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Abstract: Active Learning (AL) has been widely studied to reduce annotation costs in deep learning. In AL, the ap-

propriate method varies depending on the number of annotatable data (budget). In low-budget settings, it is

appropriate to prioritize sampling typical data, while in high-budget settings, it is better to prioritize sampling

data with high uncertainty. This study proposes Confidence-aware Typical Clustering (CTypiClust), an AL

method that performs well regardless of the budget. CTypiClust dynamically switches between typical data

sampling and low-confidence data sampling based on confidence. Additionally, to mitigate the overconfidence

problem in low-budget settings, we propose a new confidence calibration method Cluster-Enhanced Confi-

dence (CEC). By applying CEC to CTypiClust, we suppress the occurrence of overconfidence in low-budget

settings. To evaluate the effectiveness of the proposed method, we conducted experiments using multiple

benchmark datasets, and confirmed that CTypiClust consistently shows high performance regardless of the

budget.

1 INTRODUCTION

Reducing annotation costs is one of the critical chal-

lenges in deep learning. To enhance the performance

of deep learning models, a large amount of data is re-

quired, but annotating all the data is very costly. This

problem is particularly severe in fields requiring ex-

pertise, such as manufacturing and healthcare, where

accurate labeling demands enormous costs and time.

Active Learning (AL) has been widely studied as

a method to minimize annotation costs (Ren et al.,

2021). In AL, a fixed budget of data is sampled from

a large pool of unlabeled data, based on its useful-

ness for improving model performance. This process

is repeated to optimize the model with minimal la-

beled data. Traditional methods include AL methods

using uncertainty (low confidence) (Roth and Small,

2006; Gal et al., 2017; Pop and Fulop, 2018), meth-

ods considering data diversity (Sener and Savarese,

2018; Zhdanov, 2019), and methods considering both

uncertainty and diversity (Sinha et al., 2019). These

methods assumed relatively high-budget settings, but

recent advances in self-supervised learning (Jaiswal

a https://orcid.org/0009-0006-3749-3883
b https://orcid.org/0009-0006-8980-4356
c https://orcid.org/0009-0004-3547-8896

et al., 2021) have led to the development of AL meth-

ods in cold-start settings with no labeled data (Chen

et al., 2023; Yi et al., 2022), and research on AL in

low-budget settings (Hacohen et al., 2022).

However, (Hacohen et al., 2022) shows that the

optimal method varies depending on the budget. In

low-budget settings, it is necessary to learn from lim-

ited data, so prioritizing typical data makes it easier to

capture the overall characteristics of the dataset, lead-

ing to faster model accuracy improvement. On the

other hand, in high-budget settings, the main features

of the dataset can be learned from a large amount of

data, so learning data with high uncertainty near the

decision boundary is effective for improving accuracy

(Hacohen et al., 2022).

Therefore, in this study, we propose Confidence-

aware Typical Clustering (CTypiClust), which per-

forms highly regardless of the budget. This method

extends Typical Clustering(TypiClust)(Hacohen

et al., 2022), a method for low-budget settings, by

dynamically switching between sampling typical

data and low-confidence data based on confidence,

making it effective in high-budget settings as well.

Additionally, to address the issue of overconfi-

dence in low-budget settings, we propose a new

confidence calibration method Cluster-Enhanced

Confidence(CEC) and apply it to CTypiClust. To
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confirm that CTypiClust performs well regardless

of the budget, we evaluate its effectiveness using

CIFAR-10, CIFAR-100, and STL-10.

The contributions of this paper are as follows:

1. We propose an AL method CTypiClust that con-

sistently demonstrates high performance regard-

less of budget constraints.

2. A confidence calibration method CEC is pro-

posed, which effectively mitigates overconfidence

even in low-budget settings.

3. The effectiveness of CTypiClust and CEC is

demonstrated through experiments using multiple

benchmark datasets.

2 RELATED WORK

2.1 Active Learning

High-Budget Active Learning. Many AL methods

typically assume a high-budget setting, where meth-

ods that sample data with high uncertainty (Roth and

Small, 2006; Gal et al., 2017; Pop and Fulop, 2018),

methods that consider diversity (Sener and Savarese,

2018; Zhdanov, 2019), and methods that consider

both uncertainty and diversity have been proposed

(Kirsch et al., 2019; Sinha et al., 2019).

