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Abstract: Efficient construction of lattice-based cryptography is often based on the polynomial ring. Furthermore, many
advanced lattice-based cryptosystems require the analysis of the discrete Gaussian under convolutions and
linear transformations. In this paper, we present an efficient Gram root decomposition algorithm of the
polynomial ring and an application to sphericalization of the discrete Gaussian. Let r be a polynomial of
spherical discrete Gaussian coefficients and e be a fixed polynomial. Then, the coefficient vector of r · e
is (statistically close to) non-spherical discrete Gaussian whose (scaled) covariance matrix is Ge := EE⊺,
where E is composed of rotations of the coefficient vector of e. Given Ge, our algorithm outputs polynomials
ζ1, . . . ,ζl s.t. ∑

l
i=1 Gζi

+Ge is a scalar matrix. The objective of this algorithm is similar to the (ring version of)
integral Gram root decomposition proposed by Ducas et al. (Eurocrypt 2020). Notably, our algorithm ensures
the bounds of the norm of ζi and the minimum eigenvalue of Gζi

, whereas Ducas et al.’s algorithm does not
ensure such bounds. Owing to the bounds, we can obtain a polynomial (r0e+∑

l
i=1 riζi) whose coefficients

are spherical discrete Gaussians, where ri are polynomials with discrete Gaussian coefficients; i.e., we can
“cancel out” the dependence between the coefficients.

1 INTRODUCTION

Lattice-based cryptosystems (Kiltz et al., 2018; Bos
et al., 2018; Fouque et al., 2020) have been selected
as NIST post-quantum cryptography (PQC) stan-
dards (Alagic et al., 2022). Lattice-based schemes,
including the PQC standards, are often based on
polynomial rings i.e., NTRU (Hoffstein et al., 1998;
Fouque et al., 2020), Ring-LWE (Stehlé et al., 2009;
Lyubashevsky et al., 2010) and Module-LWE (Brak-
erski et al., 2011; Langlois and Stehlé, 2015), to
achieve better efficiency.

The discrete Gaussian probability distribution
(Definition 2.2) is an important object in lattice cryp-
tography, and more generally the mathematical as-
pects of lattices. For example, the analysis of the
computational hardness of lattice problems (Regev,
2005; Micciancio and Regev, 2007; Gentry et al.,
2008; Peikert, 2009; Brakerski et al., 2013) relies on
the useful properties of discrete Gaussians.

In addition, many advanced lattice-based cryp-
tosystems such as identity-based encryption (Gentry
et al., 2008; Agrawal et al., 2010) and functional

a https://orcid.org/0000-0002-5687-620X

encryption (Agrawal et al., 2011) require algorithms
to sample discrete Gaussian that are efficient and se-
cure against side-channel attacks, e.g., (Gentry et al.,
2008; Peikert, 2010; Micciancio and Peikert, 2012;
Micciancio and Walter, 2017; Genise and Miccian-
cio, 2018; Ducas et al., 2020). While most works
rely on floating-point arithmetic (FPA), Ducas et al.
(Ducas et al., 2020) presented an algorithm without
FPA, which is efficient and amenable to side-channel
countermeasures. The core technique of (Ducas et al.,
2020) is the integral matrix Gram root decomposition,
which is an algorithm to obtain an integer matrix A s.t.
G = AA⊺ for the target covariance matrix G.

Many studies have analyzed the properties (e.g.,
correlation, convolutions, linear transformation) of
discrete Gaussians: (Peikert, 2010; Agrawal et al.,
2013; Aggarwal and Regev, 2016; Genise et al., 2020;
Okada et al., 2023). The discrete Gaussian distribu-
tion is called spherical if its covariance matrix is a
scalar matrix, and ellipsoidal otherwise. Although
lattice-based cryptography usually uses the spherical
discrete Gaussian, some applications rely on the ellip-
soidal discrete Gaussian because of some artifacts of
the proof techniques (Agrawal et al., 2013). As dis-
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cussed in (Lyubashevsky et al., 2010), an ellipsoidal
discrete Gaussian makes certain applications and their
proofs are more cumbersome than the case with the
spherical discrete Gaussian.

Our Contributions. In this paper, we advance the
research on the properties of ring polynomials whose
coefficients are distributed accordingly to the discrete
Gaussian distribution. Our contributions are 1) an
algorithm for Gram root decomposition over the ring
and 2) its application to the sphericalization of a dis-
crete Gaussian over the ring.
Root Decomposition over the Ring First, we present
an efficient Gram root decomposition algorithm of
polynomials.

Let r be a polynomial over the ring R (defined in
Eq. (1)) whose coefficient vector (Definition 3.7) is
a multivariate spherical discrete Gaussian, and let e
be a fixed polynomial over R. Then, the coefficient
vector of r · e is (statistically close to) nonspherical
discrete Gaussian whose (scaled) covariance matrix
is Ge := EE⊺, where E is composed of rotations of
the coefficient vector of e. That is, E is the coefficient
matrix of e, and Ge is the coefficient Gram matrix of
e, as defined in Definition 3.7.

Given e (and Ge), our Gram root decompo-
sition algorithm outputs polynomials ζ1, . . . ,ζl s.t.
∑

l
i=1 Gζi +Ge

1 become a scalar matrix βI for some
β > 0, where Gζi is the coefficient Gram matrix of ζi.
In other words, the Gram root decomposition algo-
rithm outputs polynomials whose sums of coefficients
Gram matrices can “diagonalize” the given matrix Ge.

Notably, this algorithm also ensures an upper
bound of the norm of ζi and a lower bound of the
minimum eigenvalue of Gζi . These bounds are cru-
cial for our second convolution described below. The
objective of our Gram root decomposition algorithm
is similar to that of the integral Gram root decompo-
sition proposed by Ducas et al. (Ducas et al., 2020).
However, their method does not ensure the bounds
on the outputs as does our algorithm; thus, it is not
sufficient for the application that we will explain later.
Application: Sphericalizing the Discrete Gaus-
sian over the Ring. As an application of our root
Gram root decomposition algorithm, we show how
to “sphericalize” ring polynomials with (ellipsoidal)
discrete Gaussian coefficients. Let r0, . . . ,rl be poly-
nomials with a spherical discrete Gaussian coefficient
vector. Given a fixed e ∈ R and Ge, output poly-
nomials ζ1, . . . ,ζl s.t. ∑

l
i=1 Gζi +Ge = βI by using

our Gram root decomposition algorithm. Then, we

1More generally, given e1, . . . ,em, our algorithm out-
puts ζ1, . . . ,ζl s.t. ∑

l
i=1 Gζi

+∑
m
i=1 Gei . We set m = 1 in

the abstract and Section 1 for simplicity.

show that the coefficient vector of the polynomial
(r0e+∑

l
i=1 riζi) ∈ R follows discrete Gaussian dis-

tribution whose covariance is a scalar matrix βI, i.e.,
a spherical discrete Gaussian.

