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Abstract: Network anomaly detection is a fundamental cybersecurity task that seeks to identify unusual patterns that
could indicate security threats or system failures. Traditional centralized anomaly detection methods face
issues such as data privacy. Federated Learning has emerged as a promising solution that distributes model
training across multiple devices or nodes. Federated Learning improves anomaly detection by leveraging ge-
ographically distributed data sources while maintaining data privacy and security. This study presents a novel
Federated Learning architecture designed specifically for network anomaly detection, addressing important
information sensitivity issues in network environments. We compare some Deep Learning algorithms, such
as Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and Multilayer Perceptron
(MLP), using XGBoost for feature selection and Stochastic Gradient Descent (SGD) as an optimizer. To ad-
dress the problem of imbalanced data, we use the Synthetic Minority Over-sampling Technique (SMOTE)
with the UNSW-NB15 dataset. Our methodology is rigorously evaluated using standard evaluation metrics
and compared to state-of-the-art approaches.

1 INTRODUCTION

Network anomaly detection is essential for secur-
ing digital infrastructure, preventing unauthorized ac-
cess, and mitigating cyber threats. Traditional central-
ized methods face challenges in handling vast data,
adapting to evolving threats, and operating in real-
time, all while raising privacy concerns by aggregat-
ing sensitive data in a single location. This approach
jeopardizes data confidentiality and demands exten-
sive datasets to effectively capture network behav-
iors, often failing to scale and respond to advanced
risks (Garg et al., 2020). Federated Learning offers a
promising alternative by decentralizing model train-
ing across multiple devices or nodes. It keeps data
local, sharing only model updates aggregated on a
central server to create a global model. By leverag-
ing geographically distributed data, Federated Learn-
ing enhances anomaly detection while maintaining
data privacy and security. Each entity trains mod-
els locally and shares updates, reducing data breach
risks. This approach addresses privacy issues and
improves detection system robustness and accuracy
through diverse data sources, enhancing model re-
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silience (Aburomman and Reaz, 2016). The main
contributions of this research work are as follows:
Introduction of a Novel Federated Learning Archi-
tecture: We propose a novel Federated Learning ar-
chitecture specifically designed for network anomaly
detection. This architecture ensures data privacy and
security, addressing the important challenge of data
sensitivity in network environments.

Evaluation of various Deep Learning Algo-
rithms and Machine Learning Methods: Our re-
search thoroughly evaluates several Deep Learning
(DL) models, including Long Short-Term Memory
(LSTM), Convolutional Neural Networks (CNN), and
Multilayer Perceptron (MLP), employs XGBoost for
feature selection, and applies Stochastic Gradient De-
scent (SGD) as an optimizer. These models are as-
sessed for their effectiveness in accurately detecting
network anomalies.

Application of SMOTE for Data Balancing: To
address the challenge of imbalanced data, we ap-
ply the Synthetic Minority Over-sampling Technique
(SMOTE) to the UNSW-NB15 dataset. This tech-
nique improves the performance of our models by en-
suring a more balanced representation of the dataset.
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Comprehensive Assessment Using Standard Eval-
uation Metrics: The proposed methodology is rig-
orously evaluated using the most common evalua-
tion parameters. Our results are benchmarked against
other state-of-the-art approaches, demonstrating the
efficacy of our methods. The structure of this pa-
per is as follows: Section 2, Theoretical Background,
covers the foundations of Federated Learning and rel-
evant Deep Learning methods for network anomaly
detection. Section 3, Related Work, reviews relevant
research and finding. Section 4, Methodology, de-
scribes the proposed Federated Learning approach for
network anomaly detection, with an emphasis on data
privacy. Section 5, Experiments and Results, presents
the experimental setup and results, including a com-
parison with previous related works. Finally, Section
6, concludes the paper.

2 THEORETICAL BACKGROUND

This section covers the key concepts of Machine
Learning, Deep Learning, and Federated Learning for
network anomaly detection. It highlights how Fed-
erated Learning addresses the limitations of tradi-
tional methods by preserving privacy and decentraliz-
ing data, leading to more reliable and secure anomaly
detection solutions, and includes a description of the
Deep Learning algorithms used in our system.