Among these, methods that sample data with high

uncertainty have been widely proposed (Roth and

Small, 2006; Gal et al., 2017; Pop and Fulop, 2018).

(Roth and Small, 2006) proposed Margin, which pri-

oritizes sampling data with a small difference be-

tween the highest and second-highest predicted prob-

abilities, considering such data as having high uncer-

tainty. (Gal et al., 2017) proposed DBAL, which uti-

lizes a Bayesian approach.

(Sener and Savarese, 2018) proposed CoreSet,

an AL method that prioritizes diversity. CoreSet

achieves diversity-aware sampling by sampling rep-

resentative data based on the core-set approach. (Zh-

danov, 2019) proposed a mini-batch active learn-

ing method that incorporates data diversity using K-

means clustering to enhance the efficiency of label se-

lection in large-scale datasets.

Approaches that consider both uncertainty and di-

versity have also been proposed (Kirsch et al., 2019;

Sinha et al., 2019). (Kirsch et al., 2019) proposed

BALD, which balances uncertainty and diversity by

sampling to maximize mutual information among

data points within a batch, in addition to a Bayesian

approach. (Sinha et al., 2019) introduced VAAL, a

method that focuses on both diversity and uncertainty

using a variational autoencoder.

Cold and Low-Budget Active Learning. In settings

like cold-start and low-budget, where there is little or

no labeled data, methods effective in high-budget set-

tings perform worse than random sampling (Hacohen

et al., 2022). As an effective method in cold-start set-

tings, (Yi et al., 2022) introduced a method that sam-

ples data with high loss in pretext tasks, considering

it to have high learning efficiency. (Chen et al., 2023)

proposed a method based on contrastive learning that

samples data that is difficult to distinguish as typical

data. In cold-start and low-budget settings, (Hacohen

et al., 2022) proposed TypiClust. TypiClust priori-

tizes sampling data with high density in the feature

space of unlabeled data as typical data.

Typicality-prioritized AL methods like TypiClust

perform poorly in high-budget settings. Therefore, in

this study, we propose CTypiClust, which performs

highly regardless of the budget by combining meth-

ods based on uncertainty. Uncertainty is generally

calculated from the model’s confidence, but in low-

budget settings, there is a problem of overconfidence,

where the model becomes excessively confident.

2.2 Confidence Calibration

Deep learning models are known to exhibit overcon-

fidence, where the predicted confidence significantly

exceeds the actual accuracy. This issue is particu-

larly prevalent in low-budget settings with very lim-

ited training data. To address this problem, numer-

ous calibration methods have been proposed to align

predicted probabilities with actual accuracies (Wang,

2024).

Calibration methods can be broadly categorized

into post-hoc methods and regularization methods.

Post-hoc methods perform calibration using a large

amount of data after the model has been trained. For

example, temperature scaling (Platt, 2000; Mozafari

et al., 2019) optimizes the temperature parameter of

the softmax function using validation data. On the

other hand, regularization methods add penalties to

the model’s loss function to suppress overconfidence

(Guo et al., 2017; Pereyra et al., 2017).

Many calibration methods assume settings with a

large amount of labeled data or aim to improve the

model itself or the loss function. However, they do

not consider special settings like low-budget, where

labeled data is extremely limited.

In this study, we propose a new calibration method

CEC to mitigate overconfidence in low-budget set-

tings and apply it to CTypiClust. CEC corrects the

model’s confidence based on the clustering results of

intermediate layer features.
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Figure 1: Illustration of CTypiClust and CEC. (a) CTypiClust, similarly to TypiClust, obtains features from the unlabeled
dataset U and performs clustering. From each cluster Ki, it retrieves the data with the highest typicality xt and the data with
the lowest CEC xc. It decides whether to sample xt or xc based on the CEC(xt) of the data with the highest typicality. (b)
In CEC, the input data x is fed into the model to obtain the features f (x) (black circle) and the output of the classification
model g(y | f (x)). From g(y | f (x)), the pseudo-label ŷ and the confidence ĉ are calculated. The features of the unlabeled
data are clustered, and the cluster to which x belongs is assigned the pseudo-label ỹ. The confidence c̃ is calculated based on
the relative distance to the center µi (star) of each cluster. Finally, CEC(x) is calculated from the two pseudo-labels and the
confidence.

