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Abstract: The objective of gait recognition is to use a visual camera to identify a person from a distance using a visual
camera by their distinctive gait. However, the accuracy of this recognition can be impacted by things like car-
rying a bag and changing clothes. The framework for human gait recognition system presented in this study
is based on deep learning and EfficientNet Deep Neural Network. The proposed framework includes three
steps. The first step involves extracting silhouettes. The second step involves computing the gait cycle, and
the third involves calculating gait energy Depending on the conditional generative adversarial networks and
EfficientNet Deep Neural Network. In the first step, silhouette images are extracted using Gaussian mixture-
based background algorithm. The segmentation of the gait cycle is estimated by measuring the silhouette’s
bounding box’s length and width, then calculating gait energy. Images resulted from the previous stage are
used as input to the conditional generative adversarial networks to generate Gait Energy Image (GEI). Effi-
cientNet is employed as an identification discriminator in this work. The suggested framework was evaluated
on a challenging gait dataset called CASIA-B, and scored an accuracy of 97.13%. The framework introduced
in this paper outperformed techniques in literature in accuracy.

1 INTRODUCTION

The unique strolling style of individuals can be uti-
lized as a natural identifier due to the difficulty of
replicating it (Asif et al., 2022). Identifying humans
based on their gait is a biometric recognition proce-
dure that leverages stride features to distinguish an
individual from a distance without requiring physi-
cal contact. This method stands apart from traditional
biometric systems, as it allows for recognition at a dis-
tance, making it particularly useful in various applica-
tions, including surveillance and security. Human as-
pects such as spatial, static, and temporal characteris-
tics are integral to gait analysis (Iwashita et al., 2014).
Unlike other biometric identification methods like
fingerprints, facial recognition, iris scans, and palm
prints, gait analysis has shown superior discrimina-
tive qualities, particularly in dynamic environments
where other methods may falter (Li et al., 2022). As
a result, it has gained significant traction within the
field of Machine Learning (ML), where algorithms
are increasingly trained to recognize and classify gait
patterns. Recent advancements in real-world applica-
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tions, including forensic detection, video monitoring,
and crime prevention, have drawn considerable atten-
tion to gait recognition systems. These systems have
also evolved to include low-contrast gait identifica-
tion methods, which can be particularly useful in chal-
lenging visibility conditions (He et al., 2016; Yu et
al.,2017). The ability to identify individuals based on
their walking patterns presents a non-invasive alterna-
tive to traditional biometric methods. However, gait
recognition is inherently a behavioral-based biometric
detection method, which can lead to lower accuracy
compared to physical biometric methods. This re-
duced accuracy can be attributed to various covariate
factors, including lighting conditions, walking pace,
the clothing individuals may be wearing, and varia-
tions in viewing angles (Tan and Le, 2021; Yu et al.,
2006; Liao et al., 2020; Isola et al., 2017) .

These variables significantly affect gait char-
acteristics and make gait recognition a complex
task (Dupuis et al., 2013). To address these chal-
lenges, researchers have developed various strate-
gies to enhance the extraction and analysis of gait
data. These strategies can be broadly categorized
into two groups: model-based and appearance-based
approaches (Alvarez and Sahonero-Alvarez, 2018;
Wang and Yan, 2020). The model-based method re-

Burges, E. T., Oraibi, Z. A. and Wali, A.
Gait Recognition Using CGAN and EfficientNet Deep Neural Networks.
DOI: 10.5220/0013138300003912
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2025) - Volume 3: VISAPP, pages
339-346
ISBN: 978-989-758-728-3; ISSN: 2184-4321
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

339



Figure 1: Framework of the proposed methodology.