Notably, the above convolution theorem requires a
lower-bound of the minimum eigenvalue of Gζi . It is
not trivial to obtain a nonnegligibly large lower bound
of the minimum eigenvalue of random matrices, as
analyzed in, e.g., (Tao, 2012; Nguyen and Vu, 2016).
Owing to the bounds ensured by our algorithm, we
can prove the convolution theorem.

Organization. The remainder of this paper is orga-
nized as follows. In Section 2, we provide necessary
definitions and lemmas. We analyze the basic prop-
erties of the polynomial ring of concern (defined in
Eq. (1)) in Section 3, which are building blocks of
this paper and may be of independent interest. We
propose our Gram root decomposition algorithm in
Section 4. Then, as an application, we show how to
sphericalize discrete Gaussians in Section 5. Finally,
we summarize this paper and discuss future work in
Section 6.

2 PRELIMINARIES

In Section 2.1, we provide the notations used in this
paper. Then, we provide necessary the definitions and
lemmas of lattices in Section 2.2 and the Gaussian
distribution in Section 2.3.

2.1 Notations

The base 2 logarithm is denoted by log. For N ∈ N,
define [N] := {1, . . . ,N}. The size of set S is denoted
by |S|.

We use bold lower-case for vectors and bold
upper-case for matrices. We write the transpose of
x as x⊺. The l2-norm and l∞-norm of x is denoted by
∥x∥ and ∥x∥∞, respectively. We denote the identity
matrix by In ∈ Zn×n. We write G≻ 0 if G is positive
definite. A square root of G ≻ 0 is a nonsingular
matrix S such that SS⊺ = G, which is written as S =√

G. Note that (
√

G)−1 = S−1 =(S−⊺)⊺ =(
√

G−1)⊺

holds. The largest and smallest singular values of
a matrix S are denoted by σmax(S) and σmin(S), re-
spectively. We denote by ∥S∥ the matrix norm of S
induced by the l2-norm. Note that we have σmax(S) =
∥S∥, and if σmin(S) ̸= 0, i.e., S is nonsingular, then
σmin(S)−1 = ∥S−1∥ holds. The Frobenius norm of
S is ∥S∥F =

√
tr(S⊺S). Let ∥S∥len = maxi∈[n] ∥si∥,

where si is the i-th column vector of S, then we have:
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Fact 2.1. For any matrix S, we have ∥S∥len ≤ ∥S∥ ≤
∥S∥F , ∥S1S2∥len ≤ ∥S1∥∥S2∥len ≤ ∥S1∥∥S2∥.

2.2 Lattices

A lattice L is the set of all integer linear combinations
of linearly independent vectors b1, · · · ,bn ∈ Rm, i.e.,
L = {∑n

i=1zibi | z ∈ Zn}. If we arrange the vectors bi
as the columns of a matrix B ∈ Rm×n, then we have

L := L(B) = {Bz | z ∈ Zn}= BZn.

The rank of this lattice is n and its dimension is m.
If n = m, then the lattice is called full rank. For
arbitrary c ∈ Rm, a coset of lattice L is defined as
L + c := {v+ c | v ∈ L}. The dual of a lattice L is
L̂ := {x | ∀y ∈ L ,⟨x,y⟩ ∈ Z}. We denote the volume
of the fundamental parallelepiped of L as det(L). We
have det(L̂) = 1/det(L). For a full-rank lattice L(B),
we have det(L(B)) = |det(B)|. For n-rank lattice L
and i = 1, . . . ,n, the successive minimum λi(L) is
defined as the radius of the smallest ball that contains
i linearly independent vectors in L . The integer lattice
L := Zn is the primary focus of this paper.

2.3 Gaussians

The continuous Gaussian distribution with a mean of
0 and a standard deviation σ > 0 is denoted as Nσ.

For a rank-n matrix S ∈ Rn×m, the (centered) el-
lipsoidal Gaussian function on Rn with the (scaled)
covariance matrix G = SS⊺ ∈ Rn×n is defined as:

ρS(x) := exp(−πx⊺(SS⊺)−1x).

Since the function ρS(x) is determined exactly by G,
we have ρS = ρ√G. When S = sIn, we write ρS as ρs.
For any set A⊆ Rn, we define ρS(A) := ∑x∈A ρS(x).

We define the discrete Gaussian distribution over
the lattice L as follows:
Definition 2.2 (Discrete Gaussian). For a full
column-rank matrix S, the (centered) discrete Gaus-
sian distribution over a lattice L is defined as

∀x ∈ L ,DL ,S(x) = ρS(x)/ρS(L).

In particular, when SS⊺ = s2In for some s > 0, we ab-
breviate DL ,S as DL ,s and call it the spherical discrete
Gaussian distribution.

The smoothing parameter of lattice L is defined as
ηε(L) = min{s | ρ1/s(L̂) ≤ 1+ ε} for ε > 0. Unless
otherwise specified, we set ε to be negligibly small;
ε = negl(λ). An upper-bound of ηε(L) is obtained by
the successive minimum2 λn(L):

2Although (Gentry et al., 2008, Lemma 3.1) provides a
sharper bound, we rely on Lemma 2.3 for simplicity.

Lemma 2.3 ((Micciancio and Regev, 2007, Lemma
3.3)). Define η+

ε (Zn) :=
√

ln(2n(1+1/ε))/π. For
any rank-n lattice L and any ε > 0, we have ηε(L)≤
λn(L)η+

ε (Zn). In particular, ηε(Zn)≤ η+
ε (Zn) holds.

For simplicity of notation, we also define η̃ε(·) :=√
2ηε(·) and η̃+

ε (Zn) :=
√

2η+
ε (Zn). Note that we

have η̃+
ε (Z) > η+

ε (Z2). The smoothing parameter is
extended to matrices as follows:
Definition 2.4 ((Peikert, 2010, Definition 2.3)). Let
G≻ 0 be any positive definite matrix. For any lattice
L , we say that

√
G≥ ηε(L) if ηε(

√
G−1L)≤ 1.

For a full-rank lattice, we obtain a sufficient con-
dition as follows:
Fact 2.5. For any full-rank lattice L(B) and G ≻ 0,√

G ≥ ηε(L) holds if 1 ≥ ∥
√

G−1∥∥B∥lenη+
ε (Zn),

i.e., σmin(
√

G)≥ ∥B∥lenη+
ε (Zn).

Proof. By Fact 2.1 and Lemma 2.3, we have
ηε(
√

G−1L) ≤ λn(
√

G−1L)η+
ε (Zn) ≤ ∥

√
G−1B∥len

η+
ε (Zn)≤ ∥

√
G−1∥∥B∥lenη+

ε (Zn)≤ 1.