3 METHOD

In this section, we introduce Confidence-aware Typi-

cal Clustering (CTypiClust). The detailed methodol-

ogy of CTypiClust is explained in Section 3.2. Ad-

ditionally, we propose a new confidence calibration

method called Cluster-Enhanced Confidence (CEC),

which is used in CTypiClust and is discussed in Sec-

tion 3.3. The methods are illustrated in Figure 1.

3.1 Notation

Let X be the set of all input data, and each data point

x ∈ X is included in the unlabeled dataset U ⊆ X .

Although the data in the unlabeled dataset U are

not labeled, there exists a set of class labels Y =
{1,2, . . . , |Y |} corresponding to the data. Each data

point x has a corresponding label y ∈ Y . The model

used in this study is divided into a feature extractor

f (·) and a classifier g(·). First, the feature extractor

f extracts features f (x) from the input x. The classi-

fier g takes the features f (x) as input and outputs the

probability distribution g(y | f (x)) for the label y.

3.2 Confidence-Aware Typical

Clustering

We propose CTypiClust, an extension of TypiClust

(Hacohen et al., 2022) that considers confidence.

While TypiClust samples data with high typicality

as is, CTypiClust determines whether to sample data

with high typicality or low-confidence data based on

the confidence of the data with high typicality. If

the confidence of the data with high typicality is

high, CTypiClust assumes that the learning efficiency

of typical data is low and samples low-confidence

data. As a result, in immature stages like low-budget

settings, typicality-prioritized sampling is expected,

while in mature stages like high-budget settings, low-

confidence-prioritized sampling is expected. Addi-

tionally, CTypiClust uses CEC as the confidence mea-

sure to mitigate overconfidence in low-budget set-

tings.

The specific steps of CTypiClust are explained be-

low. CTypiClust consists of four steps. Steps 1 and 2

are the same as in TypiClust.

Step1: Pre-train the model f using the unlabeled data

U with Self-Supervised Learning methods (e.g., Sim-
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CLR (Chen et al., 2020)).

Step2: Input the unlabeled data U into the model fpre

trained in Step 1 to obtain features. Perform cluster-

ing on the obtained features using a method such as

K-means.

Step3: Extract data with high typicality xt =
argmaxx∈Ki

{Typicality(x)} and data with low CEC

xc = argminx∈Ki
{CEC(x)} from each cluster Ki. The

calculation method of CEC is explained in Section

3.3. Typicality(x) is calculated as the local density

in the feature space of x, as in (Hacohen et al., 2022).

Specifically, it is defined by the following equation:

Typicality(x) =

(

1

K
∑

xi∈K -NN(x)

‖x− xi‖2

)−1

.

Here, K is the number of data points in the K -nearest

neighbors (K -NN) of x, and xi is one of the data

points in the neighborhood. ‖x−xi‖2 is the Euclidean

distance between the data point x and its neighboring

point xi.

Step4: If the CEC(xt) of the data with high typical-

ity xt is below the threshold Tc, sample xt as is. If

CEC(xt) is higher than the threshold Tc, sample the

data xc with the lowest CEC in the same cluster.

The algorithm of CTypiClust is shown in Algo-

rithm 1.

Data: Unlabeled pool U , Budget B

Result: Queries

Embedding← Representation Learning(U);

Clust← Clustering algorithm(Embedding,

B);

Queries← /0;

for i = 1 to B do

xt ← argmaxx∈Ki
{Typicality(x)} ;

xc← argminx∈Ki
{CEC(x)} ;

if CEC(xt)> Tc then

Add xc to Queries ;

else

Add xt to Queries ;

end

end
Algorithm 1: CTypiClust.

3.3 Cluster-Enhanced Confidence

In low-budget settings, where the amount of train-

ing data is limited, the model tends to overfit and be-

come overconfident. To mitigate overconfidence, we

propose a confidence calibration method CEC, which

corrects the confidence of the classification model’s

output using the clustering results of intermediate

layer features.

The pseudo-label obtained from the classifier g

is ŷ = argmaxy g(y | f (x)), and the confidence is

ĉ = maxy g(y | f (x)). Additionally, the features of

the unlabeled data U are clustered, and the center of

each cluster Ki is µi =
1
|Ki |

∑x∈Ki
f (x). The pseudo-

label ỹ is the label obtained from clustering. In K-

means, ỹ = argmini D(x,µi). D represents any dis-

tance function (e.g., Euclidean distance, Cosine sim-

ilarity). The correspondence between the model’s

pseudo-label ŷ and the clustering pseudo-label ỹ is

based on the frequency of label occurrence within

each cluster. Specifically, after each data x is assigned

a pseudo-label ỹ by the clustering method, the model’s

pseudo-label ŷ that appears most frequently within

each cluster Ki is assigned as the representative label

of that cluster. The confidence c̃ is calculated based

on the relative distance to the center of each cluster,

similar to Prototypical Networks (Snell et al., 2017).

c̃ = max
k

exp(−D( f (x),µk))

∑i exp(−D( f (x),µi))
.

