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Abstract: Data fragmentation is the process of splitting data into either attributes or records across multiple databases,
thereby improving operational efficiency, minimizing processing requirements, and enhancing data privacy.
However, under this approach, data aggregation becomes complex, particularly in environments where adher-
ence to regulatory compliance is essential for organizational data analysis and decision-making tasks. Since
the dataset held by each party may contain sensitive information, simply joining local datasets and releasing
the aggregated result will inevitably reveal such sensitive information to other parties. Differential Privacy
(DP) has become the de facto standard for data protection due to its rigorous notion of privacy. However,
the strong privacy guarantees it offers result in a deterioration of data utility in several scenarios, such as data
releases in either centralized or fragmented data scenarios. This paper explores the application of Individual
Differential Privacy (iDP)—a formulation of DP conceived to better preserve data utility while still provid-
ing strong privacy guarantees to individuals—for data releases in either horizontally or vertically fragmented
scenarios. In combination with individual ranking (IR) microaggregation, an iDP-IR privacy-preserving data
release system is presented, in which multiple data owners can safely share datasets. Our experiments on
the Adult and Wine Quality datasets demonstrate that the proposed system for fragmented data can provide
reasonable information loss with robust ε privacy values.

1 INTRODUCTION

In the information society, researchers and the general
public have been demanding more data, promoting
the creation of public repositories such as the Harvard
Dataverse, Dryad, and government open data portals.
However, these massive data repositories may include
both re-identifying and confidential attributes, which
can jeopardize the privacy of the individuals they re-
fer. For instance, (Sweeney, 2000) demonstrates that
87% of the U.S. population from the Census 1990 had
reported characteristics that likely made them unique
by combining ZIP code, date of birth, and gender.
Also, (Golle, 2006) shows that 63% of the U.S. popu-
lation from the Census 2000 can be identified by com-
bining these 3 quasi-identifiers.

Data anonymization has proposed a variety of so-
lutions to protect privacy in data releases (Samarati
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and Sweeney, 1998; Wang and Xu, 2017). Among
these, Differential Privacy (DP) has gained popular-
ity across various fields due to its strong privacy guar-
antees. However, strong privacy comes at the cost
of low data utility preservation due to the perturba-
tion applied to data. Despite criticism regarding its
usefulness and applicability (Bambauer et al., 2013;
Clifton and Tassa, 2013; Blanco-Justicia et al., 2022;
J. Domingo-Ferrer, 2021), the data privacy commu-
nity continues to propose different relaxations and
alternative formulations of DP to improve its utility
(Dwork et al., 2009; Friedman and Schuster, 2010;
Cummings et al., 2024). Some well-known DP re-
laxations include (ε,δ) (Dwork et al., 2006), Rényi
DP (Mironov, 2017), and Zero-Concentrated DP (Bun
and Steinke, 2016). These three examples introduce
a “small” chance that standard DP guarantees may be
broken for the promise of better utility.

An alternative approach to DP relaxation is In-
dividual Differential Privacy (iDP). iDP is a differ-
ent formulation that allows the data controller to uti-
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lize the actual knowledge of the dataset —in contrast
to the previous DP relaxations mentioned— when
computing the noise addition to generate protected
datasets. A notable advantage of iDP is that it pro-
vides the strong privacy guarantees of DP to individ-
uals without introducing any risk of breaking these
guarantees, while offering better utility. However,
solely applying iDP to each attribute value for every
record in the dataset would result in low utility due to
the high sensitivity each individual value is exposed
to. To reduce this sensitivity to noise addition, we
employ individual ranking microaggregation (IR).

Presented in (Sánchez et al., 2016), DP-IR is a
privacy-preserving technique aimed at enhancing util-
ity for data releases by combining standard DP and
IR microaggregation. IR replaces detailed data with
centroids calculated from clusters of similar values
for each attribute in an independent and consecutive
manner. Centroids effectively reduce the amount of
noise required to achieve DP by decreasing data sen-
sitivity, thereby offering a considerable improvement
in utility, which is particularly desirable for data anal-
ysis tasks in organizations and industry (Ghazi et al.,
2023).