lies on constructing models of human body shape
and motion to categorize gait. However, this ap-
proach often suffers from reliability issues due to the
aforementioned covariate factors, particularly when
extracting gait patterns from low-resolution images.
Conversely, the appearance-based method utilizes hu-
man silhouettes, which can be retrieved from low-
resolution images, though they remain sensitive to
changes in illumination and clothing (Tan and Le,
2021, Tan, 2019, Howard, 2017). The work proposed
in this paper falls under the second category of gait
recognition techniques. Specifically, it employs sil-
houettes to mitigate distortion caused by varying il-
lumination conditions and differences in clothing col-
ors and textures, as noted in (Ramachandran et al.,
2017). During the recognition stage, these silhouettes
serve as feature inputs, allowing for effective identifi-
cation. This approach of using low-resolution images
not only demands less computational power but also
reduces memory usage without significantly compro-
mising performance (Russakovsky et al., 2015). Such
advantages have likely contributed to the rising pop-
ularity of model-free approaches within gait recog-

nition methodologies. To tackle the problem of ap-
pearance change, we employ a conditional genera-
tive adversarial network (CGAN) that generates view-
invariant representations. The CGAN architecture
consists of a generator modeled as U-Net, accom-
panied by two discriminators: a patchGAN and an
EfficientNet-based Deep Neural Network. This de-
sign aims to enhance the robustness of gait recogni-
tion across varying conditions. The remaining sec-
tions of our paper are organized as follows: Sec-
tion 2 describes the proposed methodology for rec-
ognizing gait using the EfficientNet model. Section 3
presents experimental results obtained from our pro-
posed work. Finally, conclusions and directions for
future research are discussed in section 4.

2 THE PROPOSED
METHODOLOGY

The proposed EfficientNet model based human gait
recognition system relies on multi-views video. In or-
der to apply it, few steps must be performed to pre-
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Figure 2: Modified EfficientNetV2L.

Table 1: Specifications of EfficientNet architecture used in
this paper.

Layers Units Activation Function
EfficientNetV2L Custom Network
Dense 120 relu
Dense 120 relu
Dense 1 sigmoid
Batch Normalization - -
Dropout 0.2 -

pare the images for the final model. These steps are:
Data preprocessing, invariant feature generation, and
the final step is classification using EfficientNet. It is
worthy to mention that our previeous work included
the use of a hybrid model of ResNet and CGAN (Ta-
lal et al., 2023). In addition, we also proposed a
model that uses LSTM and CNN recently (Burges
et al., 2024). Both models achieved high prediction
on CASIA-B database.

2.1 Preprocessing

Image silhouettes in a single walking cycle must be
obtained first. Using the given gait sequence, the
method outlined in (He et al., 2016) is applied to pro-
duce human silhouettes. Ultimately, all of the images
undergo size normalization and horizontal alignment.
These images are processed by applying dilation and
erosion to remove noise. Next, the bounding box of
the silhouette is measured for length and width, and
the interval between the two highest lengths is cal-
culated to estimate the gait cycle segmentation. Next,
the Gait Energy Image (GEI) is computed using Equa-
tion 1 and the samples shown in Fig. 1.

GEI(v,w) =
M

∑
t=1

I(v,w, t)/M (1)

Image coordinates are represented as v and w, M

is the number of images in a whole gait cycle, I is the
image, and t is the gait cycle frame number.

2.2 Generating Invariant Features

With a U-Net-based architecture, a CGAN model is
presented that can convert the representations of gait
from any viewpoint and appearance condition into
side-view representations under standard conditions.

Input Data: Before the Generative Adversarial
Network (GAN) can be trained, the data must first be
organized. The Gait Energy Images (GEIs) from all
viewpoints in the sequences of normal bag, carrying,
and walking and putting on a coat are designated as
the source information. The GEIs from side views at
a normal walking angle of 90 degrees are designated
as the goal data. After that, 40 million source-target
representation pairs were collected so that the GAN
could be trained.

2.3 Conditional Generative Adversarial
Nets

The basic GAN model was observed to not be con-
trolled easily because it does not explicitly incorpo-
rate attributes or conditions. To address this, Mirza
and Osindero (Yu et al., 2017) proposed Conditional
GAN (CGAN) which can guide the classification pro-
cess. This condition y can be connected to class la-
bels, properties from multiple modalities, or other ex-
ternal data that is provided as an additional input to
both the generator and discriminator networks. As
a result, this allows the model to generate or clas-
sify samples based on the provided condition, making
the GAN more controllable and applicable to a wider
range of tasks. In summary, the goal of the condi-
tional GAN is to leverage the additional condition-
ing input y to guide the adversarial training process
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Figure 3: Sample frames of CASIA-B database. Images on
the left represent 11 different capturing views. Images on
the right represent 3 walking conditions.