By using these values, CEC(x) is defined as follows:

CEC(x) = 1[ŷ=ỹ] · ĉ · c̃. (1)

Here, 1[ŷ=ỹ] is an indicator function that returns 1 if

the two pseudo-labels match and 0 if they do not. The

number of clusters |K| is set to be equal to the number

of classes |Y |. This function ensures that if the labels

do not match, CEC becomes 0, and unless both confi-

dences are high, the confidence will not be high. The

algorithm of CEC is shown in Algorithm 2.

Data: Data x, Clust K, Models f ,g

Result: CEC(x)
for i = 1 to |K| do

µi←
1
|Ki|

∑x∈Ki
f (x) ;

end

ŷ← argmaxy g(y | f (x));

ỹ← argmini D(x,µi) ;

ĉ←maxy g(y | f (x));

c̃←maxk
exp(−D( f (x),µk))

∑i exp(−D( f (x),µi))
;

CEC(x)← 1[ŷ=ỹ] · ĉ · c̃ ;

Algorithm 2: CEC.

4 EXPERIMENT AND

DISCUSSION

To verify whether CTypiClust performs superiorly re-

gardless of the budget, we use multiple datasets and

compare it with related methods under various budget

settings. Additionally, we conduct an ablation study

of CTypiClust and CEC using the CIFAR-10 dataset.
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(a) CIFAR-10

(b) CIFAR-100

(c) STL-10

Figure 2: Comparison of the ACC difference between each method and Random for each dataset. Results are shown from left
to right for low, medium, and high budgets. The shaded area reflects standard error.

4.1 Experimental Settings

In this experiment, we evaluate based on the AL pro-

gram proposed by (Munjal et al., 2022). The datasets

used for evaluation are CIFAR-10 (Krizhevsky and

Hinton, 2009), CIFAR-100 (Krizhevsky and Hin-

ton, 2009), and STL-10 (Coates et al., 2011). The

comparison methods are TypiClust(Hacohen et al.,

2022), Margin(Roth and Small, 2006), DBAL(Gal

et al., 2017), BALD(Kirsch et al., 2019), and Ran-

dom. We set three types of budgets (low, medium,

and high) and configure them for each dataset as fol-

lows: low=10, medium=100, high=1000 for CIFAR-

10; low=100, medium=1000, high=3000 for CIFAR-

100; and low=10, medium=100, high=500 for STL-

10. We use ResNet-18 (He et al., 2016) as the model.

For TypiClust and CTypiClust, we use features ex-

tracted from models pre-trained with SimCLR (Chen

et al., 2020). The models for learning each dataset are

also pre-trained with SimCLR. The parameter Tc for

CTypiClust is set to 0.8, and the distance function D

is the Euclidean distance. The evaluation metrics are

accuracy (ACC) and Area Under the Budget Curve

(AUBC) (Zhan et al., 2021). AUBC is a metric that

calculates the area under the ACC curve for each bud-

get. Other detailed settings are described in the Ap-

pendix.

4.2 Performance Comparison of

Different Methods

To evaluate whether CTypiClust performs highly re-

gardless of the budget compared to other methods, we

compare it with related methods under various budget

settings for multiple datasets.
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Table 1: Mean and standard deviation of AUBC for each method under low, medium, and high budgets. The numbers in
parentheses indicate the budget size. The highest performance is shown in red, and the second highest in blue.