In the literature on DP, its application is com-
monly assumed in a centralized scenario—referred to
as Centralized Differential Privacy (CDP)—wherein
an aggregator collects raw data prior to the application
of DP (Yang et al., 2024). However, in many prac-
tical applications, datasets are stored in distributed
databases-a trend accelerated by the decreasing costs
of on-premise infrastructures and cloud computing.
This architecture complicates the previously proposed
scenario, as data owners may be unwilling to release
raw data, even to a trusted participant. The decen-
tralized nature of these datasets introduces additional
challenges in ensuring data privacy without compro-
mising utility for data analysis, which is essential for
driving informed decisions and fostering innovation.

1.1 Contributions and Plan

In this paper, we propose a privacy-preserving data
release system where multiple data owners employ an
iDP-IR mechanism—a privacy mechanism that com-
bines iDP and IR microaggregation—to generate ε-
iDP datasets that can be safely shared with an aggre-
gator. This aggregator is responsible for orchestrat-
ing, gathering, and combining the ε-iDP datasets from
the contributing data owners.

We develop a protocol for each of the two data
fragmentation scenarios analyzed in this paper: hori-
zontal and vertical fragmentation. Depending on the
data fragmentation scenario, the aggregator must co-

ordinate the ε privacy value and the microaggregation
configuration that each data party must locally imple-
ment to generate a global ε-iDP.

The implementation of iDP-IR for fragmented
data does not only maximizes utility without compro-
mising the use of strong ε values, but is also scal-
able (no restrictions on the number of data owners)
and requires low computational cost in comparison
to other approaches that rely on cryptographic tech-
niques commonly inefficient for a large number of
data owners.

The paper is organized as follows. First, Sec-
tion 2 presents a background on distributed privacy-
preserving data releases. Section 3 introduces iDP
and IR separately and explains how they are com-
bined into iDP-IR to protect sensitive data. Next, Sec-
tion 4 proposes an honest-but-curious system based
on iDP-IR for data releases over fragmented data.
Horizontal and vertical fragmentation data scenarios
are discussed for the proposed system. Section 5 eval-
uates the information loss calculation of the global
protected dataset generated in the distributed system
proposed compared to that of a centralized environ-
ment using two datasets available at the UCI Ma-
chine Learning Repository: Adult and Wine Qual-
ity. The empirical results obtained are then discussed
to analyze the feasibility of applying the proposed
iDP-IR-based data release system for fragmented data
stored across multiple data owners. Finally, Section 6
presents the conclusions and potential future research
directions.

2 RELATED WORK

In a centralized scenario, where data is assumed to be
stored in a single repository, a dataset is formalized as
follows:

• A is a finite set of attributes ag, where g ∈
{1,2, ..., l}.

• R is a finite set of records rh, where h ∈
{1,2, ...,n}. Each record rh is a tuple of values
corresponding to each attribute ag.

• D is a dataset containing the set of records R.

In cases where datasets are fragmented across
multiple repositories, we consider two approaches:
horizontal fragmentation and vertical fragmentation.
Horizontal fragmentation entails storing records with
the same attribute schema in multiple databases,
whereas vertical fragmentation involves storing dif-
ferent attributes of the same records in multiple
databases.
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The formalization of datasets considering multiple
data owners is as follows:

• A j is a finite set of attributes ag, where g ∈
{1,2, ..., l}.

• R j is a finite set of records rh, where h ∈
{1,2, ...,n}. Each record rh is a tuple of values
corresponding to each attribute ag ∈ A j.

• D j is a dataset containing the set of records R j.
Here, j denotes the specific dataset in which R j
and A j are defined.

• For simplicity, l = |A j| and n = |R j|, where l and
n may vary for each j.

Regarding privacy-preserving data releases across
data fragmentation scenarios, most previous works
have focused on the application of standard DP and
Secure Multiparty Computation (SMC) for either hor-
izontal or vertical data fragmentation.

For the horizontal fragmentation scenario, (Alha-
didi et al., 2012) presents a model for data releases
limited to two-party collaboration only. The algo-
rithm relies on generalizing raw data before apply-
ing DP. (Cheng et al., 2020) introduces a differen-
tially private sequential update of Bayesian networks
(DP-SUBN), where the parties and a curator collabo-
ratively quantify the correlations of all attribute pairs
across all local datasets, which may require signif-
icant resources depending on the number of parties
and attributes.