2.1 Network Anomaly Detection

Network anomaly detection is a critical technique for
identifying unusual network activity that could indi-
cate security threats or breaches. It involves moni-
toring network traffic for deviations from normal pat-
terns, signaling potential malicious actions or system
failures. Historically, anomaly detection has relied
on two approaches: signature-based and anomaly-
based methods. Signature-based detection identifies
known threats by comparing network activity to pre-
defined patterns or signatures. While effective for
known threats, it is limited in detecting new or un-
known threats. On the other hand, anomaly-based
detection monitors network behavior, identifying de-
viations from established norms. While capable of
detecting novel threats, it often struggles with the
need for comprehensive training data (Hdaib et al.,
2024). To enhance these methods, Machine Learn-
ing (ML) and Deep Learning (DL) approaches are
currently widely used. These techniques improve
detection by Learning complex patterns and anoma-
lies, overcoming the limitations of traditional meth-
ods. ML tools, such as classifiers, segment data into
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distinct categories like normal and abnormal, train-
ing on labeled datasets to detect patterns and clas-
sify new data points, recognizing outliers (Rafique
et al., 2024). Autoencoders, a type of neural net-
work, excel at this task by compressing input data and
reconstructing it, Learning normal data patterns and
detecting anomalies by comparing the reconstructed
output with the original (Torabi et al., 2023). Ad-
ditionally, Deep Learning models like Convolutional
Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs) automatically extract relevant features
from large, unstructured datasets, improving anomaly
detection by capturing intricate patterns and tempo-
ral dependencies (Lakey and Schlippe, 2024). While
DL techniques offer significant advancements in net-
work anomaly detection, they also raise privacy con-
cerns. These methods often require centralizing large
datasets for model training, which can lead to privacy
breaches if sensitive data is not adequately protected.

2.2 Federated Learning for Network
Anomaly Detection

Federated Learning is a revolutionary approach to ma-
chine Learning, providing a decentralized framework
that enables multiple entities to collaboratively train
a model while keeping their data local. Unlike tra-
ditional centralized methods, Federated Learning im-
proves data privacy and security by keeping sensi-
tive information in its original environment. Rather
than aggregating raw data, this method gathers and
combines model updates such as gradients or param-
eters—from each participant. This decentralized ag-
gregation reduces the risk of data breaches and en-
sures compliance with stringent data protection regu-
lations. Federated Learning’s key principles include
collaborative training across distributed nodes, se-
cure aggregation of model updates, and robust com-
munication protocols. Federated Learning improves
anomaly detection across network environments by
aggregating model updates from a variety of decen-
tralized sources. This approach uses a broader set
of data while maintaining individual privacy, result-
ing in more accurate and resilient detection systems
that overcome the limitations of centralized meth-
ods(Bharati et al., 2022).

2.2.1 Architecture of Federated Learning for
Network Anomaly Detection

Federated Learning is intended to handle decentral-
ized data sources and strict privacy requirements. It
enables multiple entities, such as devices or servers,
to participate in model training without transmitting
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raw data. The architecture depicted in figure 1 has
three major components (Zhao et al., 2019):

a

Clients

Figure 1: Architecture of Federated Learning.

* Server as a Central Coordinator: The server
manages the global model, initialized with pa-
rameters from a pre-existing dataset. It selects
a subset of client devices for each training itera-
tion based on performance or availability, ensur-
ing diverse data sources contribute efficiently to
the global model.

* Client Devices and Local Computation: Each
client device uses its private dataset to compute
model updates based on the global model. These
updates, encrypted or anonymized for privacy, are
transmitted to the server without exposing raw
data.

» Secure Aggregation: The server aggregates
encrypted updates using methods like Feder-
ated averaging or secure multi-party computation
(MPC). Weighted strategies may prioritize signif-
icant client contributions, improving model accu-
racy and robustness. The updated global model
is then redistributed to clients, enabling iterative
refinement for anomaly detection across diverse
data.

2.2.2 Privacy Measures in Federated Learning

Federated Learning incorporates a number of privacy-
preserving features throughout its decentralized
framework. Data is distributed across client devices
to avoid the centralization of sensitive information.
Clients compute and send model updates in a se-
cure, encrypted format, which the server aggregates
using privacy-preserving methods. Furthermore, dif-
ferential privacy techniques may be used to add noise
to model updates, thereby protecting individual data
points. The client selection procedure is randomized
to guarantee diverse participation and avoid dispro-
portionate disclosure of any single client’s data (Lyu

et al., 2022). The described Federated Learning ar-
chitecture provides a strong foundation for collabora-
tive, privacy-preserving anomaly detection in decen-
tralized environments.

