
Scrooge: Detection of Changes in Web Applications to Enhance Security
Testing

Fabio Büsser1, Jan Kressebuch1, Martı́n Ochoa1, Valentin Zahnd2 and Ariane Trammell1
1Institute of Computer Science, Zurich University of Applied Sciences, Winterthur, Switzerland

2Secuteer GmbH, Zurich, Switzerland

Keywords: Security Testing, Black-Box Testing, Software Evolution.

Abstract: Due to the complexity of modern web applications, security testing is a time-consuming process that heavily
relies on manual interaction with various analysis tools. This process often needs to be repeated for newer
versions of previously tested applications, as new functionalities frequently introduce security vulnerabilities.
This paper introduces scrooge, a tool that automates change detection in web application functionality to
enhance the efficiency and focus of the security testing process. We evaluate scrooge on various platforms,
demonstrating its ability to reliably detect a range of changes. Scrooge successfully identifies different types
of changes, showcasing its applicability across diverse scenarios with high accuracy.

1 INTRODUCTION

The ever-evolving landscape of web applications
presents a continuous challenge for security testing.
Among various testing strategies, black-box testing
is commonly performed, where the source code of a
web application is unknown, simulating external at-
tackers (Bau et al., 2010). In black-box testing, a
combination of automatic and manual tasks are of-
ten employed to achieve high coverage of the ap-
plication under test, as automatic crawling has well-
known limitations (Doupé et al., 2010). Additionally,
a combination of manual and automatic testing is typ-
ically needed to test for both well-known vulnerabili-
ties (such as various injection types) and logical vul-
nerabilities that are inherent to the application and are
more difficult to automate (Pellegrino and Balzarotti,
2014).

Testing web applications is time-consuming and
resource-intensive. Furthermore, when an application
evolves due to new functionality, the security testing
process needs to be repeated. It has been observed
that changes to software tend to introduce new vulner-
abilities to existing versions (Mitropoulos et al., 2012;
Williams et al., 2018). Therefore, it is advantageous
for security testers to quickly identify which parts of
a web application have changed since the last security
testing, to prioritize their efforts accordingly.

This paper introduces scrooge, a tool designed to
automatically identify changes between two versions
of the same web application in a black-box fashion.
By automating change detection, scrooge has the po-

tential to significantly improve the efficiency and ef-
fectiveness of security testing.

We propose a data-gathering architecture aimed at
abstracting key interfaces and the state of a web ap-
plication. The resulting graph data structure allows
us to perform various change analyses, from parame-
ter changes to changes in HTML or JSON responses,
to changes in how a given page is visually rendered.
We evaluate our approach on three web applications
(two popular e-shop applications and one application
used in security training and teaching) and measure
its accuracy with respect to changes, either artificially
introduced or resulting from enabling new functional
modules. Our evaluation shows that scrooge can pre-
cisely detect changes without false positives. Reach-
ing all changes may depend on the selection of the
crawling strategy, which we also evaluate using two
popular crawlers and manual crawling. Our tool is
open source (Kressebuch and Büsser, 2024).

The rest of this paper is structured as follows: We
introduce our approach in Section 2. We then dis-
cuss our implementation in Section 3. Section 4 con-
tains our evaluation. We discuss limitations and fu-
ture work in Section 5. Related work is summarized
in Section 6, and we conclude in Section 7.

2 APPROACH

The overall integration of scrooge in the penetration
testing tool flow is shown in Fig. 1. A penetration

48
Büsser, F., Kressebuch, J., Ochoa, M., Zahnd, V. and Trammell, A.
Scrooge: Detection of Changes in Web Applications to Enhance Security Testing.
DOI: 10.5220/0013139600003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 2, pages 48-59
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



tester performs a test of a web application in a given
version x. If a new version x+1 is available, she uses
scrooge to determine the changes between the version
she tested last and the new version. Scrooge analyses
the versions in question and determines the changes
which can be represented as an annotated graph or a
text report. The penetration tester reviews the change
analysis and plans the test of the new version to anal-
yse the detected changes.

While this approach has the potential to increase
efficiency in the security testing, it is crucial that
changes are detected reliably. If a change would not
be detected the penetration tester might ignore rele-
vant new functionality and therefore a vulnerability
might remain undetected. Also, this approach must be
as precise as possible, because false positives would
need to be manually inspected and discarded, which
would require additional work.

Penetration 
Tester

scrooge
Web Application

Version: x
Web Application

Version: x+1

Detect changes (x: x+1)

Pentest 

Analyse

Analyse
Changes

Pentest (Changes) 

Figure 1: Integration of scrooge in Penetration Testing
Flow.

In the following we describe the architecture of
scrooge and how it was designed to accurately detect
various families of changes in a black-box fashion.

2.1 Architecture

The overall architecture of scrooge is shown in Fig. 2.

HAR FilesHAR Files

Crawler Proxy Target

HAR Files

Request Request

Response Request

Dump

HAR FilesHAR FilesSnapshots

Changes 
as Graphs

Changes 
as Text

Filter

Change 
Detection

Change 
Detection

scrooge

Figure 2: Design Overview of the Overall System.

Functionality in modern web applications is com-
plex, given that typically one part of the logic is de-
fined in the front-end (via JavaScript) and another
part on the back-end or external services (via syn-
chronous or asynchronous requests). In order to iden-
tify changes between two versions of a web applica-
tion, ideally we should be able to exercise as much
of the applications’ logic as possible. Since a manual

navigation by a human would be time consuming and
possibly incomplete, it is natural to involve an auto-
matic crawler in this process. This crawler navigates
the website independently and tries to reach as many
endpoints as possible. Note however that our archi-
tecture is independent from the type of crawler used
and is compatible with manual crawling as we will
see in Section 4.