The linear transformation of a discrete Gaussian is
as follows:
Lemma 2.6 (Special case of (Genise et al., 2020,
Lemma 1)). For any nonsingular matrices S,T ∈
Zn×n, we have T ·DZn,S = DT·Zn,TS.

The sum of two ellipsoidal discrete Gaussians is
statistically close to an ellipsoidal discrete Gaussian:
Lemma 2.7 (Special case of (Peikert, 2010, Thm.
3.1)). Let G1,G2 ≻ 0 be positive definite matrices and
define G3 := (G−1

1 +G−1
2 )−1. Let L1, L2 be full-rank

lattices such that
√

G2 ≥ ηε(L2) and
√

G3 ≥ ηε(L1),
and let

X := {(x1,x2)|x1←DL1,
√

G1
,x2← x1+DL2−x1,

√
G2
}.

Then, the marginal distribution of x2 in X is statisti-
cally close to DL2,

√
G1+G2

.
In particular, when L1 ⊆ L2, we can simplify

Lemma 2.7 because the coset L2− x1 is equal to L2
itself for any x1 ∈ L1:
Corollary 2.8. Let G1,G2≻ 0 be positive definite ma-
trices and define G3 := (G−1

1 +G−1
2 )−1. Let L1, L2

be full-rank lattices such that L1⊆L2,
√

G2≥ηε(L2)
and
√

G3 ≥ ηε(L1). Then, we have

DL1,
√

G1
+DL2,

√
G2
≈s DL2,

√
G1+G2

.
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3 PROPERTIES OF THE
POLYNOMIAL RING

In this section, we analyze the basic properties of the
polynomial ring defined in Eq. (1). The properties
derived in this section are the building blocks for the
construction of our algorithm presented in Section 5.

3.1 Definition

Let Z[X ] be a set of polynomials with integer coeffi-
cients. In this paper, we consider a polynomial ring

R= Z[X ]/(Xn +1) for n a power of 2, (1)
which is often used in lattice-based cryptography,
e.g., (Lyubashevsky et al., 2010; Kiltz et al., 2018;
Bos et al., 2018).

We define a signed permutation matrix that is use-
ful for analyzing the properties of R.
Definition 3.1. The signed permutation matrix is de-
fined as

P =

(
0 −1

In−1 0

)
∈ Zn×n. (2)

The following facts hold for P:
Fact 3.2 (Properties of P). For P defined in Eq. (2),
we have:

Pi =

(
O −Ii

In−i O

)
Pn/2 =

(
O −In/2

In/2 O

)
for n even (3)

P−i =

(
O In−i
−Ii O

)
= (Pi)⊺ (4)

Pn−i = PnP−i =−P−i =−(Pi)⊺ (5)
We also define a reverse permutation matrix:

Definition 3.3. The reverse permutation matrix is de-
fine as

R :=

0 . . . 1
... 1

...
1 . . . 0

 ∈ Zn×n.

The following facts hold for R (and P):
Fact 3.4. RR = I, R⊺ = R
Fact 3.5. PiR = RP−i (RPi = P−iR)

We define an outer-product-like operation ⊗:
Definition 3.6 (⊗). For any m,n ∈ N, A1, . . . ,Am ∈
Zn×n and b ∈ Zn, we define:

(A1 · · · Am)⊗b := (A1b · · · Amb) ∈ Zn×m

b⊺⊗

A1
...

Am

 :=

b⊺A1
...

b⊺Am

 ∈ Zm×n

Finally, using the P defined in Definition 3.1 and
the operation ⊗, we define the coefficient vector, co-
efficient matrix and coefficient Gram matrix for any
polynomial a ∈R as follows:
Definition 3.7 (Coefficient vector / matrix / Gram
matrix). Let a = ∑

n−1
i=0 aiX i ∈R be a polynomial. For

a, we define the coefficient vector, the coefficient mat-
rix and the coefficient Gram matrix as follows:

a := vec(a) := (a0,a1, . . . ,an−1)
⊺ ∈ Zn

A :=mat(a) :=
(
I P · · · Pn−1)⊗a ∈ Zn×n

Ga := Gram(a) := AA⊺ ∈ Zn×n.

We denote the distribution over R as follows:
Definition 3.8. For the distribution χ over Zn, define

R(χ) := {a ∈R | vec(a)∼ χ}.

3.2 Properties of the Coefficient Matrix

In this subsection, we present some basic proper-
ties of the coefficient matrix (mat(a)). By Defini-
tions 3.1, 3.6 and 3.7, for any a ∈ R s.t. vec(a) :=
(a0,a1, . . . ,an−1)

⊺ ∈ Zn, we have:

mat(a) :=
(
I P . . . Pn−1)⊗vec(a)

:=
(
a Pa . . . Pn−1a

)
=


a0 −an−1 . . . −a1
a1 a0 . . . −a2
...

...
. . .

...
an−1 an−2 . . . a0

 (6)

We can see that mat(a) is a matrix composed of
permutations (by Pi) of the first column vector a =
vec(a). The coefficient matrix mat(a) can also be
seen a matrix composed of permutations of the last
row vector (an−1,an−2,an−3, . . . ,a0) = a⊺R:
Fact 3.9 (Dual representation of mat(a)). For any
a ∈R, we have:

mat(a) = a⊺R⊗


Pn−1

...
P
I


3.3 Properties of the Coefficient Gram

Matrix

In this subsection, we present some basic properties
of the coefficient Gram matrix (mat(a)). We can ex-
plicitly write the coefficient Gram matrix as follows:
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Fact 3.10. Let a∈R and a := vec(a). Then, we have:

Gram(a)

=


∥a∥2 a⊺Pa · · · a⊺Pn−1a

a⊺P−1a ∥a∥2 · · · a⊺Pn−2a
...

. . .
...

a⊺P−(n−1)a a⊺P−(n−2)a · · · ∥a∥2


Proof. By Definition 3.7, Fact 3.4, Fact 3.5 and
Fact 3.9, we have:

Gram(a)
:=mat(a)(mat(a))⊺

= a⊺R⊗


Pn−1

. . .
P
I

 · (P−(n−1) . . . I
)
⊗Ra

= a⊺R⊗


I P · · · Pn−1

P−1 I · · · Pn−2

...
. . .

...
P−(n−1) P−(n−2) · · · I

⊗Ra

=


∥a∥2 a⊺P−1a · · · a⊺P−(n−1)a
a⊺Pa ∥a∥2 · · · a⊺P−(n−2)a

...
...

. . .
...

a⊺Pn−1a a⊺Pn−2a · · · ∥a∥2


Thus, the claim follows by subsequent Fact 3.11.