2.3 Deep Learning Algorithms

This section explores the three Deep Learning al-
gorithms used in our system: Multilayer Perceptron
(MLP), Long Short-Term Memory (LSTM) networks,
and Convolutional Neural Networks (CNNs). Each
algorithm is designed to handle different types of
data, enhancing the detection and analysis of anoma-
lies in network traffic, sequential data, and grid-like
data structures. We detail how each is applied, focus-
ing on their role in improving the accuracy and per-
formance of our predictive models.

The Multilayer Perceptron (MLP): We use a multi-
layer perceptron (MLP), a type of artificial neural net-
work (ANN) commonly applied to supervised Learn-
ing tasks like network anomaly detection. The MLP
consists of perceptrons that compute the dot product
of input features with a weight matrix, which contains
trainable parameters. Our architecture includes three
fully connected layers: two hidden layers with 256
units each, activated by ReLU, and an output layer
that uses a sigmoid activation function for binary clas-
sification, predicting class probabilities.

Long Short-Term Memory (LSTM): Long Short-
Term Memory (LSTM) networks handle sequential
data by capturing long-term dependencies through
specialized LSTM cells with input, forget, and out-
put gates. Our setup includes one LSTM layer, two
dense layers, and a final sigmoid layer, enabling effi-
cient processing of time series data and pattern recog-
nition.

Convolutional Neural Network (CNN): Our system
also employs Convolutional Neural Networks, which
excel at processing and analyzing grid-like data struc-
tures, such as images. CNNs are composed of sev-
eral layers, including convolutional layers that apply
filters to the input data to extract indispensable fea-
tures like edges and textures in images. These con-
volutional layers are followed by pooling layers that
reduce dimensionality and computational complexity
by downsampling the feature maps. The architecture
also integrates fully connected layers that use the flat-
tened output from the convolutional and pooling lay-
ers to make final predictions. Through the use of con-
volutional and pooling operations, CNNs effectively
capture spatial hierarchies and patterns in the data,
making them ideal for tasks like image classification
and object detection. The following section will go
over the detailed methodology, which includes the al-
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gorithms, datasets, and evaluation metrics used to im-
plement and evaluate the effectiveness of this archi-
tecture in real-world network anomaly detection sce-
narios.

3 RELATED WORK

This section reviews significant contributions in
the field of Federated Learning as applied to net-
work anomaly detection, highlighting innovative ap-
proaches and methodologies that address the unique
challenges of this domain. The emphasis is on adap-
tive Federated Learning frameworks and hierarchi-
cal architectures that enhance system robustness and
data privacy. Authors in (Doriguzzi-Corin and Sir-
acusa, 2024) introduced FLAD, an adaptive Fed-
erated Learning Approach specifically designed for
DDoS attack detection. This approach aims to over-
come the limitations of traditional Federated Learn-
ing algorithms by dynamically adjusting client selec-
tion and computational workloads during the train-
ing process, without necessitating the exchange of
training or validation data between clients and the
central server. FLAD is tailored for cybersecurity
applications, with a particular focus on maintaining
data privacy by ensuring that sensitive attack data
is not shared between clients and the server. This
method utilizes the CIC-DDo0S2019 dataset (Saheb
et al., 2021), which provides a robust framework
for evaluating DDoS detection capabilities under a
Federated Learning paradigm. The paper introduces
FLAD, an adaptive Federated Learning mechanism
that improves upon traditional methods like FEDAVG
by dynamically tuning the Federated training process
based on client performance. In (Marfo et al., 2022),
the authors explore a Federated Learning architec-
ture that incorporates a hierarchical setup involving
clients, edge servers, and a global server. Clients re-
tain their data locally and manage their models inde-
pendently, thereby safeguarding data privacy by pre-
venting direct data transfers to central servers. Edge
servers play a critical role in this architecture by re-
ceiving model updates from clients, aggregating these
updates, and forwarding the consolidated results to
the global server. The global server then refines the
global model using these aggregated updates and dis-
seminates the improved model back to clients for lo-
cal updates. This hierarchical structure, which intro-
duces intermediate layers such as edge servers, dis-
tributes the computational load and enhances system
reliability by mitigating the impact of potential fail-
ures. This tiered approach not only improves scal-
ability but also increases the resilience of Federated
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Learning systems. The application of Multilayer Per-
ceptron (MLP) within this framework is particularly
effective for tasks like network anomaly detection, as
demonstrated using the UNSW-NB15 dataset, which
provides comprehensive coverage of network intru-
sion scenarios. These innovative approaches in Fed-
erated Learning for network anomaly detection un-
derscore the importance of adaptive frameworks and
hierarchical architectures in enhancing privacy, scala-
bility, and system resilience. In (Priyadarshini, 2024),
to improve anomaly detection in IoT environments,
the authors use the UNSW-NB 15 dataset and the Split
Learning (SL) model. Split Learning maintains pri-
vacy by enabling the model to be trained on several
devices without transferring raw data. This technique
divides the model into multiple components, each of
which is trained on a separate device. This lowers
the computational load while enhancing security. The
UNSW-NB15 dataset, which is renowned for its ex-
tensive records of network traffic, facilitates the effi-
cient identification of cyberthreats within the infras-
tructure of smart cities. In the following section, we
delve Deeper into the proposed methodology, further
exploring their implication for robust and efficient
anomaly detection.