The crawler accesses the target web application
with a proxy in order to dump all requests and re-
ceived answers. This data is stored in so called HAR-
Files (HTTP Archive format), which is a JSON for-
matted archive file that stores all data relevant for the
interaction of a web browser with a web site. This
data is then analysed and filtered to only keep rele-
vant information in a data structure suitable for the
analysis of different versions of the same web appli-
cation.

This data structure is a graph where nodes are
aggregated URLs and edges represent links or asyn-
chronous calls to other URLs. Moreover for each
node we store sent parameters (if any) and responses.
Those graphs are referred to as snapshots. Two snap-
shots can be compared by using various metrics to
detect changes. The detected changes are stored as
text or as graphical files which can be used by a
penetration tester to identify the changed areas of a
web application. The comparison algorithms to de-
tect changes are described in the next section.

2.2 Detection of Changes Between
Snapshots

In order to detect different types of changes in a web
application, several detection mechanisms need to be
combined. Scrooge combines approaches from the
following three different areas:

• Changes in Parameters and Requests. It is anal-
ysed whether the crawler generates different re-
quests to the web application indicating that the
scope of the web application changed.

• Changes in the Graphical Representation.
Changes are detected by comparing screenshots
of supposedly similar web pages.

• Changes in the HTML Structure. The structure
of supposedly similar HTML pages are compared
to detect differences.

The comparison algorithms used are described in Sec-
tion 3. At the basis of the comparison algorithms
we use well known visual, textual and tree compar-
ison algorithms that we briefly recap here. Note
that these algorithms will give a similarity score and

Scrooge: Detection of Changes in Web Applications to Enhance Security Testing

49



are not binary (equal or different). This is a com-
mon practice when assessing the similarity of web
sites (Mallawaarachchi et al., 2020) given that a strict
comparison (i.e. using hashes of HTML) would po-
tentially yield false positives in common situation
such as dynamic content (banners, state of database).
Non-binary scores allow users to configure thresholds
and adjust accuracy to various scenarios. We never-
theless assume that in a penetration testing scenario,
the application under tests in different versions has
more or less a stable or minimalist database content
(for instance an e-shop has more or less the same in-
ventory in the two versions), as we will discuss in the
evaluation in Section 4.
DHash. The dHash algorithm (difference hash)
(Krawetz, 2013) is a hashing function for recognizing
image similarities. It converts an image into a hash
value that represents the visual appearance of the im-
age. This hash value can be used to quickly compare
images to determine if there is a similarity.
Jaccard Similarity. The Jaccard similarity (Jadeja,
2022) describes the similarity of two sets based on
the intersection divided by the union of the elements
of both sets. A high overlap between the intersection
and the union results in a high match, while a low
overlap results in a low match.
Tree Edit Distance. The tree edit distance describes
the similarity of two data structures arranged as a tree.
Starting from the root node, the tree to be compared is
searched for differences in the underlying nodes and
the steps required to reach the target state are calcu-
lated.

3 IMPLEMENTATION

We implemented scrooge as a prototype in python
which is available as an open source project (Kresse-
buch and Büsser, 2024). The following sections de-
scribe the most important implementation aspects.

3.1 Crawler and Proxy

As discussed previously, in order to detect as many
changes as possible, it is important to fully navigate
the web application under test. Therefore, in our work
we implemented scrooge with the following three
web crawler approaches. In order to prepare for our
evaluation, we have chosen state of the art crawlers,
both following a deterministic and a randomized strat-
egy, and manual crawling. Note that scrooge can be
integrated with any other crawler.

• CrawlJax (Mesbah et al., 2012) is a determin-
istic crawler that automatically analyzes user in-
terface state changes in the web browser. The
crawler scans the DOM tree of the application and
identifies elements that can potentially change the
state of the application. These elements are then
automatically activated by triggering events such
as clicks. This gradually creates a state machine
that models the various navigation paths and states
within the web application.

• Black Widow (Eriksson et al., 2021) is a random-
ized crawler based on a data-driven approach to
crawling and scanning web applications. The tool
addresses three central pillars for in-depth crawl-
ing and scanning: Navigational Modeling, Traver-
sal, and State Dependency Tracking. The effec-
tiveness of Black Widow is illustrated by signifi-
cant improvements in code coverage compared to
other crawlers, with coverage between 63% and
280% higher depending on the application (Eriks-
son et al., 2021).

• Manual Crawling was used as a baseline to
evaluate the performance of the two automated
crawlers.

As a proxy server, we use mitmproxy (@maxim-
ilianhils et al., 2013) that saves all observed connec-
tions as a HAR file.

3.2 Detection of Changes

In the snapshot data structure, nodes are aggregated
URLs. We have chosen to aggregate URLs with the
same identifier in order to abstract the state of the ap-
plication. We are aware that this abstraction may have
an impact in terms of precision depending on how the
application under tests is coded, but it has advantages
in terms of efficiency. In the following, an example
of the generation of an identifier for a GET method is
shown.

GET− Reques t :
h t t p s : / / example . domain / p r o d u c t ? c a r t =2& q u a n t i t y =5w�
GET/ p r o d u c t ? c a r t&q u a n t i t y

The detection of changes between snapshots is
performed by a set of comparison algorithms. As in-
troduced in 2.2, the different approaches can be di-
vided into metrics that are based on changes in the pa-
rameters and requests, changes that are based on the
graphical representation and changes that are based
on the structure of the HTML file. In the following
paragraphs we describe the chosen metrics more pre-
cisely.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

50



3.2.1 Detection of Changes in Parameters and
Requests

The following metrics were used to analyze changes
in the parameters or in the requests themselves.