Fact 3.11. a⊺Pia = a⊺(Pi)⊺a = a⊺P−ia

Proof. Follows from Fact 3.2: (Pi)⊺ = P−i.

Furthermore, owing to the properties of P (shown
in Fact 3.2), we show that coefficient Gram matrices
have symmetricity in their elements. To begin with,
we define the inverse function of mat(·) for simplicity
of notation.
Definition 3.12 (mat−1). For any a ∈ R and A :=
mat(a), we define mat−1(A) := a = vec(a) (the first
column vector of A).

Then, we show the symmetricity of the elements
of the coefficient Gram matrices. Note that the co-
efficient Gram matrix of a ∈ R is a coefficient mat-
rix of some b(= aa) ∈ R, as we will show later in
Lemma 3.21.
Lemma 3.13 (Symmetricity of Gram(a)). Let a∈R,
a := vec(a), Ga := Gram(a) and (σ0, . . . ,σn−1) :=
mat−1(Ga). Then, we have:

σ0 = ∥a∥2

σi =−σn−i (1≤ i≤ n
2 −1) (7)

σ n
2
= 0 (8)

(Note: Here, n is assumed to be even. This is satisfied
by the definition of Eq. (1).)

Proof. By Fact 3.10, we have:{
σ0 = ∥a∥2

σi = a⊺P−ia (i = 1, . . . ,n−1)
.

Then, for (i = 1, . . . ,n−1), we have:

−σn−i =−a⊺P−(n−i)a =−a⊺(Pn−i)⊺a (∵ Eq. (4))

=−a⊺Pn−ia = a⊺Pia = σi (∵ Eq. (5))

Thus, Eq. (7) holds. We have Eq. (8) since a⊺P
n
2 a = 0

holds any a ∈ Zn by Eq. (3) in Fact 3.2.

Owing to this symmetricity, Ga :=Gram(a) is de-
termined only by σ0, . . . ,σ n

2−1 (since A := mat(a) is
determined only by a := vec(a)).

3.4 Rotation

For any a ∈ R, multiplication by X i can be regarded
as “rotation” of the coefficient vector/matrix by the
permutation matrix Pi. The coefficient Gram Matrix
is invariant with respect to multiplication by X i:
Fact 3.14 (Rotation). For any a ∈R and i ∈ Z,

vec(aX i) = Pia,

mat(aX i) = PiA,

Gram(aX i) = Gram(a).

Proof. Let a = ∑
n−1
i=0 aiX i. Then, we have:

aX =−an−1 +a0X + · · ·+an−2Xn−1

vec(aX i) = Pia

mat(aX i) =
(
I P . . . Pn−1)⊗vec(aX i)

=
(
I P . . . Pn−1)⊗Pia

= Pi (I P . . . Pn−1)⊗a

= PiA

Gram(aX i) = APi(APi)⊺ = AA⊺ (∵ Eq. (4))

3.5 Commutativity

We show an important lemma to analyze the coeffi-
cient vector of the product of polynomials over R:
This result is why we define the coefficient matrix as
in Definition 3.7.
Lemma 3.15 (Multiplication over R). For a,b ∈R,

vec(ab) = Ab = Ba,

where A := mat(a), a := vec(a), B := mat(b), and
b := vec(b).
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Proof. Note that Xn+i = (Xn + 1)X i − X i ≡ −X i

holds. We have

a = a0 +a1X + · · ·+an−1Xn−1 = x⊺a and

b = b0 +b1X + · · ·+bn−1Xn−1 = x⊺b,

where a := (a0,a1, . . . ,an−1)
⊺ and b := (b0,b1, . . . ,

bn−1)
⊺ are the coefficient vectors of a and b, and

x := (1,X ,X2, . . . ,Xn−1)⊺. Then, we have

ab =(a0b0−a1bn−1−a2bn−2 · · ·−an−1b1)

+(a0b1 +a1b0−a2bn−1 · · ·−an−1b2)X

+(a0b2 +a1b1 +a2b0 · · ·−an−1b3)X2 + . . .

=x⊺


b0 −bn−1 . . . −b1
b1 b0 . . . −b2
...

...
. . .

...
bn−1 bn−2 . . . b0




a0
a1
...

an−1


=x⊺Ba

Thus, we have vec(ab) = Ba. We obtain vec(ab) =
Ab in a similar manner.

It is known that the ring R defined in Eq. (1) is
commutative: for any a,b ∈ R, we have ab = ba.
This can also be confirmed by Lemma 3.15: we obtain
vec(ab) = Ab = Ba = vec(ba) by Lemma 3.15, and
vec(·) is isomorphic from R to Zn.

Importantly, the coefficient matrix also has com-
mutativity:
Theorem 3.16 (Commutativity of the coefficient
matrices). For any A :=mat(a), B :=mat(b),

mat(ab) = AB = BA

Proof. Let a := vec(a) and b := vec(b). We have:

mat(ab)

=
(
I P . . . Pn−1)⊗vec(ab)

=
(
I P . . . Pn−1)⊗Ab (∵ Lemma 3.15)

=
(
A PA . . . Pn−1A

)
⊗b

=
(
A AP . . . APn−1)⊗b (∵ Lemma 3.17)

= (A⊗
(
I P . . . Pn−1))⊗b

= AB

By Lemma 3.15, vec(ab)=Ab=Ba. Thus, similarly,
we also have mat(ab) = BA.

We complete the above proof by presenting the
deferred Lemma 3.17:
Lemma 3.17. For any a ∈R, A :=mat(a) and i ∈ Z,
we have PiA = APi

Proof. Let a := vec(a). Then, we have

PiA = Pi ·
(
I P . . . Pn−1)⊗a

=
(
I P . . . Pn−1)⊗Pia =mat(Pia), and

APi = a⊺R⊗


Pn−1

Pn−2

...
P
I

 ·Pi = a⊺RPi⊗


Pn−1

Pn−2

...
P
I



= (Pia)⊺R⊗


Pn−1

Pn−2

...
P
I

 (∵ Fact 3.5)

=mat(Pia),

where we use the fact that a⊺RPi = a⊺P−iR =
(Pia)⊺R holds.

As a corollary of Lemma 3.15, we obtain the fol-
lowing fact:
Corollary 3.18. For a,b∈R, ab= 0 holds if and only
if a = 0 or b = 0. Thus, A := mat(a) is nonsingular
for any a ̸= 0.

