC+1 uTCHL
— Total —— Hot

Figure 17: MySQL Memory.

generated incoming network traffic of up to 0.45
Megabyte(Mb)/s = 450 000 Bytes per second.

Subsequently, received (Rx) bytes are related to
reputation update exchanges, with the same type of
traffic applied to transferred (Tx) bytes, including the
3-way handshakes. Reputation exchanges are sepa-
rated into two parts: First comes the score calculation
and then updating the score.

600,000
400,000

200,000

Bytes per second

0

8:4210PM 84220PM 8:42:30PM 842:40PM B8:4250PM = 8:4300PM 84310PM 84320PM 8:43:30 PM
uTC+L uTCH uTCH uTC+L uTC+L uTC+1 uTCHL uTCH uTCHL
— Txbytes —— Rxbytes

Figure 18: RabbitMQ Network usage.

In figure 19, Tx reputation score was 0.25 Mb/s.
However, the Rx information from the last updated
scores led to a slight increase above 0.3 Mb/s. In fig-
ure 20 a Tx rate of 0.05 Mb/s and Rx rate of 0.01 Mb/s
peak around 0.15 Mb/s.

400,000
300,000

200,000

Bytes per second

100,000

0
8:4230PM 8:4240PM 8:4250PM 8:4300PM B4310PM 84320PM G:4330PM 8:4340PM 8:43:50 PM
uTCH uTCH uTCH uTCH uTCH uTCH uTCH uTCH uTCH
— Txbytes —— Rxbytes

Figure 19: Reputation System Network usage.

150,000
100,000

50,000

Bytes per second

9 1
84220PM 8:4230PM 84240PM B8:4250PM 8:4300PM 84310PM 8:4320PM 8:4330PM 8:43:40 PM
uTcH uTCHL Ut uTC+1 uTCH uTCH uTCH uTCH1 [

— Txbytes —— Rxbytes

Figure 20: MySQL Network usage.

After sending the calculated reputation update,
RabbitMQ will provide the Reputation System with

173

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

the latest calculation. When a packet arrives in the
Reputation System, it opens it, performs the calcu-
lations, and replies to RabbitMQ. Hence, RabbitMQ
job is to queue these reputationUpdate messages and
forward them to the MySQL and Reputation System.

So, the remaining bulk of the network traffic past
the green line is the traffic associated with what is ob-
served in figure 21 and is applied to figures 19 and 20.
Figure 21 shows an example of a calculated score for
extension 200 but then came in another JSON with a
positive flag to increase the extension score. Hence,
the Reputation System does its job by again calcu-
lating the score and releasing a new update for which
RabbitMQ will route the reputationScore messages to
inform the database for VoIP WatchDog access and
the Reputation System.

Processing time: Oms

Figure 21: Reputation Update from RabbitMQ.

S CONCLUSION AND FUTURE
WORK

Voice-over-IP (VoIP) will continue to rise due to the
need to have continuous and inexpensive communi-
cation methods. However, this continuously brings
about various security challenges, such as Spam over
Internet Telephony (SPIT), toll fraud, and brute-force
attacks, endangering the integrity and dependability
of VoIP networks. In response to these threats, the
RiVS framework explored the implementation of rep-
utation systems as a proactive security measure, offer-
ing a way to improve the resilience of VoIP systems
against malicious actors.

Although the CDR parser component effectively
addresses the identification of SPIT according to the
defined set of parameters, the integration of Machine
Learning (ML) would present a substantial refine-
ment. The parameters involved defining a value on the
call’s duration to determine whether a call was spam.

During the evaluation, the performance results
show that actions are performed quickly and the sys-
tem remains stable. For example, on average, to
process an individual event, RabbitMQ takes 3.083
milliseconds (ms) to process each message, Repu-
tation System 2.1ms for score update, CDR Parser
0.1573ms for processing a row, Call Routing Module
2.932ms to handle calls, and Authentication Module
6.1744ms to configure and restart the Access Control
List (ACL) for immediate effect. Some variations can
be observed, but are not unreasonable according to the
output. Demonstrating efficiency and stability, which

174

can contribute to future enhancements.

However, VoIP WatchDog was built using Python
scripts, meaning that a new shell process runs every
time it is executed, consuming resources every time,
even if by a small amount. Due to limitations, perfor-
mance bottlenecks are not noticeable in such an ex-
perimental PoCs, and the volume of calls is low com-
pared to the volume generated in a production envi-
ronment, where they could have serious bottlenecks.

As future work, we consider the following: 1)
Enhance spam detection through the implementation
of ML.2) Implement an Asterisk Gateway Interface
(AGI), to take advantage of FastAGI, to improve all
operations involving database connections, log pars-
ing, call control and reduce resource consumption fur-
ther and the load on the Asterisk Server, since the se-
curity module requires to be installed on the Server.
3) Deploy the Reputation System in the cloud, to em-
ulate a public facing service.

ACKNOWLEDGEMENTS

This work implemented a reputation system that
was developed through the ARCADIAN-IoT project,
sponsored by the European Union’s Horizon 2020 re-
search and innovation programme and supported un-
der grant agreement number 101020259. This work
has been supported by Project “Agenda Mobilizadora
Sines Nexus”. ref. No. 7113), supported by the Re-
covery and Resilience Plan (PRR) and by the Euro-
pean Funds Next Generation EU, following Notice
No. 02/C05-i01/2022, Component 5 - Capitalisation
and Business Innovation - Mobilising Agendas for
Business Innovation. This work is also funded by Na-
tional funds through the FCT- Foundation for Science
and Technology, 1.P., within the scope of the project
CISUC-UID/CEC/00326/2020 and by the European
Social Fund, through the Regional Operational Pro-
gram Centro 2020.

REFERENCES

(2016). Mobile voip market size to reach $145.76 bil-
lion by 2024. https://www.grandviewresearch.com/
press-release/global-mobile-voip-market. Accessed:
2023-11-06.

Association, C. F. C. (2023). Telecommunications fraud
increased 12% in 2023 equating to an estimated 38.95
billion lost to fraud. https://bit.ly/4byliLF. Accessed:
2024-01-03.

businessWire (2023). Hiya report: A quarter of all unknown
calls in the world are spam and fraud. https://www.

tmcnet.com/usubmit/2023/05/02/9805850.htm. Ac-
cessed: 2024-01-02.

Carter, R. (2023). The ultimate list of voip statistics (2024).
https://findstack.com/resources/voip-statistics/. ~ Ac-
cessed: 2023-11-06.

Insights, G. M. (2023). Voice over internet protocol (voip)
market. https://bit.ly/3XxNZAXp. Accessed: 2023-11-
03.

RiVS: Reputation in VoIP Systems

175