4 METHODOLOGY

This section describes how we developed and evalu-
ated our Federated Learning-based network anomaly
detection system. Our methodology ensures a thor-
ough and rigorous assessment of various Deep Learn-
ing models, incorporating feature selection and bal-
ancing techniques to enhance model performance and
robustness, as illustrated in figure 2.
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Figure 2: Overview of the proposed methodology.
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4.1 Federated Network Anomaly
Detection Framework

We employed Federated Learning to promote collabo-
rative model training in a decentralized manner across
ten clients. Each client keeps its local data, ensuring
privacy, and sends model updates to the central server
through fifty communication rounds, as illustrated in
Figure 2. The experiments were conducted out on
the UNSW-NB15 dataset, which was balanced using
the SMOTE technique and then partitioned across ten
clients. We explored various scenarios by implement-
ing and training CNN, LSTM, and MLP models for
each client. To achieve optimal performance in our
Federated Learning-based system, we used Stochas-
tic Gradient Descent (SGD) as an optimizer and XG-
Boost for feature selection.

4.2 Dataset Description

The UNSW-NB15 dataset (Moustafa and Slay, 2015),
developed by the ACCS at UNSW, is used for training
and evaluating network anomaly detection models. It
covers nine attack types and includes 49 features from
network traffic. With around 2.5 million records, it
provides labeled data for both normal and malicious
activity. The dataset is publicly available for research
to enhance network security and intrusion detection
systems.

4.3 Preprocessing Steps

Preprocessing plays a vital role in enhancing the per-
formance of Machine Learning models. The key steps
include:

Handling Missing Values: Missing values, often re-
sulting from data corruption or improper recording,
are addressed by removing rows with NaN values,
negative infinity (-inf), and duplicates. Feature Scal-
ing: Standardization is applied to rescale numerical
features to have a mean of zero and a standard devi-
ation of one, improving model accuracy and perfor-
mance (Fki et al., 2024).

Label Encoding: Categorical features are converted
into numerical values to make them suitable for Ma-
chine Learning models.

Class Imbalance Processing: The Synthetic Mi-
nority Over-sampling Technique (SMOTE) addresses
class imbalance by generating synthetic examples for
the minority class. It creates new instances in the fea-
ture space, improving the model’s ability to classify
minority classes (Ali et al., 2024a).

4.4 Tested Learning Algorithms

Using MLP, LSTM, and CNN architectures, we con-
ducted 50 rounds with 10 epochs for each of the 10
clients. Through extensive testing, we determined
that 10 epochs yielded the best results. Additionally,
we split the dataset into 80% for training and 20% for
testing. To optimize the proposed models, we use the
Stochastic Gradient Descent (SGD) optimizer. This
prominent algorithm in Machine Learning is particu-
larly effective for training models such as neural net-
works. Unlike traditional gradient descent, which cal-
culates the gradient using the entire dataset, SGD up-
dates model parameters iteratively using small, ran-
domly selected batches of data. This approach signif-
icantly enhances computational efficiency and speed.
The frequent updates facilitated by mini-batches en-
able faster convergence and improve the model’s abil-
ity to generalize, thereby reducing the risk of overfit-
ting. Additionally, the stochastic nature of SGD helps
the optimizer escape local minima, making it advanta-
geous for handling large-scale datasets. Overall, SGD
is a fundamental tool for scalable and robust model
training (Sun et al., 2022).

4.5 Tested Feature Selection

Among the best features, we use XGBoost feature
selection for identifying the most significant features
within a dataset. XGBoost intrinsically evaluates fea-
ture importance by analyzing each feature’s contribu-
tion to the model’s predictive accuracy during train-
ing. It measures metrics such as gain, coverage, and
frequency. This process enables the identification of
the most influential features, facilitating dimension-
ality reduction, enhancing model performance, and
lowering computational costs by focusing on the fea-
tures that significantly impact prediction outcomes
(Chen and Guestrin, 2016).