3.6 Transpose

We first define the transpose of polynomials in R:
Definition 3.19 (Transpose in the ring). For a :=
a(X) := ∑

n−1
i=0 aiX i ∈ R, we define its transpose as

a := a(X−1) ∈R.
Then, we can derive the coefficient vector, co-

efficient matrix and coefficient Gram matrix of the
transpose polynomials as follows:
Fact 3.20. For any a := ∑

n−1
i=0 aiX i ∈R, we have:

vec(a) = (a0,−an−1,−an−2, . . . ,−a1)
⊺ (9)

mat(a) = (mat(a))⊺(= A⊺) (10)
Gram(a) = (mat(a))⊺mat(a)(= A⊺A) (11)

Proof. Note that Xn + 1 ≡ 0⇔ −1 ≡ Xn ⇔ X−i ≡
−Xn−i holds. Hence, we have

a := a(X−1) :=
n−1

∑
i=0

aiX−i =
n−1

∑
i=0

(−ai)Xn−i

= a0 +
n−1

∑
i=1

(−an−i)X i.

Thus, we obtain Eq. (9). We can derive Eq. (10) since

mat(a) =
(
I P . . . Pn−1)⊗vec(a)

= (mat(a))⊺

via Eq. (6). We obtain Eq. (11) by definition.
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Next, we show an important lemma to analyze the
coefficient Gram matrix: for any a ∈ R, the coeffi-
cient Gram matrix of a is the coefficient matrix (not
coefficient “Gram” matrix) of the product of a and a:
Lemma 3.21. For any a ∈R, Gram(a) =mat(aa).

Proof. Let A := mat(a) and a := vec(a). Then, we
have

Gram(a)
= AA⊺ = A⊺A (∵ Theorem 3.16)

= A⊺ (I P . . . Pn−1)⊗a

=
(
I P . . . Pn−1)⊗A⊺a (∵ Lemma 3.17)

=
(
I P . . . Pn−1)⊗vec(aa),

where we use the fact mat(a) =A⊺ (by Fact 3.20) and
Lemma 3.15.

The above lemma implies that each column of
Gram(a) is a rotation (by Pi) of its first column vector
vec(aa):
Corollary 3.22. For any a ∈ R, we have
mat−1(Gram(a)) =mat−1(mat(aa)) = vec(aa).

4 OUR ALGORITHM FOR GRAM
ROOT DECOMPOSITION OVER
THE RING

In this section, we present an algorithm for Gram root
decomposition over the ring R.

We present our algorithm for Gram root decom-
position over the ring R in Algorithm 1. The inputs
of the algorithm are “short” polynomials e1, . . . ,em ∈
R s.t. ∥ei∥ ≤ B ∈ N for all i ∈ [m]. (Note that we
explained our algorithm with m = 1 in the abstract
and introduction section of this paper for simplic-
ity.) Then, the algorithm outputs ζ = (ζ1, . . . ,ζl)

⊺ ∈
Rl s.t. ∑

l
i=1 Gζi + ∑

m
i=1 Gei = mnB2I, where Gζi :=

Gram(ζi) and Gei := Gram(ei). In other words, the
goal of the algorithm is to “diagonalize” the sum of
the coefficient Gram matrices ∑

m
i=1 Gei . Furthermore,

the output polynomials ζ1, . . . ,ζl are short (∥ζi∥ ≤√
2mB), and the lower-bound of the minimum eigen-

value of Gζi is given (σmin(Zi) ≥ 2
n ). These condi-

tions on the output are necessary for the application
we present in Section 5.

We prove the correctness of Algorithm 1 in Sec-
tion 4.1. We then show that the outputs of Algo-
rithm 1 satisfies the bounds (∥ζi∥ ≤

√
2mB and

σmin(mat(ζi))≥ 2
n ) in Section 4.2.

4.1 Correctness

We show that Algorithm 1 works correctly:
Theorem 4.1. The output ζ1, . . . ,ζl ∈ R of Algo-
rithm 1 satisfies ∑

l
i=1 Gζi = G and l < 5

2 n.

Proof. The first part (Algorithms 1 to 1) of the algo-
rithm decomposes the non-diagonal elements of

G := mnB2I−∑
m
i=1Gei ,

i.e., G := ∑
m
i=1 Gei . Define σ := (σ0, . . . ,σn−1)

⊺ :=
mat−1(G); Then we have σ = ∑

m
i=1mat−1(Gei) =

∑
m
i=1 vec(eiei) via Corollary 3.22. On Algorithm 1,

we first decompose |σi| by four non-negative in-
teger squares c2

1, . . . ,c
2
4. Such integer squares ex-

ist for any natural numbers according to Lagrange’s
four-square theorem, and we efficiently calculate
them via the Rabin–Shallit (RS) algorithm in The-
orem 4.2. For z( j) := (c j − sgn(σi)c j · X i) · X r ∈
R on Algorithm 1, let τ( j) := (τ

( j)
0 , . . . ,τ

( j)
n−1) :=

mat−1(Gram(z( j))). Then, by Lemma 4.4, we have:
τ
( j)
0 = 2c2

j

τ
( j)
i =−sgn(σi)c2

j

τ
( j)
n−i = sgn(σi)c2

j

τ
( j)
k = 0 (i /∈ {0, i,n− i})

Hence, we have:
∑

4
j=1 τ

( j)
0 = 2∑

4
j=1 c2

j = 2|σi|
∑

4
j=1 τ

( j)
i =−sgn(σi)∑

4
j=1 c2

j =−σi

∑
4
j=1 τ

( j)
n−i = sgn(σi)∑

4
j=1 c2

j = σi

Therefore, at Algorithm 1, mat−1(∑ζ∈S1 Gram(ζ)) =

(∑
n
2−1
i=1 2|σi|,−σ1, . . . ,−σn−1); thus, we have

G−∑ζ∈S1Gram(ζ) = mnB2I− (G+∑ζ∈S1Gram(ζ))

= mnB2I− γI = βI,

where γ :=σ0+∑

n
2−1
i=1 2|σi| as defined on Algorithm 1.

Note that |σi| ≤ σ0 = ∑
m
i=1∥ei∥2 ≤ mB2 holds by

Lemma 4.3; thus, γ≤ (n−1)σ0≤m(n−1)B2. Hence,
we have mB2 ≤ β.

The second part (Algorithms 1 to 1) of the algo-
rithm decomposes βI. The purpose of Algorithms 1
to 1 is to decompose βI with “short” polynomials:
This is needed only to satisfy ∥ζi∥ ≤

√
2mB. For the

monomial z :=
√

2mB ·X r on Algorithm 1, Gram(z)=
2mB2I holds by Lemma 4.4. Thus, at Algorithm 1,
we have ∑ζ∈S1 Gram(ζ) = l′ · 2mB2I. The rest of
the algorithm is to decompose (β− l′ · 2mB2)I = δI.
For the monomial z( j) := c j · X r on Algorithm 1,
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Algorithm 1: Gram root decomposition over the ring.