• ParameterChange is a method for detecting
changes by comparing the parameters sent in dif-
ferent requests. It works by creating an alphabet-
ically sorted list of parameters for each snapshot
and then comparing the lists. If the lists differ,
it is considered a change. This method is useful
because changes in the parameters often indicate
changes in the way the application is working.

• MissingRequestChange is a method for de-
tecting changes by identifying requests that are
present in one snapshot but not another. It works
by iterating over all requests in Snapshot 1 and
checking if each request is also present in Snap-
shot 2. If a request is not found in Snapshot 2,
it is considered a change. This method is useful
for identifying changes in the flow of a web appli-
cation, as the removal of a request can indicate a
change in the way the application is structured.

• NewRequestChange is a method for detecting
changes by identifying requests that are present in
one snapshot but not another. It works by iterat-
ing over all requests in Snapshot 2 and checking if
each request is also present in Snapshot 1. If a re-
quest is not found in Snapshot 1, it is considered
a change. This method is useful for identifying
changes in the flow of a web application, as the
addition of a request can indicate a change in the
way the application is structured.

• AsyncRequestsChange is a method for detecting
changes by identifying differences in the execu-
tion of asynchronous requests associated with a
static page. It does not consider the parameters
or responses of asynchronous requests but instead
focuses on whether new requests are being exe-
cuted or previous requests are no longer being ex-
ecuted. This can indicate that new features have
been added to the corresponding static page.

• AsyncRequestParamChange is a method for de-
tecting changes by identifying differences in the
JSON schema of asynchronous request param-
eters. It works by generating a JSON schema
from the request body (Content-Type JSON) for
each snapshot and then comparing the schemas
using a standard library (xlwings, 2024). If dif-
ferences are found, it is considered a change.
Only asynchronous requests with the Content-
Type application/json are supported. This
method is useful for identifying changes in the

data that is being passed between the web appli-
cation and the client, as changes in the request pa-
rameters can indicate changes in the way the ap-
plication is interacting with the user.

• AsyncResponseChange is a method for detect-
ing changes by identifying differences in the
JSON schema of asynchronous response bod-
ies. It works by generating a JSON schema
from the response body (Content-Type JSON) for
each snapshot and then comparing the schemas
(again using (xlwings, 2024)). If differences
are found, it is considered a change. Only
asynchronous responses with the Content-Type
application/json are supported. This method
is useful for identifying changes in the data that
is being returned from the web application to the
client, as changes in the response body can indi-
cate changes in the way the application is provid-
ing information to the user.

3.2.2 Detection of Changes in the Graphical
Representation

The following metric was used to detect changes in
the graphical representation of a webpage.

• The DHashStructureChange detects changes by
comparing the visual structure of a static request
using a difference hashing algorithm. It works by
loading the HTML structure for a request with an
identical identifier from both snapshots into a web
browser and taking a screenshot of the window.
The resulting hash from the images is then com-
pared, and the change rate is determined based on
the difference in the hash. The value N = 8 was
chosen for calculating the DHash.

3.2.3 Detection of Changes in the HTML
Structure

The following two metrics were used to detect
changes in the structure of the HTML code.

• JaccardStructureChange is a method for detect-
ing changes in web application functionality by
comparing the HTML structure using the Jaccard
Similarity algorithm. It works by creating a set for
each HTML document from Snapshot 1 and Snap-
shot 2, and then comparing the sets using the Jac-
card Similarity algorithm to determine a change
rate.

• TreeDifferenceStructureChange is a method for
detecting changes in web application functional-
ity by comparing the HTML structure using a tree
edit distance algorithm. It works by converting the

Scrooge: Detection of Changes in Web Applications to Enhance Security Testing

51



HTML structure into a node tree for each snap-
shot and then traversing the trees synchronously.
An edit distance is counted throughout the traver-
sal. For each node, it is checked whether there
is a corresponding node in the opposite snapshot.
If the corresponding node is missing, the edit dis-
tance is increased by one. Similarly, the number
of child tags is checked, and if there is a differ-
ence, the edit distance is also increased by this
difference. This method is useful for identify-
ing changes in the hierarchical structure of a web
page, as changes in the HTML structure can indi-
cate changes in the organization of the content on
the page.

4 EVALUATION

In the previous sections, we introduced the architec-
ture and overall approach of scrooge. Given the com-
plexity of modern web applications, accurately esti-
mating the performance of our methodology is chal-
lenging. Our change detection features could po-
tentially produce false positives (being too sensitive
to apparent changes) or false negatives (failing to
detect certain types of functional changes). There-
fore, in this section, we apply our methodology to
two versions of three different popular web applica-
tions, which offer sufficient complexity to preliminar-
ily evaluate our approach in terms of accuracy.

Note that following choices have been made for
the three applications: the state of the application
database has been preserved between the two versions
of an application as much as possible (modulo neces-
sary changes for the new functionality). We have de-
cided not to set a predetermined configuration on the
thresholds of the non-binary similarity metrics, but to
manually inspect any detected difference by scrooge
and assess whether it was the result of an intended
change in the new version or a false positive.