4.6 Evaluation Metrics

In anomaly detection, evaluating a model involves
metrics like recall, precision, accuracy, and the F1

score to assess its ability to identify anomalies.
* Recall is the metric that evaluates a model’s abil-
ity to correctly identify true anomalies, minimiz-

ing false negatives. Recall is calculated using the
formula (1):

TP

Recall = ——
= TP IEN

ey

* Accuracy measures the overall correctness of a
model’s predictions, considering both true posi-
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tives and true negatives. The formula (2) for ac-
curacy, considering true positives (TP), true neg-
atives (TN), false positives (FP), and false nega-
tives (FN), is:

TN+ TP

A - 2
COUrACY = e PN FPAIN 2

e The FI1-Score, the harmonic mean of preci-
sion and recall, provides a balanced evaluation
of model performance, especially in imbalanced
datasets, by balancing false alarms and anomaly
detection. The formula (3) calculates the F1-
Score:

2 x (Recall x Precision)

F1-S =
core Recall 4 Precision

3)

* Precision measures the proportion of flagged
anomalies that are true anomalies, minimizing
false positives (Ali et al., 2024b). The formula
for precision is (4):

TP

P .. _
recision TP + FP

“4)

S EXPERIMENTS AND RESULTS

For validating the methodology explained in the pre-
vious section, we conducted various experiments as
part of our research, using the SMOTE to balance the
dataset and the SGD architecture to optimize the mod-
els’ performance. We investigated three DL models:
MLP, LSTM, and CNN, while also employing XG-
Boost for feature selection. We ran 50 rounds with
10 epochs for each of the 10 clients across the three
combinations. Our Federated Learning-based ex-
periments yielded the following summarized results:
First, we present our experiments on the UNSW-
NB15 dataset (Moustafa and Slay, 2015) and then, we
compare our findings with those from other studies.
As can be seen from the table 1, within the proposed
Federated Learning architecture, the CNN model with
SGD outperforms the other models (MLP and LSTM)
using the same optimizer in terms of recall, accuracy,
precision, and F1-Score. This proves that CNN model
with SGD is very good at finding positive examples
with low error rates. The CNN is slightly superior
to the LSTM model with SGD in terms of precision
and recall, but both models still perform well. With
the lowest recall, precision, accuracy, and F1-Score
among the models, the MLP model with SGD, on the
other hand, performs worse than the other two mod-
els. In addition, we displayed some plotted curves
3, 4 and 5 for the tested combined approaches. In
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our Federated Learning setup, a “round” is a full cy-
cle in which each client performs local training on its
data and sends updates to the central server. The pro-
cess is repeated 50 rounds, allowing each model to it-
eratively improve while Learning from decentralized
data sources. In figures 3, 4 and 5, the X-axis repre-
sents the number of communication rounds (ranging
from 1 to 50). The Y-axis represents the metric val-
ues (recall, precision, accuracy, Fl-score, and loss)
used.These metrics for each model are plotted to show
how the model’s performance changes with each sub-
sequent round of training. From what we observed
in general for figures 3, 4 and 5, as the rounds in-
crease, recall improves because the model becomes
more adept at identifying true positives, Learning
from decentralized data from multiple clients. The
MLP’s recall begins low and improves marginally, in-
dicating a struggle to consistently identify anomalies.
CNN increases significantly over time, rapidly reach-
ing high recall values, indicating its effectiveness in
detecting anomalies. LSTM gradually evolves, but
not as quickly or effectively as CNN, most likely due
to its sequential data processing capabilities, which
are less suited to this specific problem. Precision also
tends to improve with rounds as the model reduces
false positives, thus enhancing its ability to correctly
classify anomalies. Precision increases slightly for
the MLP model, but remains relatively low, indicating
a challenge in reducing false positives. CNN achieves
high precision quickly and maintains it throughout
the rounds, demonstrating its strong ability in accu-
rate anomaly detection. LSTM advances with each
round but falls short of CNN’s precision, implying
that some false positives remain. Accuracy improves
as the model becomes more effective at identifying
both true positives and true negatives. MLP increases
slightly but stands the lowest of the models, indicating
lower overall performance. CNN achieves high accu-
racy early in the rounds, and maintains it throughout,
making it the most effective model. LSTM improves
steadily, achieving decent accuracy but still falling be-
hind CNN. As precision and recall improve, the F1-
score generally rises. The Fl-score for the MLP al-
gorithm is relatively low and increases slightly, in-
dicating that the model faces recall and precision
challenges. CNN quickly achieves a high F1-score,
demonstrating a good balance between precision and
recall. LSTM raises but does not match CNN, indi-
cating unbalanced gains in precision and recall. Loss
typically decreases as the model becomes more accu-
rate, reducing the difference between predicted and
actual results. MLP’s loss decreases slightly but
remains higher than that of other models, showing
poorer performance. CNN promptly achieves low
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loss values, indicating effective Learning and con-
vergence. Loss decreases steadily with LSTM but
does not reach the minimal values achieved by CNN.
Among the three models, CNN with SGD optimiza-
tion performs the best in anomaly detection within the
proposed Federated Learning framework. It consis-
tently achieves high recall, precision, accuracy, and
F1-score while reducing loss. LSTM performs rea-
sonably well but is less effective than CNN, most
likely due to its sequential processing nature not being
fully utilized in this particular context. MLP struggles
the most, implying that it may not be appropriate for
such complex anomaly detection tasks in a Federated
interconnected setting.