CIFAR-10 CIFAR-100 STL-10

Budget Low(10) Medium(100) High(1000) Low(100) Medium(1000) High(3000) Low(10) Medium(100) High(500)

Random 49.77 (±1.67) 74.20 (±0.70) 82.56 (±0.12) 20.90 (±0.44) 44.83 (±0.13) 53.94 (±0.20) 41.88 (±1.98) 71.00 (±0.85) 83.67 (±0.42)

Margin 46.78 (±7.11) 74.89 (±0.05) 83.52 (±0.20) 20.37 (±0.16) 43.48 (±0.13) 54.33 (±0.18) 42.39 (±1.83) 72.21 (±1.66) 85.14 (±0.08)

DBAL 33.58 (±6.65) 68.75 (±1.97) 82.10 (±0.07) 13.58 (±1.38) 37.84 (±0.43) 51.05 (±0.26) 30.89 (±1.06) 62.30 (±1.82) 83.85 (±0.35)

BALD 29.32 (±2.86) 56.03 (±1.46) 80.34 (±0.27) 15.28 (±0.43) 38.48 (±0.16) 50.16 (±0.35) 33.24 (±2.45) 55.38 (±1.73) 82.17 (±0.14)

TypiClust 60.84 (±1.28) 75.66 (±0.26) 82.47 (±0.18) 28.77 (±0.15) 44.53 (±0.11) 52.48 (±0.19) 56.00 (±1.26) 73.83 (±0.49) 83.72 (±0.24)

CTypiClust 61.13 (±1.70) 76.29 (±0.22) 83.39 (±0.12) 29.04 (±0.24) 45.63 (±0.14) 54.03 (±0.42) 55.97 (±0.59) 74.07 (±0.28) 84.84 (±0.17)

Figure 2 compares each method with Random un-

der different budgets for each dataset. TypiClust per-

forms well when the budget is small, such as in low-

budget settings, but it performs worse than Random

as the budget increases. On the other hand, Margin,

which samples data with high uncertainty, performs

better than Random in high-budget settings but worse

than Random in low-budget settings. The proposed

method CTypiClust performs better than Random in

most cases regardless of the budget.

Table 1 compares the results of each method

in terms of AUBC. Similar to Figure 2, TypiClust

performs well in low-budget settings but poorly in

high-budget settings. Margin performs well in high-

budget settings but relatively poorly in low-budget

and medium-budget settings. CTypiClust ranks first

or second in all budget settings, demonstrating high

performance regardless of the budget.

4.3 Ablation Study

In this section, we conduct an ablation study on CTyp-

iClust and CEC using the CIFAR-10 dataset. First, we

compare CTypiClust using confidence ĉ and CEC to

evaluate the necessity of CEC in CTypiClust . Next,

we assess whether CEC mitigates the issue of over-

confidence. Finally, we examine the performance dif-

ferences based on the parameter Tc in CTypiClust.

Comparison of CTypiClust Using Confidence ĉ

and CEC. To evaluate the necessity of CEC in CTyp-

iClust, we compare the performance of CTypiClust

using simple confidence ĉ (w/o CEC) and CTypiClust

using CEC (w/ CEC). Table 2 shows the AUBC of

w/o CEC and w/ CEC. In low-budget settings, the

AUBC of w/o CEC is 59.34%, that of w/ CEC is

61.13%, approximately 1.79% improvement by using

CEC. In high-budget settings, the AUBC of w/o CEC

is 83.43%, slightly better than the 83.39% of w/ CEC,

but the difference of 0.04% is very small, with almost

no difference between them. This is likely because

in high-budget settings, the model’s ACC improves,

and overconfidence is mitigated, allowing w/o CEC

to perform well. Thus, in scenarios with relatively

low overconfidence like high-budget settings, the ne-

cessity of CEC is low, but in scenarios prone to over-

confidence like low-budget settings, the necessity of

CEC is high.

Table 2: Comparison of AUBC for CTypiClust without
CEC (w/o CEC) and with CEC (w/ CEC). The numbers in
parentheses indicate the budget size. The highest value for
each budget is shown in bold.

Budget Low(10) Medium(100) High(1000)

w/o CEC 59.34 75.81 83.43

w/ CEC 61.13 76.29 83.39

Verification of Overconfidence Mitigation by CEC.

To verify the extent to which CEC mitigates over-

confidence, we compare the overconfidence of simple

confidence ĉ and CEC. We use Expected Calibration

Error (ECE) (Pakdaman Naeini et al., 2015) to quanti-

tatively evaluate overconfidence. ECE ranges from 0

to 1, with lower ECE indicating less overconfidence.

Figure 3 compares ECE for each budget between con-

fidence ĉ and CEC on the CIFAR-10 test data.

Figure 3: Comparison of ECE between confidence ĉ and
CEC.