Input : e1, . . . ,em ∈R s.t. ∥ei∥ ≤ B for all i ∈ [m]

Output : ζ1, . . . ,ζl ∈R s.t. ∑
l
i=1 Gζi = G := mnB2I−∑

m
i=1 Gei ∈ Zn×n, ∥ζi∥ ≤

√
2mB and

σmin(Zi)≥ 2
n , where Zi :=mat(ζi) Gζi := Gram(ζi) and Gei := Gram(ei) for any i.

1 S1 := /0, S2 := /0 // Sets to store ζ1, . . . ,ζl

Decompose non-diagonal elements of G:
2 Define G := ∑

m
i=1 Gei and σ := (σ0, . . . ,σn−1)

⊺ :=mat−1(G). (c.f., Definition 3.12)
// |σi| ≤ σ0 = ∑

m
i=1∥ei∥2 ≤ mB2 by Lemma 4.3. σi =−σn−i for i ∈ [1, n

2 −1], σ n
2 +1 = 0 by Lemma 3.13

3 for i = 1 to n
2 −1 do

4 Find c1, . . . ,c4 ∈ N s.t. ∑
4
j=1 c2

j = |σi| with RS algorithm (Theorem 4.2)
5 for j = 1 to 4 do
6 z( j) := (c j− sgn(σi)c j ·X i) ·X r ∈R for r $← Zn, // ∥z( j)∥=

√
2c2

j ≤
√

2|σi| ≤
√

2mB

7 Update S1 := S1∪{z( j)} // σmin(mat(z( j)))≥ 2c j
n ≥

2
n by Lemma 4.8

8 end
// mat−1(∑4

j=1Gram(z( j))) = (2|σi|,0, . . . ,0,−σi, . . .)
⊺ by Lemma 4.4

9 end
10 γ := σ0 +∑

n
2−1
i=1 2|σi| // ≤ (n−1)σ0 ≤ (n−1)mB2 by Lemma 4.3

Decompose diagonal elements of G:
11 β := mnB2− γ ∈ [mB2,mnB2) // G−∑ζ∈S1

Gram(ζ) = mnB2I− (G+∑ζ∈S1
Gram(ζ)) = mnB2I− γI = βI

12 l′ := ⌊β/2mB2⌋ (< n
2 )

13 for i = 1 to l′ do
14 z :=

√
2mB ·X r ∈R for r $← Zn // Gram(z) = 2mB2I by Lemma 4.4

15 Update S2 := S2∪{z} // σmin(mat(z)) =
√

λmin(Gz) =
√

2mB > 1 > 2
n , ∥z∥=

√
2mB

16 end
17 δ := β− l′ ·2mB2 ∈ [0,2mB2)

18 Find c1, . . . ,c4 ∈ N s.t. ∑
4
j=1 c2

j = δ with RS algorithm (Theorem 4.2)
19 for j = 1 to 4 do
20 z( j) := c j ·X r ∈R for r $← Zn // ∥z( j)∥= c j ≤

√
δ <
√

2mB

21 Update S2 := S2∪{z( j)}
22 end
23 return S := S1∪S2 // ∑ζ∈S2

Gram(ζ) = βI, G = ∑ζ∈S Gram(ζ), l := |S |= 4( n
2 −1)+ l′+4 < 5

2 n

Gram(z( j)) = c2
jI holds by Lemma 4.4. Thus we have

∑
4
j=1Gram(z( j)) = ∑

4
j=1 c2

jI = δI. Hence, we obtain

∑ζ∈S2Gram(ζ) = βI
at Algorithm 1. Therefore, the output S of the algo-
rithm satisfies ∑ζ∈S Gram(ζ) = G. We also have
l := |S |= 4( n

2 −1)+ l′+4 < 5
2 n.

We complete the above proof by describing
the deferred facts; Theorem 4.2, Lemma 4.3, and
Lemma 4.4:
Theorem 4.2 (Rabin–Shallit (RS) algorithm (Ra-
bin and Shallit, 1986)). For any N ∈ N, there is a
randomized algorithm for finding

a,b,c,d ∈ N s.t. a2 +b2 + c2 +d2 = N
within O(log2 N log logN) operations on average.

Lemma 4.3 (Bound on |σi|). Let a ∈R, a := vec(a),
Ga := Gram(a) and (σ0, . . . ,σn−1) := mat−1(Ga).
Then, |σi| ≤ σ0 = ∥a∥2 holds for any i.

Proof. By Fact 3.10, we have σi = a⊺P−ia for any i ̸=
0. Then, by the Cauchy–Schwarz inequality, |σi| =
|a⊺P−ia| ≤ ∥a∥∥P−ia∥= ∥a∥2 holds.

Lemma 4.4 (Coefficient Gram matrices of binomi-
als and monomials). Let a ∈ R be a binomial: a =
X r · (a0 +aiX i) for i ∈ N and r ∈ Z. Let a := vec(a),
Ga := Gram(a) and

(σ0, . . . ,σn−1) :=mat−1(Ga).
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Then, we have:
σ0 = ∥a∥2 = a2

0 +a2
i

σi = a0ai, σn−i =−a0ai

σk = 0 (k /∈ {0, i,n− i})

In particular, for monomial a := a0X r ∈R for r ∈ Z,
we have Ga = a2

0I, i.e.,{
σ0 = a2

0
σi = 0 (i ̸= 0)

Proof. Follows from Fact 3.2 and Fact 3.10.

4.2 Bounds on the Outputs

We first prove that the outputs of the algorithm are
short polynomials:
Theorem 4.5. The output ζ = (ζ1, . . . ,ζl)

⊺ ∈ Rl of
Algorithm 1 satisfies ∥ζi∥ ≤

√
2mB for any i ∈ [l].

Proof. The binomial z( j) := (c j− sgn(σi)c j ·X i) ·X r

on Algorithm 1 satisfies

∥z( j)∥=
√

2c2
j ≤

√
2|σi| ≤

√
2mB

by Lemma 3.13 and Lemma 4.3. The monomial z :=√
2mB ·X r ∈R on Algorithm 1 satisfies ∥z∥=

√
2mB.

Finally, z( j) := c j ·X r ∈R on Algorithm 1 also satis-
fies ∥z( j)∥= c j ≤

√
δ <
√

2mB.

Finally, we show that the minimum singular value
of the coefficient matrices of the outputs are lower-
bounded by 2

n :

Theorem 4.6. The output ζ = (ζ1, . . . ,ζl)
⊺ ∈ Rl of

Algorithm 1 satisfies σmin(mat(ζi))≥ 2
n for any i.

Proof. The binomial z( j) := (c j− sgn(σi)c j ·X i) ·X r

on Algorithm 1 satisfies σmin(mat(z( j)))≥ 2c j
n ≥

2
n by

Lemma 4.8.
On Algorithm 1, the monomial z :=

√
2mB · X r

satisfies σmin(mat(z)) =
√

λmin(Gz) =
√

2mB > 1 >
2
n . Furthermore, z( j) := c j ·X r on Algorithm 1 also
satisfies σmin(mat(z( j)))≥ c j ≥ 1≥ 2

n .