Test Metrics Over Rounds
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Figure 3: Test metrics over rounds for MLP architecture and
SGD optimiser.
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Figure 4: Test metrics over rounds for CNN architecture
and SGD optimiser.
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Figure 5: Test metrics over rounds for LSTM architecture
and SGD optimiser.

Table 1: Experiments on the UNSW-NB15 Dataset.

Experiment | Recall | Precision | Accuracy | F1-Score
MLP+SGD [0.9085| 0.8939 | 0.8903 | 0.9012
CNN+SGD [0.9939| 0.9998 | 0.9965 | 0.9968
LSTM+SGD|[0.9492| 0.9610 | 0.9508 | 0.9550

¢ Comparative Analysis with Related Works

Table 2: Comparative Analysis with Related Works.

Experiment Recall[Precision/Accuracy|F1-Score
SL  (Priyadarshini,[0.9802| 0.9812 | 0.9802 | 0.9811
2024)

MLP + Smote0.9718] 0.9809 | 0.9721 | 0.9763
(Marfo et al., 2022)

CNN+SGD (our) [0.9939] 0.9998 | 0.9965 | 0.9968

The table 2 compares our best proposed Fed-
erated Learning-based network anomaly detection
(CNN+SGD) to various related previous approaches
while considering the four common metrics re-
call, precision, accuracy, and Fl-scores. The SL
(Priyadarshini, 2024) solution performs well and con-
sistently across all metrics, with a recall of 0.9802,
precision of 0.9812, accuracy of 0.9802, and F1-score
of 0.9811. SMOTE combined with the MLP model
(Marfo et al., 2022) yields a recall of 0.9718, preci-
sion of 0.9809, accuracy of 0.9721, and F1-score of
0.9763. Our best solution combining the CNN, SGD,
SMOTE with XGBoost for feature selection outper-
forms all other related existing studies, with a recall of
0.9939, precision of 0.9998, accuracy of 0.9965, and
Fl-score of 0.9968. These findings demonstrate that
combining a CNN with SGD, adequate features using
XGBoost, and SMOTE within a Federated Learning
architecture is extremely effective.

6 CONCLUSION

This study compared the performance of various
Deep Learning models in detecting network anoma-
lies within a secure Federated Learning environment.
To enhance model performance, we utilized XGBoost
for feature selection, SMOTE for dataset balancing,
and SGD for model optimization. The findings show
that when it comes to recall, precision, accuracy, and
Fl-score, CNN combined with SGD, SMOTE, and
XGBoost perform noticeably better than other pos-
sible combinations. In particular, the CNN model
demonstrated almost flawless classification perfor-
mance with recall of 0.9939, precision of 0.9998, ac-
curacy of 0.9965, and Fl-score of 0.9968. The per-
formance of the LSTM and MLP models was en-
hanced by the addition of SMOTE, underscoring the
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significance of correcting the dataset’s class imbal-
ance. However, the feature selection model using
MLP, SGD, and SMOTE performed relatively poorly,
indicating that this combination might not be as use-
ful in the network anomaly specific context. Over-
all, the results indicate that feature selection with a
CNN equipped with SGD, SMOTE, and XGBoost is
very successful when applied to network anomaly de-
tection tasks within a Federated Anomaly environ-
ment. To improve the results’ generalizability, fu-
ture research ought to investigate into other optimiza-
tion techniques for these models and their applica-
tions across various domains. Furthermore, testing
our experiments on different datasets would provide
a broader overview of the model’s performance.
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