For the case of vertically fragmented data, (Mo-
hammed et al., 2014) presents DistDiffGen, the first
data release system for this scenario limited to two-
party cooperation. It generates an anonymous ε-DP
data table tailored for classification tasks. A differen-
tially private latent tree (DPLT) approach is described
in (Tang et al., 2021) for solving data publishing in a
secure two-party scenario, with an extension to multi-
party cases. However, this extension may perform
well only when the number of parties is not large.
(Wang et al., 2021) presents a semi-honest model
called ArbDistDP for two-party collaboration, which
privately publishes arbitrarily partitioned data by ap-
plying standard ε-DP. This model relies on multiple
steps of top-down generalization before noise addi-
tion, consuming most of the processing time.

In contrast to the previous works mentioned,
our work focuses on maximizing utility preservation
while providing strong guarantees to individuals for
fragmented data by employing iDP and microaggre-
gation. Due to the composition property of iDP, the
approach presented in this work is applicable to both
horizontal and vertical data fragmentation, with no
limit on the number of data owner participants, and
operates at a low computational cost.

3 INDIVIDUAL DIFFERENTIAL
PRIVACY AND
MICROAGGREGATION

The DP model (Dwork, 2006) was originally de-
signed for the interactive setting, protecting the re-
sults of database queries requesting specific data. In
this setting, a sanitizer providing ε-DP outputs sits
between the user querying the data and the dataset.
However, its application was extended to other con-
texts such as data releases, differentially private ma-
chine learning models, data collection, among others.
In this work we focus on data releases at microdata
level, which is information at the level of individual
respondents.

3.1 Differential Privacy

DP has gained popularity among the scientific com-
munity due to its strong privacy guarantee, which en-
sures that the presence or absence of an individual in
the dataset has little effect on the output. In Definition
1, DP is formally defined.

Definition 1. A differential privacy (DP) mechanism
ν gives ε-DP if, for all datasets D1 and D2 differing
in at most one record (i.e., neighbor datasets) and all
S⊂ Range(ν), we have:

Pr(ν(D1) ∈ S)≤ exp(ε)Pr(ν(D2) ∈ S) (1)

The privacy parameter ε, also known as privacy
budget, determines the level of disclosure the sys-
tem will tolerate. A smaller budget corresponds to
stronger privacy and consequently, less data utility.
According to (Dwork, 2008), values in the range
ε = [0.1,1] provide robust privacy guarantees.

The amount of noise added to the original values is
proportional to the sensitivity of those values to mod-
ifications. This noise represents how much the value
may be distorted in the output. The global sensitivity
is defined as the largest difference in variability be-
tween neighboring datasets within the same domain
D , and it is formalized as follows:

Definition 2. Let u be a positive integer and D be
a collection of datasets containing D1 and D2. The
global sensitivity of a function f : D→ Ru is

△ f = max
D1 ,D2∈D

d(D1,D2)=1

|| f (D1)− f (D2)||1, (2)

where d(D1,D2)=1 represents that datasets D1
and D2 differ in one record.

Assuming that (rh,ag) is a real value response lo-
cated in a dataset D, in record h and attribute g, for
a certain query Q that must be masked by adding
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random noise Y (D), a randomized response ν(D) =
Q(rh,ag)(D) + Y (D) is computed.

In the literature, the most common method applied
to attain DP is the Laplace mechanism, which gener-
ates random noise using the Laplace distribution. By
controlling the scale of the noise, the Laplace mecha-
nism can balance the trade-off between privacy and
utility, making it a versatile and widely-used tech-
nique in the context of DP.

3.2 Individual Differential Privacy and
Microaggregation

iDP (Soria-Comas et al., 2017) is a privacy model
that can incur less information loss than standard DP,
while giving individuals the same privacy protection
as DP. In contrast to standard DP, iDP utilizes knowl-
edge from the actual dataset containing the individu-
als to protect, while DP follows the worst case sce-
nario, i.e., it is designed to provide robust privacy
protection under the most challenging and adversar-
ial conditions.

iDP is formalized as follows:

Definition 3. Given a dataset D1, an iDP mechanism
ν gives ε-iDP if, for any dataset D2 that is neighbor
of D1, and any S⊂ Range(ν), we have:

exp(−ε)Pr(ν(D2) ∈ S)≤ Pr(ν(D1) ∈ S)
≤ exp(ε)Pr(ν(D2) ∈ S)

(3)

For data releases, iDP can be attained by calibrat-
ing the noise addition to local sensitivity instead of
global sensitivity. This results in better preservation
of utility because it typically requires much smaller
noise addition than global sensitivity, where the ac-
tual dataset specifications are not considered.