We complete the above proof by presenting a de-
ferred core lemma: Lemma 4.8. We first show that
the coefficient matrix of the “inverse” polynomial is
the inverse of the coefficient matrix:
Fact 4.7 (Inverse of coefficient matrix). For any a ∈
R, there exists b ∈ R[X ]/(Xn +1) such that a ·b = 1.
Furthermore, for A := mat(a), we have A−1 = B =
mat(b). (Thus, such b is sufficient to derive A−1).

Proof. Let A :=mat(A) and define

b := vec(b) := A−1(1,0, . . . ,0)⊺.

Then, by Lemma 3.15, we have

vec(a ·b) = Ab = (1,0, . . . ,0)⊺,

thus, we have a ·b = 1. Furthermore,we have mat(a ·
b) = AB = I via Theorem 3.16; thus, B = A−1.

Then, we derive a lower bound of the singular
value of the coefficient matrix of binomials:
Lemma 4.8 (Inverse of binomials). Let z= c±cXk ∈
R for c ∈ N, and let g = ∑

n−1
i=0 giX i ∈ R[X ]/(Xn + 1)

be such that z · g = 1 (i.e., the “inverse” of z). Then,
we have ∥g∥∞ = 1

2c . Furthermore, we have σmin(Z)≥
2c
n , where Z :=mat(z).

Proof. We let z = c+ cXk since the proof for z = c−
cXk is obtained similarly. By Fact 4.7 there exists g
s.t. z ·g = 1. Let z := vec(z) and G :=mat(g). Then,
by Fact 4.7 and Lemma 3.15, we have

vec(z ·g) = Gz

=


g0 −gn−1 . . . −g1
g1 g0 . . . −g2

...
. . .

...
gn−1 gn−2 . . . g0




c
...
c
...

=


1
0
...
0



⇔



g0 −gn−k
...

gk−1 −gn−1
gk g0

...
gn−1 gn−k−1


(

c
c

)
=


1
0
...
0

 .

Therefore, we have:
g0 = gn−k +

1
c

|g j|= · · ·= |gx·k+ j mod n|
for x ∈ N,0≤ j ≤ k−1

We can analyze the absolute value of gi’s as follows:

• When gcd(k,n) = d > 1, we have

|gx·d mod n|= 1
2c for x ∈ N, and

gx·d+ j mod n = 0 for x ∈ N, j ∈ {1, . . . ,d−1}.
• When gcd(k,n) = 1, we have

|gi|= 1
2c for any i ∈ {0,n−1}.

Thus, in any case, we have ∥g∥∞ = 1
2c . Furthermore,

we have

σmin(Z) = 1/∥Z−1∥= 1/∥G∥
≥ 1/∥G∥F = 1/(

√
n∥g∥)

≥ 1/(
√

n
√

n( 1
2c )

2)≥ 2c/n.
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5 APPLICATION:
SPHERICALIZING THE
DISCRETE GAUSSIAN OVER
THE RING

We apply our Gram root decomposition algorithm
(Algorithm 1) to sphericalize the discrete Gaussian
over the ring: Let r0, . . . ,rm+l

iid∼ R(DZn,s) (Defini-
tion 3.8), i.e., polynomials with coefficients of the
spherical discrete Gaussian. For given e1, . . . ,em ∈
R, we analyze the distribution of (r0 +∑

m
i=1 riei) in

Lemma 5.5. Furthermore, let ζ1, . . . ,ζl be the outputs
of Algorithm 1, then we show that the coefficients
of (r0e+∑

m
i=1 riei +∑

l
i=1 rm+iζi) follow the spherical

discrete Gaussian distribution in Theorem 5.6.

5.1 Building Blocks

The goal of this subsection is to present Lemma 5.4,
which concerns the convolution of the discrete Gaus-
sian. First, we describe the required basic facts about
the singular values of the Gram matrices:

Fact 5.1. For any G ≻ 0,
√

G−1
= (

√
G−1)⊺. Thus,

we have:

σmax(
√

G
−1
) = σmax(

√
G−1)

σmin(
√

G
−1
) = σmin(

√
G−1)

Proof. Let S :=
√

G, then G = SS⊺. Thus, G−1 =

S−⊺S−1 = (S−⊺)(S−⊺)⊺: we have S−⊺ =
√

G−1.
Hence, we have

σmax(
√

G
−1
) = ∥

√
G
−1∥= ∥

√
G−1∥= σmax(

√
G−1).

Thus, we also have

σmin(
√

G
−1
) = 1/σmax(

√
G
−1
) = 1/σmax(

√
G−1)

= σmin(
√

G−1).

Lemma 5.2 ((Golub and Van Loan, 1996, Theorem
8.1.5)). If A,B ∈ Rn×n are symmetric matrices, then
for any i ∈ [n],

λi(A)+λmin(B)≤ λi(A+B)≤ λi(A)+λmax(B)

Fact 5.3. For any G1,G2 ≻ 0, we have:

σmax(
√

G1 +G2)

≤
√

σ2
max(

√
G1)+σ2

max(
√

G2) (12)

σmin(
√

G1 +G2)

≥
√

σ2
min(

√
G1)+σ2

min(
√

G2)

≥
√

2min{σmin(
√

G1),σmin(
√

G2)} (13)

σmin(

√
(G−1

1 +G−1
2 )−1)

≥
√

(σ−2
min(

√
G1)+σ

−2
min(

√
G2))−1

≥ 1√
2

min{σmin(
√

G1),σmin(
√

G2)} (14)

Proof. By definition of singular value and
Lemma 5.2, we have

σmax(
√

G1 +G2) =
√

λmax(G1 +G2)

≤
√

λmax(G1)+λmax(G2), and

σmin(
√

G1 +G2) =
√

λmin(G1 +G2)

≥
√

λmin(G1)+λmin(G2).

Thus, we obtain Eq. (12) and Eq. (13). By Fact 5.1
and Eq. (12), we obtain (14) as follows:

σmin(

√
(G−1

1 +G−1
2 )−1)

= (σmax(

√
G−1

1 +G−1
2 ))−1

≥ (σ2
max(

√
G−1

1 )+σ
2
max(

√
G−1

2 ))−1/2

= (σ−2
min(

√
G1)+σ

−2
min(

√
G2))

1/2

Then, we prove Lemma 5.4, which is a general-
ization of Corollary 2.8:
Lemma 5.4 (Generalization of Corollary 2.8). Let
G0, . . . ,Gm ∈ Rn×n be positive definite matrices. Let
L1(B1), . . . ,Lm(Bm)⊆Zn be full-rank integer lattices
with (nonsingular) basis B1, . . . ,Bm.