Figure 3 shows that CEC has smaller ECE than

ĉ for all budgets. This indicates that CEC reduces

overconfidence compared to ĉ. The difference in ECE

between CEC and ĉ is particularly large in settings

with small budgets of 10 to 100.

The reason CEC mitigates overconfidence is

likely due to the use of the agreement between the

pseudo-label ŷ obtained from the classifier g and the

pseudo-label ỹ obtained by clustering the features.

When the budget is low and learning is insufficient

(low ACC), features are not well-separated by class,

leading to many mismatched pseudo-labels and CEC

CTypiClust: Confidence-Aware Typical Clustering for Budget-Agnostic Active Learning with Confidence Calibration
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values of 0 (from Equation 1). As the budget and

ACC increase, features separate better, pseudo-labels

match more, and CEC values rise.

To verify this, we visualized the relationship be-

tween ACC, test data feature space, and the two

pseudo-labels. Figure 4 shows that with low ACC (as

shown on the left side of Figure 4), features are poorly

separated and pseudo-labels often mismatch, result-

ing in many CEC values of 0. With higher budgets

and ACC (as shown on the right side of Figure 4), fea-

tures separate better, pseudo-labels match more, and

CEC values increase. Confidence c̃ also rises as clus-

ters become more distinct.

Figure 4: Visualization of CIFAR-10 test data features using
t-SNE (Laurens and Hinton, 2008) and labeling the features
with ŷ and ỹ. ĉmean represents the mean of ĉ for the test
data, and CECmean represents the mean of CEC for the test
data. The left and right halves show the feature space when
ACC is low and high, respectively. The top row represents
the unlabeled feature space, the middle row represents the
feature space labeled by ŷ, and the bottom row represents
the feature space labeled by ỹ.

Comparison of CTypiClust Performance for Dif-

ferent Tc. To investigate the impact of the param-

eter Tc on the performance of CTypiClust, we eval-

uate CTypiClust using various Tc values. In CTyp-

iClust, the confidence CEC of typical data xt deter-

mines whether xt is used for training. The threshold

for this decision is Tc, so we compare values from 0.5

to 0.9, excluding Tc = 1 as it corresponds to Typi-

Clust. Figure 5 shows the performance differences

of CTypiClust for each Tc on CIFAR-10. From Fig-

ure 5, CTypiClust performs better than Random for

all budgets from low-budget to high-budget for any

Tc. This is likely because, in CEC, 1[ŷ=ỹ] in Equation

1 becomes 0 when the labels do not match, and CEC

functions regardless of Tc when CEC is 0.

Figure 5: Graph showing the difference between CTypi-
Clust and Random for each threshold Tc. Results are shown
from left to right for low, medium, and high budgets.

Additionally, Table 3 shows the AUBC for each

Tc. The difference between the maximum and mini-

mum values for each budget is 0.12% (63.35-63.23)

for low-budget, 0.71% (77.13-76.42) for medium-

budget, and 0.27% (83.62-83.35) for high-budget, in-

dicating that CTypiClust performs stably regardless of

the parameter.

Table 3: AUBC for each Tc under different budgets. The
numbers in parentheses indicate the budget size. The high-
est value for each budget is shown in bold.

Tc 0.5 0.6 0.7 0.8 0.9

Low(10) 63.25 63.25 63.35 63.23 63.23

Medium(100) 77.13 76.92 76.53 76.48 76.42
High(1000) 83.50 83.61 83.55 83.35 83.62

4.4 Limitations

Since CEC used in CTypiClust depends on the agree-

ment between the model’s classification results and

the clustering results of the features, CTypiClust is

specialized for classification problems and cannot be

easily applied to regression tasks.

In the future, we aim to overcome these limitations

and extend the method to make it applicable to various

tasks, including regression tasks.

5 CONCLUSION

We proposed CTypiClust, which performs highly re-

gardless of the budget. CTypiClust performs well in

both low-budget and high-budget settings by consid-

ering confidence in TypiClust. Additionally, to ad-

dress overconfidence in immature models like in low-

budget settings, we proposed a confidence calibra-

tion method CEC and applied it to CTypiClust. We

evaluated CTypiClust on CIFAR-10, CIFAR-100, and

STL-10, and found that it performs well across var-

ious budgets. We also experimentally verified that

CEC mitigates overconfidence. Since CTypiClust is

specialized for classification problems, we plan to

extend CTypiClust to make it applicable to various

tasks, including regression tasks, in the future.
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