4.1 Evaluation on WordPress &
WooCommerce

WooCommerce (WooCommerce, 2024) is a widely-
used open-source e-commerce plugin for WordPress.
It allows users to create and manage online stores
within their WordPress sites, offering features such
as product management, order processing, payment
gateways, and shipping options. WordPress (version
6.4.3) with WooCommerce (version 8.7.0) as the in-
stalled e-commerce plugin was used as the test ap-
plication. For the evaluation, the installation was
cloned and targeted functional changes were made

to the cloned version. Both instances have the same
version numbers and the same data status. The un-
changed version is hereinafter referred to as Original,
while the modified version is referred to as Modified.
The following is a list of introduced changes in order
to evaluate the effectiveness of scrooge at detecting
them.
C1 - Additional Parameter in POST Request “Add to
Cart” The form used to add a product to the cart was
supplemented with an additional parameter.
Goal: Detect parameter changes in static requests
(POST)
C2 - Additional Parameter in AJAX Request “Add to
Cart” The asynchronous addition to the cart was sup-
plemented with an additional parameter.
Goal: Detect parameter changes in asynchronous re-
quests
C3 - Additional Field in AJAX Response “Add to
Cart” The response for the asynchronous “Add to
Cart” was supplemented with a new field.
Goal: Detect parameter changes in asynchronous re-
quests
C4 - Additional Step in Checkout Process The normal
checkout process proceeds as follows:
Cart −→ Checkout −→ Order Confirmation
In Modified, an additional step was added.
Cart −→ Cross-Selling −→ Checkout −→ Order
Confirmation
Goal: Detect a flow change in a process
C5 - New AJAX Request on Product Page Product
pages now send an additional asynchronous request.
Goal: Detect new AJAX requests
C6 - Template Adjustment on Product Page The
HTML structure on the product page was adjusted.
New HTML elements were added to the “Add to Cart”
form.
Goal: Detect a structural change
C7 - Sample Page “Sample Page” Deleted The con-
tent page “Sample Page” was deleted in Modified.
Goal: Detect that content/functions are missing
Snapshot Comparison and Interpretation Figure 3 il-
lustrates the output of our tool when comparing the
two versions of the web application. Green nodes
represent new functionality and red nodes removed
functionality. Table 1 summarizes the introduced
changes vs. the change detection algorithms that were
able to detect them. All changes C1-C7 were de-
tected by one or more change detection algorithms.
For instance, C6 “Template Adjustment on Prod-
uct Page” triggered a JaccardStructureChange,
a TreeDifferenceStructureChange and a visual
DHashStructureChange on values above the pre-

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

52



GET/

TreeDifferenceStructureChange 0.02

GET/cart/

TreeDifferenceStructureChange 0.02

GET/shop/

TreeDifferenceStructureChange 0.02

GET/my-account/

TreeDifferenceStructureChange 0.02

GET/checkout/

TreeDifferenceStructureChange 0.02

GET/sample-page/

MissingRequestChange

GET/product/example/

AsyncRequestsChange

JaccardStructureChange 0.02

TreeDifferenceStructureChange 0.05

DHashStructureChange 0.02

GET/cross-selling/

NewRequestChange

POST/my-account/

TreeDifferenceStructureChange 0.02

GET/my-account/lost-password/

TreeDifferenceStructureChange 0.02

GET/wp-login.php?redirect_to&reauth

MissingRequestChange

0

GET/product-category/studium/

TreeDifferenceStructureChange 0.02

POST/product/example/

AsyncRequestsChange

JaccardStructureChange 0.02

TreeDifferenceStructureChange 0.05

ParamChange

DHashStructureChange 0.02

GET/wp-admin/admin-ajax.php?action

NewRequestChange

POST/?wc-ajax

AsyncRequestParamChange

AsyncResponseChange

POST/my-account/lost-password/

NewRequestChange

GET/wp-admin/admin-ajax.php?action

NewRequestChange

Figure 3: Evaluation Graph WordPress Original - Modified (CrawlJax). Green nodes represent new functionality and red
nodes removed functionality.

configured thresholds.
In sum, all changes were detected and no false

positives where found, that is, all indicators of change
could be associated to one of the changes C1-C7.
From a crawling perspective, for the WooCommerce
webshop, both CrawlJax and Black Widow worked
well. Some fine-tuning was required to ensure the
complete run of the crawlers. For example, CrawlJax
gets stuck on the WordPress search form. If this is re-
moved, CrawlJax runs completely through all pages.

4.2 Evaluation on PrestaShop

PrestaShop (version 8.1.5) is a popular e-commerce
platform (PrestaShop, 2024). In order to evaluate
our approach, a copy of a webshop was created, with
some new modules activated in the cloned version.
The unchanged version is hereinafter referred to as
Original, while the modified version is referred to as
Modified. The goal is now to check if the newly active
modules can be detected using the comparison algo-
rithms.
Activated Modules in the modified version The fol-
lowing modules were activated in the modified ver-
sion in order to test the change detection capabilities
of our approach. Note that the changes introduced are
therefore not under our control, which should repre-
sent a more realistic situation compared to the previ-
ously described evaluation on Wordpress.

M1 Wishlist Allows customers to create wishlists to
save their favorite products for later
M2 Customer “Sign in” link Allows customers to eas-
ily register for the webshop
M3 Contact form Adds a contact form to the contact
page
M4 Newsletter subscription Allows customers to sign
up for the newsletter in the footer of the webshop
Snapshot Comparison and InterpretationThe re-
sult of running scrooge on both version is de-
picted in Fig. 4. For instance, the modification
M3 (Contact form) was detected at GET/contact-
us using JaccardStructureChange, TreeDifference-
StructureChange, and DHashStructureChange. The
new request POST/contact-us also reveals the new
form on the contact page. Figure 5, illustrates the
before and after rendering of this website, which ex-
plains why DHashStructureChange has detected this
change.
Insights PrestaShop The newly introduced modules
in the modified version were identified accurately.
Since these are entirely new modules and no exist-
ing functions were modified, the NewRequestChange
and AsyncRequestsChange functions are particularly
useful in this case.