Let σ∗min := mini∈{0,...,m}σmin(
√

Gi) and
B∗ := maxi∈{1,...,m}∥Bi∥len. Assume that
σ∗min ≥

√
2B∗ηε(Zn). Then, we have

∑
m
i=1DLi,

√
Gi
+DZn,

√
G0
≈s DZn,

√
∑

m
i=1 Gi

.

Proof. We first show

DL1,
√

G1
+DZn,

√
G0
≈s DZn,

√
G0+G1

(15)

by using Corollary 2.8. We have
√

G0 ≥ ηε(Zn)
because σmin(

√
G0) ≥ σ∗min ≥ η+

ε (Zn) according to
Fact 2.5 and the hypothesis. By Fact 5.3, we have√
(G−1

0 +G−1
1 )−1 ≥ ηε(L1(B1)) because we have

σmin(

√
(G−1

0 +G−1
1 )−1)

≥ 1√
2

min{σmin(
√

G0),σmin(
√

G1)}

≥ 1√
2
σ
∗
min ≥ ∥B1∥lenη

+
ε (Zn)

by the hypothesis (
√

2∥B1∥lenη+
ε (Zn)≤σ∗min). There-

fore, we obtain Eq. (15).
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Next, we show

DL2,
√

G2
+DZn,

√
G0+G1

≈s DZn,
√

G0+G1+G2

via Corollary 2.8 again. By Fact 2.5 and Fact 5.3 and
the hypothesis, we have

√
G0 +G1 ≥ ηε(Zn) because

σmin(
√

G0 +G1)≥min{σmin(
√

G0),σmin(
√

G1)}
≥ σ

∗
min ≥ η

+
ε (Zn)

holds by the assumption η+
ε (Zn) ≤ σ∗min. Further-

more, we have√
((G0 +G1)−1 +G−1

2 )−1 ≥ ηε(L1(B2))

because

σmin(

√
((G0 +G1)−1 +G−1

2 )−1)

≥ 1√
2

min{σmin(G0 +G1),σmin(G2)}

≥ 1√
2

min{σmin(G0),σmin(G1),σmin(G2)}

≥ 1√
2
σ
∗
min ≥ ∥B2∥lenη

+
ε (Zn)

holds by the assumption
√

2∥B2∥lenη+
ε (Zn) ≤ σ∗min.

Repeating the above, we obtain the claim.

5.2 Main Theorem

We first apply Lemma 5.4 to the discrete Gaussian
over the ring:
Lemma 5.5 (Applying Lemma 5.4 to the discrete
Gaussian over the ring). Let e1, . . . ,em,∈R and de-
fine Ei := mat(ei) and Gei := Gram(ei). Assume
that ∥ei∥ < B and σmin(Ei) ≥ c hold for some con-

stant B,c > 0. Let r0, . . . ,rm
iid∼ R(DZn,s) for s ≥√

2c−1Bη+
ε (Zn), and define

z := r0 +∑
m
i=1riei. (16)

Then, we have

vec(z)≈s DZn,s
√

In+∑
m
i=1 Gei

.

Proof. By Lemma 3.15, we have vec(z) = r0 +
∑

m
i=1Eiri, where ri := vec(ri) for i = 0, . . . ,m. By

Lemma 2.6, we obtain Eir∼ DEiZn,sEi for any i.
Let G0 := s2In, Gi := s2Gei , Bi := Zi for all i.

Then, Bi ∈ Zn×n is nonsingular according to Corol-
lary 3.18; thus L(Bi) = BiZn ⊆ Zn is a full-rank inte-
ger lattice for all i. Let σ∗min := mini σmin(

√
Gi) and

B∗ := maxi∥Bi∥len, then we have

σ
∗
min = s ·min{1,min

i
σmin(Ei)}= c · s,

B∗ := max
i
∥Ei∥len = max

i
∥ei∥< B.

Then, we obtain the claim by Lemma 5.4 since σ∗min =

cs≥
√

2B∗ηε(Zn) holds by hypothesis.

Finally, we present the main theorem by adding
∑

l
i=1rm+iζi in Eq. (16), where ζ1, . . .ζl are the outputs

of Algorithm 1 for given e1, . . . ,em. Then, a polyno-
mial with spherical discrete Gaussian coefficients is
obtained:
Theorem 5.6 (Sphericalize the discrete Gaussian
over the ring). Let e1, . . . ,em ∈ R and define Ei :=
mat(ei) and Gei := Gram(ei). Assume that ∥ei∥ < B
and σmin(Ei)≥ c hold for some constant B,c > 0.

Given e1, . . . ,em as the inputs, let ζ1, . . . ,ζl be the

outputs of Algorithm 1. Let r0, . . . ,rm+l
iid∼ R(DZn,s)

for s≥ 2
√

mBmax{c−1, n
2}η

+
ε (Zn), and define

z := r0 +∑
m
i=1riei +∑

l
i=1rm+iζi.

Then, we have

vec(z)≈s DZn,s
√

mnB2+1
.

Proof. The outputs ζ1, . . . ,ζl of Algorithm 1 satisfy
∥ζi∥≤

√
2mB and σmin(mat(ζi))≥ 2

n for any i∈ [l] by
Theorem 4.5 and Theorem 4.6, respectively. Hence,
by Lemma 5.5, we have

vec(z)≈s D
Zn,s

√
In+∑

m
i=1 Gei+∑

l
i=1 Gζi

since s≥ 2
√

mBmax{c−1, n
2}η

+
ε (Zn) by hypothesis.

Furthermore, the outputs ζ1, . . . ,ζl of Algorithm 1
satisfy ∑

l
i=1 Gζi =mnB2I−∑

m
i=1 Gei via Theorem 4.1.

Thus, we obtain the claim.

6 CONCLUSION AND FUTURE
WORK

Many advanced lattice-based cryptosystems such as
identity-based encryption and functional encryption
require efficient and secure algorithms to sample dis-
crete Gaussian. The integral Gram root decompo-
sition of (Ducas et al., 2020) was developed in the
context of the discrete Gaussian sampling algorithm.

In this work we proposed an algorithm for Gram
root decomposition over the polynomial ring (Algo-
rithm 1). While the objective of this algorithm is
similar to the (ring version of) integral Gram root
decomposition of (Ducas et al., 2020), our algorithm
ensures the bounds of the norm of the output polyno-
mial ζi (Theorem 4.5) and the minimum eigenvalue of
the coefficient Gram matrix of ζi (Theorem 4.6). By
utilizing the bounds, we showed how to sphericalize
discrete Gaussian over the ring (Theorem 5.6).

Our further application would be an efficient
and secure discrete Gaussian sampling algorithm for
ring setting for advanced lattice-based cryptosystems,
which we leave for future work.
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