Figure 4: 11 views walking sequences from CASIA-B
dataset.

and enable more controlled generation or classifica-
tion compared to the basic GAN framework.

LCGAN(G,D) = Ex,y[logD(x,y)]+
Ex,y[[log(1−D(x,G(x,y)))]]

(2)

Whereby the generator G attempts to reduce this
function. The discriminator D, on the other hand,
seeks to maximize it. Studies previously have also
shown that results that are fairly close to reality can be
obtained by combining the historical loss with more
conventional loss functions.

LL1(G) = Ex,y[||y−G(x,y)||1] (3)
The definition of final objective can be as follows:

G∗ = arg min
G

max
D

LcGAN(G,D)+λLL1(G) (4)

λ is a regularizing hyperparameter. For instance,
the CGAN produces highly defined outputs when λ is
used, but the classification accuracy drops.

2.4 Recognition Stage

EfficientNet deep neural network was developed to
address the shortcomings of conventional classifica-
tion techniques, such as the small sample size is-
sue and the lack of discriminative information in the
means of classes. EfficientNet is a family of convo-
lutional neural network models that are designed to

achieve state-of-the-art accuracy with fewer parame-
ters and computational resources compared to other
popular models such as ResNet or Inception. The
EfficientNet architecture uses a combination of effi-
cient building blocks, including depth-wise separable
convolutions and squeeze-and- excitation modules, to
optimize the trade-off between model size and accu-
racy. This makes EfficientNet appropriate for mobile
or edge devices which require resource constraining.

2.5 EfficientNetV2L

Introduced in 2021, EfficientNetV2L is a neural net-
work architecture that belongs to the EfficientNetV2
family of models, which was developed to optimize
the trade-off between model size, speed, and accu-
racy in image classification tasks (Tan and Le, 2021).
The ”L” in EfficientNetV2L stands for ”Lite,” in-
dicating that it is a more compact and lightweight
variant of the original EfficientNetV2 model (Tan,
2019). This design choice aims to provide a more
efficient and faster training process while maintaining
high levels of accuracy, making it particularly suit-
able for applications where computational resources
are limited.EfficientNetV2L employs several inno-
vative techniques to achieve its objectives. It uti-
lizes depth wise separable convolutions, which re-
duce the number of parameters and computations
compared to traditional convolutions, thus enhancing
the model’s efficiency (Howard, 2017). Additionally,
the incorporation of squeeze-and-excitation blocks al-
lows the model to recalibrate channel-wise feature re-
sponses adaptively, further improving its representa-
tional power (Hu et al., 2018). The use of swish acti-
vation functions contributes to better training dynam-
ics and has been shown to outperform traditional acti-
vation functions such as ReLU (Ramachandran et al.,
2017). The model has been extensively trained on
various image classification datasets, including Im-
ageNet, CIFAR-10, and CIFAR-100, where it has
achieved state-of-the-art performance (Russakovsky
et al., 2015). Its robust architecture not only excels
in classification tasks but also demonstrates consider-
able effectiveness in transfer learning scenarios, being
applicable to other computer vision tasks like object
detection and segmentation (Yosinski et al., 2014).
These attributes position EfficientNetV2L as a pow-
erful neural network architecture that provides an ef-
ficient and lightweight solution for image classifica-
tion tasks while ensuring high accuracy. Overall, Ef-
ficientNetV2L represents a significant advancement
in the field of deep learning, addressing the grow-
ing demand for models that are both performant and
resource-conscious. Its innovative approaches and
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impressive benchmark results make it a compelling
choice for researchers and practitioners alike.