As with the evaluation with WooCommerce in the
previous subsection, automatic testing using crawlers
proved challenging. The constant crashes or hang-ups

Scrooge: Detection of Changes in Web Applications to Enhance Security Testing

53



Table 1: Evaluation of detected changes.

Evaluation of introduced changes
Change C1 C2 C3 C4 C5 C6 C7 False-Positives
MissingRequestChange X 0
NewRequestChange X 0
AsyncRequestsChange X 0
JaccardStructureChange X X 0
DHashStructureChange X 0
TreeDifferenceStructureChange X X X 0
ParamChange X 0
AsyncRequestParamChange X 0
AsyncResponseChange X 0

Table 2: Evaluation of found changes depending on crawler used.

Evaluation Crawler
Change C1 C2 C3 C4 C5 C6 C7 False Positives
CrawlJax X X X X X X X 0
BlackWidow X X X X X X X 0
Manual Crawling X X X X X X X 0

GET/

AsyncRequestsChange

JaccardStructureChange 0.23

TreeDifferenceStructureChange 0.08

DHashStructureChange 0.08

GET/contact-us

AsyncRequestsChange

JaccardStructureChange 0.35

TreeDifferenceStructureChange 0.08

DHashStructureChange 0.41

GET/module/blockwishlist/action?action

NewRequestChange

POST/module/ps_emailsubscription/subscription

NewRequestChange

GET/3-clothes

AsyncRequestsChange

JaccardStructureChange 0.19

TreeDifferenceStructureChange 0.07

DHashStructureChange 0.02

GET/new-products

AsyncRequestsChange

JaccardStructureChange 0.21

TreeDifferenceStructureChange 0.08

DHashStructureChange 0.1

GET/module/blockwishlist/action?action

NewRequestChange

POST/contact-us

NewRequestChange

GET/module/blockwishlist/action?action

NewRequestChange

GET/men/1-hummingbird-printed-t-shirt.html

AsyncRequestsChange

JaccardStructureChange 0.14

TreeDifferenceStructureChange 0.07

DHashStructureChange 0.11

GET/cart?action

AsyncRequestsChange

JaccardStructureChange 0.21

TreeDifferenceStructureChange 0.08

DHashStructureChange 0.12

GET/module/blockwishlist/action?action

NewRequestChange

0

GET/order

JaccardStructureChange 0.01

TreeDifferenceStructureChange 0.07

POST/cart

POST/module/ps_shoppingcart/ajax

GET/module/blockwishlist/action?action

NewRequestChange

GET/module/blockwishlist/action?action

NewRequestChange

GET/login?back

NewRequestChange

POST/login?back

NewRequestChange

GET/password-recovery

NewRequestChange

POST/password-recovery

NewRequestChange

GET/registration

NewRequestChange

Figure 4: Evaluation Graph PrestaShop Original - Modified (Manual Crawling).

of the crawlers require numerous adjustments to the
crawler as well as the test application. No clear pat-
tern was identified as to where the crawlers fail. Ul-
timately, once those issues were fixed however, both
crawlers were able to run through the entire shop and
detect all changes without false positives.

4.3 Evaluation on DVWA

To test the functionality of change detection on gen-
eral websites, a local version of the Damn Vulnera-
ble Web Application (DVWA) (dvw, 2010) was in-
stalled. This application illustrates various vulnera-
bilities through customizable difficulty levels. Each
difficulty level has a slightly different implementation

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

54



Table 3: Evaluation of Changes per Module.

Evaluation of Types of Changes
Type of Change M1 M2 M3 M4 False-Positives
MissingRequestChange 0
NewRequestChange X X X X 0
AsyncRequestsChange X X 0
JaccardStructureChange X X X 0
DHashStructureChange X X X 0
TreeDifferenceStructureChange X X X 0
ParamChange 0
AsyncRequestParamChange 0
AsyncResponseChange 0

Table 4: Evaluation of Detected Modules by Crawler.

Evaluation of Crawlers
Type of Change M1 M2 M3 M4 False-Positives
CrawlJax X X X X 0
BlackWidow X X X X 0
Manual Crawling X X X X 0

(a)

(b)

Figure 5: Comparison “Contact us” (a) M3 deactivated (b)
M3 activated.

which makes it suitable for evaluating our approach.
Thus, for testing purposes, the modified functionality
was defined by adjusting the difficulty level.
Insights from DVWA Crawler Comparison The
DVWA application was crawled three times. Initially,

manual interaction was used with the application, and
the resulting requests were collected via the proxy.
In the second step, Black Widow was used as the
crawler, followed by CrawlJax in the third step.

Using CrawlJax as the crawler for DVWA did not
yield the desired results in the tests. CrawlJax consis-
tently terminated without accessing any subpages. In
tests using Black Widow, the crawler navigated au-
tonomously through the menus. The website navi-
gation with Black Widow visually confirmed access-
ing all subpages accessible in the website’s naviga-
tion menu. However, visible forms were only partially
filled out and submitted, thus not all functionalities of
the website were tested with Black Widow.

A baseline was formed from the union of all de-
tected request identifiers in Snapshots Snapshot 1,
Snapshot 2, and Snapshot 3. The baseline was de-
rived from manual interaction, crawling with Black
Widow, and crawling with CrawlJax. Table 5 (in
Appendix) displays the existing URLs in the snap-
shots. The resulting baseline includes 35 URLs,
with 34 URLs reached through manual interaction.
Crawling with Black Widow as the crawler reached
23 URLs. It became apparent that Black Widow
reached all subpages, but did not test all forms, thus
missing requests for form submissions in Snapshot
2. The request GET/instructions.php?doc was
reached in the crawl with Black Widow, but not in
manual interaction. Crawling with CrawlJax as the
crawler resulted in coverage of only three URLs, in-
cluding the login page GET/login.php, the landing
page GET/index.php, and the home page GET/.

Due to Black Widow’s inability to correctly fill

Scrooge: Detection of Changes in Web Applications to Enhance Security Testing

55



out all forms, it was decided to manually navigate
DVWA for evaluating differences between security
levels Low and High. It is expected that precisely the
changes in behavior during form submission will pro-
vide insights into the changes in the application’s im-
plementation. Therefore, as many existing forms as
possible must be filled out for evaluation purposes.

In a direct comparison of security levels Low and
High, several differences in the website’s behavior
were identified as depicted in Fig. 6.
Insights DVWA. The automatically identified differ-
ences by scrooge between the security levels Low and
High were manually analyzed in order to determine
their accuracy. All differences could be explained by
functionality changes between these two levels. For
instance the page GET/vulnerabilities/sqli/ was imple-
mented fundamentally differently in both security lev-
els. While an input field was used directly for input
at security level Low, at level High a link points to a
pop-up window that contains the input mask for the
ID. This leads to structural changes in the direct com-
parison and to new requests that open and send the
pop-up window. From a manual inspection of the in-
spected functionality, it all seems scrooge was able
to detected most changes between the two security
level. However we did not have a ground truth def-
inition of all changes implemented, so there could be
potentially false negatives in the automatic analysis.

5 DISCUSSION

As we have seen in the previous section, scrooge ex-
hibits promising capabilities for detecting changes in
the functional scope of web applications. However,
several limitations hinder its broader applicability and
require further investigation.
Abstraction of Functionality and Application’s
State. By construction, our graph data structure ag-
gregates URLs with the same identifier but differ-
ent parameter values. Depending on the application’s
logic this abstraction may affect the precision of our
analysis. Similarly, the state of persistent storage may
affect accuracy of a comparison (i.e. an empty e-
shop vs. a shop with several items in inventory).
We believe however that our preliminary evaluation
is promising in the sense that for the evaluated appli-
cations the achieved accuracy of the comparison was
high. A more thorough evaluation on other applica-
tions and architectures constitutes interesting future
work.
Crawler Challenges: The current reliance on ex-
ternal crawlers introduces a significant limitation.
These crawlers exhibit inconsistencies in perfor-

mance across different web applications. Some func-
tion flawlessly, while others struggle entirely. To
address this, future work should explore several av-
enues. Combining multiple crawlers can leverage
their strengths and mitigate weaknesses by creating
snapshots from various tools, ensuring comprehen-
sive analysis. Developing a dedicated crawler op-
timized for scrooge, particularly for detecting spe-
cific change types and handling Single Page Applica-
tions (SPAs), would enhance precision and effective-
ness. Additionally, utilizing parallel crawling tech-
niques can significantly reduce analysis time, making
scrooge more efficient for large-scale applications by
running multiple crawlers simultaneously for exten-
sive coverage in a shorter period.
SPA Integration Hurdles: Single-page applications
(SPAs) pose a unique challenge due to their dynamic
nature. Scrooge currently struggles to effectively cap-
ture changes within SPAs. To improve this, iden-
tifying page changes within a Single Page Applica-
tion (SPA) is crucial. This requires developing logic
in the crawling process to detect when a new page
loads, which can be achieved by continuously moni-
toring the current URI and its history to recognize ad-
justments triggered by AJAX requests. Additionally,
exploring alternative storage solutions beyond HAR
files for capturing the dynamic state of SPAs is nec-
essary. Evaluating the feasibility and effectiveness of
these alternative storage methods will be essential for
improving the analysis process.

Addressing these limitations constitutes interest-
ing future work, as well as a more comprehensive
evaluation of the tool’s precision.

6 RELATED WORK

There are various research topics closely related to
our work such as change detection, software evolu-
tion, as web crawling, and automated black-box test-
ing. In the following we give an overview of the
works most related to ours and how we compare
against them.
Change Detection in Web Pages. Closest
to our work are studies and implementations
of change detection in web pages (see for in-
stance (Mallawaarachchi et al., 2020) for a survey in
this domain). This line of work has been inspired
by the practical need to track changes in web sites
to get notifications related to important updates (i.e.
news, government announces etc.) or potential at-
tackes (i.e. defacements). Today there exist sev-
eral closed-source change detection services, such as
Google Alerts (Google, 2024) and some open source