2.6 The Proposed Architecture

Fig. 1 represents the architecture of our proposed
model. The EfficientNetV2L network has been mod-
ified by freezing the pertained weights and rebuild-
ing the top by adding four convolution layers (Glob-
alAveragePooling2D, Batch Normalization, Dropout,
and Dense) and an Adam optimizer. Our system uses
grayscale images as input, having 150×150×3 sizes.
Then we added our custom network to three convo-
lution layers. The first two layers with the relu ac-
tivation function, and the last one with sigmoid, see
Fig. 2. The details of the network structures are shown
in Table 1.

3 EXPERIMENTAL RESULTS

The challenging CASIA-B database (Yu et al., 2006)
was captured indoors. As the subject is walking 11
cameras are positioned around the person’s left side.
The two closest view directions are separated by 18
degrees. Sample frames of the database are shown in
Fig. 3. Fig. 4 shows the various views of a walking
sequence sample. We applied the experimental ap-
proach recommended in (Amin et al., 2021; Alvarez
and Sahonero-Alvarez, 2020; Isola et al., 2017) in or-
der to accurately compare the proposed strategy with
cutting-edge methods. The dataset is divided in half
with the first 62 participants completed six regular,
two carrying-bag, and two wearing-coat sequences,
making up the training set. In the test phase, the re-
mainder of 62 people were employed. In order to
evaluate the variations in view, carrying, and clothing
circumstances, sequences denoted as (”nm1”), were
considered as gallery set during experiments.

3.1 Model Parameters

The generator and two discriminators make up the
two components of CGAN as previously illustrated
in Fig. 1. GEI generator makes use of U-Net architec-
ture. Hence, a similar setup to (Liao et al., 2020) was
depicted in the experiments which is composed of 2
elements: The encoder and the decoder. In the en-
coder, there are 4 convolutional layers. Since a U-Net
architecture is used, the number of channels are dou-
bled in the decoder. The reason for that is because U-
Net concatenates activations between layers i and n.
The first layer of the encoder is different from the oth-
ers in that it does not use the Batch Norm. A convo-

lutional layer and Tanh layer are added after the final
decoder layer in order to account for the channel num-
bers of the output. The reason for utilizing the first
discriminator is discriminate fake photos from the real
ones. In addition, PatchGAN (Isola et al., 2017) was
also employed to penalize specific areas from the im-
age as fake or real. This will allow us to focus on GEI
areas that are related to image parts which are more
resistant to appearance changes (Dupuis et al., 2013;
Alvarez and Sahonero-Alvarez, 2018). The second
discriminator is identification, which makes use of
EfficientNetV2L architecture. The identification dis-
criminator computes the chance that the data pair be-
longs to the same individual by using the original gait
image sequence and the created output gait image se-
quence as one training data pair. The output of iden-
tification discriminator is either 0 or 1 depending on
the training data.

3.2 Training Stage

Hyper parameters were selected carefully in the ex-
periments to ensure superior performance. The op-
timizer utilized during experiments is Adam while
training the generator and the first discriminator.
0.0002 learning rate was used with momentum pa-
rameters of 1 = 0.5, 2 = 0.999. We found that suf-
ficient performance was achieved after 20 training
epochs when utilizing = 100. RMS prop optimization
with a binary cross entropy loss function and a learn-
ing rate of 0.001 was used to train the second discrim-
inator. Since both PatchGAN and U-net were trained
from scratch, the weights were derived from a Gaus-
sian distribution with a mean of 0 and a standard devi-
ation of 0.02. Because each participant in the CASIA
database only contains a certain amount of sequences.
The image size in EfficientNetV2L is 150× 150× 3,
while in U-net and PatchGAN it is 64×64. It runs on
the Windows 11 OS and the Colab Pro (with GPU) en-
vironment using the Python programming language.

3.3 Results and Discussion

The EfficientNetV2L classifier approach on the spa-
tial temporal feature GEI produced by Conditional
Generative Adversarial Network (CGAN) is pre-
sented in this research. Has been suggested for sys-
tems that recognize gaits. The suggested techniques
have been statistically evaluated using the CASIA-
B dataset. 124 individuals make up the CASIA-B
dataset. The dataset’s 124 people were divided into
62 groups: one for the training set and another for the
testing set. In order to assess the suggested model,
the accuracy, F1score, precision, and recall are taken

Gait Recognition Using CGAN and EfficientNet Deep Neural Networks

343



Table 2: Results of applying our approach.