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

56



GET/login.php

GET/index.php

GET/vulnerabilities/brute/

JaccardStructureChange 0.05

TreeDifferenceStructureChange 0.02

0

GET/vulnerabilities/brute/?username&password&Login

MissingRequestChange

GET/vulnerabilities/brute/?username&password&Login&user_token

NewRequestChange

GET/vulnerabilities/view_source.php?id&security

TreeDifferenceStructureChange 0.56

DHashStructureChange 0.42

GET/vulnerabilities/view_help.php?id&security

GET/vulnerabilities/csrf/

JaccardStructureChange 0.05

TreeDifferenceStructureChange 0.02

GET/vulnerabilities/fi/?page

GET/vulnerabilities/captcha/

JaccardStructureChange 0.04

TreeDifferenceStructureChange 0.03

GET/vulnerabilities/sqli/

JaccardStructureChange 0.11

TreeDifferenceStructureChange 0.03

DHashStructureChange 0.03

GET/vulnerabilities/sqli_blind/

JaccardStructureChange 0.11

TreeDifferenceStructureChange 0.03

DHashStructureChange 0.02

GET/vulnerabilities/xss_r/

GET/vulnerabilities/xss_d/

GET/vulnerabilities/exec/ GET/vulnerabilities/upload/

GET/vulnerabilities/weak_id/

GET/vulnerabilities/xss_s/
GET/vulnerabilities/javascript/

TreeDifferenceStructureChange 0.01
GET/phpinfo.php

POST/vulnerabilities/exec/
GET/vulnerabilities/csrf/?password_new&password_conf&Change

MissingRequestChange

GET/vulnerabilities/csrf/?password_new&password_conf&Change&user_token

NewRequestChange

POST/vulnerabilities/upload/

DHashStructureChange 0.02

GET/vulnerabilities/sqli/?id&Submit

MissingRequestChange

GET/vulnerabilities/sqli/session-input.php

NewRequestChange

GET/vulnerabilities/sqli_blind/?id&Submit

MissingRequestChange

GET/vulnerabilities/sqli_blind/cookie-input.php

NewRequestChange

POST/vulnerabilities/weak_id/

GET/vulnerabilities/xss_d/?default

GET/vulnerabilities/xss_r/?name

TreeDifferenceStructureChange 0.01

GET/vulnerabilities/csp/asdf

MissingRequestChange

POST/vulnerabilities/javascript/

TreeDifferenceStructureChange 0.01

GET/about.php

GET/

POST/vulnerabilities/xss_s/

TreeDifferenceStructureChange 0.03

GET/vulnerabilities/csp/

AsyncRequestsChange

JaccardStructureChange 0.19

TreeDifferenceStructureChange 0.03

DHashStructureChange 0.05

GET/vulnerabilities/csp/source/jsonp.php?callback

NewRequestChange

POST/vulnerabilities/csp/

MissingRequestChange

GET/vulnerabilities/csp/nope

MissingRequestChange

POST/vulnerabilities/sqli/session-input.php

NewRequestChange

POST/vulnerabilities/sqli_blind/cookie-input.php

NewRequestChange

Figure 6: Evaluation Diagram DVWA Crawling with Low and High Level.

ones such as changedetection.io (dgtlmoon, 2024).
However note that different from that line of work,
we are concerned about changes in an application as
a whole, and not only on individual websites. The
graph data structure defined in our work is more gen-
eral and allows one to reason for instance on changes
in navigation paths, and thus on more abstract appli-
cation control flows. Last, our implementation can
run locally, which is important in order to guarantee
the privacy of the system under test.
Software Evolution. Software evolution research
provides valuable insights into understanding soft-
ware changes and predicting future development.
D’Ambros et al.’s (D’Ambros et al., 2008) work
demonstrates a detailed approach for analyzing soft-
ware repositories to gain insights into software evo-
lution. Mitropoulos et al.’s (Mitropoulos et al., 2012)
work highlights the importance of tracking software
evolution to identify security-related bugs. However
most works in this domain are white-box approaches
that assume the source code is known, whereas our
work treats the application under test as a black-box.
Web Crawling. As illustrated in our work, effec-
tiveness of web crawling is crucial for identifying
changes in web applications. Stafeev and Pellegrino’s
(Stafeev and Pellegrino, 2024) work provides a com-
prehensive survey of web crawling algorithms and
their effectiveness for web security measurements. In
our work, we do not claim a contribution in the crawl-
ing domain, since the proposed approach in this paper
is designed to be independent of the specific crawler
used.
Automated Black-Box Testing. Automated black-
box testing approaches, such as EvoMaster (Arcuri,
2021) and RestTest-Gen (Corradini et al., 2022), pro-
vide techniques for testing RESTful APIs. However,
these methods typically require API documentation.
This work addresses this limitation by generating API

documentation for the identified endpoints, enabling
more comprehensive black-box testing.

Overall, the proposed approach extends existing
research by combining web crawling, change detec-
tion and software evolution concepts, and black-box
testing techniques to effectively detect changes in web
application functionality, particularly in the context of
black-box testing scenarios.

7 CONCLUSION

In this work, we present scrooge, a prototype tool de-
signed to identify changes in web application func-
tionality. Scrooge aims to improve security test-
ing efficiency by detecting differences between web
page versions. We evaluated scrooge on e-commerce
platforms and a security application, demonstrating
its ability to reliably detect changes. The effective-
ness however, relied on the data generation method.
Manual interaction provided the most consistent re-
sults, highlighting the need for crawler optimization.
Furthermore, scrooge successfully identified various
change types, showcasing its applicability across di-
verse scenarios. Our findings suggest that combin-
ing crawling methods could improve coverage, and
future work should focus on crawler optimization and
single-page application compatibility. Additionally,
implementing more differentiation algorithms could
increase the number of detectable webpage features.
Overall, scrooge demonstrates the potential of auto-
matic change detection for improved security testing
efficiency, laying a foundation for further research
and development in this domain.