Acc. Prec. Recall F1-score
Training data 97.18 0.97 0.97 0.97

Validation data 97.17 0.97 0.97 0.97
Testing data 97.13 0.97 0.97 0.97

Figure 5: Performance of training stage.

into account (Hossain et al., 2010) as shown in Ta-
ble 2. Initially, an image segmentation procedure was
performed using the Gaussian Mixture methodology,
which was found to be effective for fundus gait pic-
ture segmentation in previous research (Huang et al.,
2021).This technique was used to separate the silhou-
ettes from the RGB gait images. Fig. 1 displays a few
of the segmentation outcomes. Following processing,
each image is subjected to size normalization and hor-
izontal alignment.

Next, dilation and erosion are used to eliminate
any noise from the images. First, the length and
width of the bounding box drawn around the sil-
houette are measured, and then the interval between
the two largest lengths is calculated to estimate the
gait cycle segmentation that follows. Next, the Gait

Energy Image (GEI) is computed using the samples
shown in Fig. 1. To generate invariant characteristics,
CGAN was used to develop GEI for a variety of sce-
narios, generate typical side views photos for multiple
viewpoints, create GEIs for carrying a bag and wear-
ing a coat, and then discriminate the first 62 individu-
als using the first discriminator. A second discrimina-
tor, which indicated whether or not the generated GEI
belonged to the same person, was used to differentiate
the test set.

Based on previously discussed altering neural net-
work settings, the accuracy of the EfficientNetV2L
classifier has been evaluated in section 4.D. The test-
ing dataset yielded an accuracy of 97.13%. The per-
formance of our proposed technique during training
can be evaluated as in Fig. 5 where training loss and
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Table 3: Comparison with the best performing methods.

Authors Proposed Method Accuracy
Wang et al. (Wang and Yan, 2020)

(2020) Ensemble learning 92.0%

Wang et al. (Wang and Yan, 2020)
(2020) LSTM 95.0%

Javaria Amin et al. (Amin et al., 2021)
(2021) Conv-BiLSTM 96.0%

Our Proposed Framework
(2024) CGAN + EfficientNet 97.13%

training accuracy are shown after 10 epochs. The to-
tal accuracy data acquired, as presented in Table 3,
has been used to compare the performance of our pro-
posed strategy with that of existing methods. Based
on the comparative analysis presented in Table 8, it
is evident that our study is outperforming the other
studies included in the list. Wang et al.’s (Li et al.,
2020) ensemble learning method for categorizing hu-
man gait yielded values of 0.95 and 0.92 CPR, respec-
tively. Wang et al. (Saleem et al., 2021) employed
LSTM to learn the sequential patterns of the input
images and were able to achieve 0.95 CPR on the
CASIA-B dataset. Javaria Amin et al. (Amin et al.,
2021) used the Conv-BiLSTM model to generate a
CPR of 0.96, of which 0.88 (person with bag) and
0.92 (normal) were reached for the classification of
various human kinds.

4 CONCLUSIONS

This work developed a method for a gait identifica-
tion system based on an EfficientNet classifier and a
CGAN architecture using a U-Net. The goal was to
overcome appearance variations caused by changes
in clothing, carrying conditions, and viewing angles.
Since it can be difficult to distinguish between hu-
man gait patterns and data-specific quirks, the re-
searchers proposed an algorithm with a generator that
creates normal images at a 90-degree angle and two
discriminators- one to determine if the images are of
the actual person and another to discriminate between
fake and real images generated by the generator. The
research demonstrated that this design improved the
accuracy of gait identification compared to previous
approaches, which often struggled with differences in
bags and coats. This makes the technology suitable
for advanced surveillance applications and other real-
world uses. Future work will benchmark performance
on larger datasets and explore handling more chal-
lenging situations like temporal fluctuations. In ad-
dition to improving accuracy across view changes be-
tween the probe and gallery sets, expanding the num-

ber of subjects is needed to yield more reliable find-
ings. More sophisticated and powerful models will
also be required for effective cross-view gait identifi-
cation.
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