Scrooge: Detection of Changes in Web Applications to Enhance Security Testing

57



ACKNOWLEDGEMENTS

DeepL and ChatGPT were used to translate some sec-
tions of this work. Gemini was used to shorten the
text.

REFERENCES

(2010). Damn vulnerable web application (DVWA). http:
//www.dvwa.co.uk/. Accessed: 2024-07-01.

Arcuri, A. (2021). Automated black- and white-box testing
of restful apis with evomaster. IEEE Software, 38.

Bau, J., Bursztein, E., Gupta, D., and Mitchell, J. (2010).
State of the art: Automated black-box web applica-
tion vulnerability testing. In 2010 IEEE symposium
on security and privacy, pages 332–345. IEEE.

Corradini, D., Zampieri, A., Pasqua, M., and Ceccato, M.
(2022). Resttestgen: An extensible framework for au-
tomated black-box testing of restful apis.

D’Ambros, M., Gall, H., Lanza, M., and Pinzger, M.
(2008). Analysing software repositories to understand
software evolution.

dgtlmoon (2024). changedetection.io. https://github.com/
dgtlmoon/changedetection.io. Accessed: 2024-07-01.

Doupé, A., Cova, M., and Vigna, G. (2010). Why johnny
can’t pentest: An analysis of black-box web vulner-
ability scanners. In International Conference on De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 111–131. Springer.

Eriksson, B., Pellegrino, G., and Sabelfeld, A. (2021).
Black widow: Blackbox data-driven web scanning.
volume 2021-May.

Google (2024). Google alerts. https://www.google.com/
alerts. Accessed: 2024-07-01.

Jadeja, M. (2022). Jaccard similarity made simple: A be-
ginner’s guide to data comparison. Accessed: 2024-
05-26.

Krawetz, N. (2013). Kind of like that. The Hacker Factor
Blog.

Kressebuch, J. and Büsser, F. (2024). Scrooge source code.
https://github.com/secuteer/scrooge.

Mallawaarachchi, V., Meegahapola, L., Madhushanka, R.,
Heshan, E., Meedeniya, D., and Jayarathna, S. (2020).
Change detection and notification of web pages: A
survey. ACM Computing Surveys (CSUR), 53(1):1–
35.

@maximilianhils, @raumfresser, and @cortesi (2013).
mitmproxy/mitmproxy.

Mesbah, A., Deursen, A. V., and Lenselink, S. (2012).
Crawling ajax-based web applications through dy-
namic analysis of user interface state changes. ACM
Transactions on the Web, 6.

Mitropoulos, D., Gousios, G., and Spinellis, D. (2012).
Measuring the occurrence of security-related bugs
through software evolution. In 2012 16th Panhellenic
Conference on Informatics, pages 117–122.

Pellegrino, G. and Balzarotti, D. (2014). Toward black-box
detection of logic flaws in web applications. In NDSS,
volume 14, pages 23–26.

PrestaShop (2024). Prestashop. https://prestashop.com/.
Accessed: 2024-07-01.

Stafeev, A. and Pellegrino, G. (2024). Sok: State of the
krawlers-evaluating the effectiveness of crawling al-
gorithms for web security measurements.

Williams, M. A., Dey, S., Barranco, R. C., Naim, S. M.,
Hossain, M. S., and Akbar, M. (2018). Analyzing
evolving trends of vulnerabilities in national vulner-
ability database. In 2018 IEEE International Con-
ference on Big Data (Big Data), pages 3011–3020.
IEEE.

WooCommerce (2024). Woocommerce. https://
woocommerce.com/. Accessed: 2024-07-01.

xlwings (2024). jsondiff. https://github.com/xlwings/
jsondiff. Accessed: 2024-07-03.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

58



APPENDIX
Table 5: Found Request Identifiers per Snapshot in DVWA.

URLs Manual BlackWidow CrawlJax
GET/ X X X
GET/about.php X X
GET/index.php X X X
GET/instructions.php?doc X
GET/login.php X X X
GET/phpinfo.php X X
GET/vulnerabilities/brute/ X X
GET/vulnerabilities/brute/?username&password&Login X X
GET/vulnerabilities/captcha/ X X
GET/vulnerabilities/csp/ X X
POST/vulnerabilities/csp/ X
GET/vulnerabilities/csp/nope X
GET/vulnerabilities/csrf/ X X
GET/vulnerabilities/csrf/?password new&password conf&Change X
GET/vulnerabilities/exec/ X X
POST/vulnerabilities/exec/ X
GET/vulnerabilities/fi/?page X X
GET/vulnerabilities/javascript/ X X
POST/vulnerabilities/javascript/ X
GET/vulnerabilities/sqli/ X X
GET/vulnerabilities/sqli/?id&Submit X
GET/vulnerabilities/sqli blind/ X X
GET/vulnerabilities/sqli blind/?id&Submit X
GET/vulnerabilities/upload/ X X
POST/vulnerabilities/upload/ X X
GET/vulnerabilities/view help.php?id&security X
GET/vulnerabilities/view source.php?id&security X
GET/vulnerabilities/weak id/ X X
POST/vulnerabilities/weak id/ X
GET/vulnerabilities/xss d/ X X
GET/vulnerabilities/xss d/?default X
GET/vulnerabilities/xss r/ X X
GET/vulnerabilities/xss r/?name X
GET/vulnerabilities/xss s/ X X
POST/vulnerabilities/xss s/ X X
35 URLs 34 URLs 23 URLs 3 URLs

97.1% 65.7% 8.6%

Scrooge: Detection of Changes in Web Applications to Enhance Security Testing

59