The local sensitivity is defined as the largest dif-
ference in variability between the actual dataset D1
and any neighbor D2 within the domain D , and it is
formalized as follows:

Definition 4. Let u be a positive integer and D is
a collection of datasets containing D1 as the actual
dataset and D2 any neighbor dataset. The local sen-
sitivity of a function LS f : D→ Ru is

LS f = max
D2∈D

d(D1,D2)=1

|| f (D1)− f (D2)||1, (4)

One of the most interesting properties of iDP (and
DP) is composability, which we develop in this work
to generate integrated ε-iDP datasets in data fragmen-
tation scenarios. Composability is considered for a
sequence of iDP mechanisms, such as consecutive
queries executed over the sanitizer.

Theorem 1. Sequential composition: Let ν1 and
ν2 be randomized functions accessing non-disjoint
datasets D1 and D2, satisfying ε1-iDP and ε2-iDP
respectively, the combined output satisfies (ε1 + ε2)-
iDP.

Theorem 2. Parallel composition: Let ν1 and ν2 be
randomized functions accessing disjoint datasets D1
and D2, satisfying ε1-iDP and ε2-iDP respectively,
the combined output satisfies max(ε1,ε2)-iDP.

The composition property of the iDP model is cru-
cial in this study to effectively guarantee a global ε-
iDP data release output. Depending on the type of
data fragmentation, an aggregator must accurately as-
sign the privacy budget that each data owners needs
to implement. Further elaboration on this process is
provided in Section 4.2.

iDP was originally designed for the interactive set-
ting, same as DP. In this scenario, a user poses a
query over a dataset to receive an answer in the form
of aggregated data (e.g., average and medians). For
microdata-level data releases over distributed data us-
ing iDP, we leverage on a pre-processing step based
on data microaggregation to provide greater data util-
ity without comprising strong privacy.

3.3 Individual Ranking
Microaggregation

In data releases, to generate an ε-iDP record rh, by se-
quential composition (see Theorem 1), it is required
to add ε/l-iDP ∀g, (rh,ag), where l is the number of
attributes in D. Thus, for h=1 the consecutive set of
queries ∀g, Q(r1,ag)(D) results in an ε-individual dif-
ferentially private record r1. Such queries are very
sensitive and require a considerable amount of ε to
provide reasonable utility, even if we consider local
sensitivity rather than global sensitivity.

To reduce the sensitivity, this work applies the
mechanism proposed in (Sánchez et al., 2016), which
relies on a microaggregation-based approach called
individual ranking (IR) as a pre-processing step.

Microaggregation is a perturbative masking tech-
nique where the attribute values of each record are
replaced by aggregating values of similar records.
It encompasses two methods: univariate and mul-
tivariate microaggregation. The univariate method-
approach known as IR-aggregates the values of each
attribute one at a time in a consecutive and indepen-
dent manner, while multivariate methods aggregate
all attributes simultaneously, making the latter com-
putationally more costly.

IR clusters a dataset D j so that values for each at-
tribute ag ∈ A j are sorted either in increasing or de-

Privacy- & Utility-Preserving Data Releases over Fragmented Data Using Individual Differential Privacy

321



creasing order for subsequent aggregation into suc-
cessive clusters of k elements. From each of the clus-
ters formed, a centroid is generated, typically through
a simple arithmetic average. This centroid then re-
places the original values belonging to the cluster. IR
produces low utility loss but a high disclosure risk
when applied in isolation. However, this is compen-
sated by the less sensitive centroids it produces com-
pared to the original values.

The low computational cost required by IR is op-
timal for enhancing data utility in combination with
iDP for fragmented data in a distributed environment,
where, instead of relying on one powerful server spec-
ification, the workload is commonly shared across
several less powerful parties.

The IR microaggregation method is explained in
the following algorithm, assuming that the computa-
tion is performed by a single data owner.

Data: Dataset D, Parameter value k
Result: IR dataset D∗

D∗← D;
// Copy of the original dataset to

microaggregate
numO fClusters← ⌊n/k⌋;
for ag ∈ A∗ do

D∗← ascendingSortForAttribute(D∗, ag);
for cluster← 1 to numO fClusters do

partialCluster,centroid← null;
// Cluster and centroid
partialCluster←
computeCluster(cluster, D∗, ag, k);

centroid←
calculateCentroid(partialCluster);

replaceValuesByCentroid(D∗,
partialCluster, centroid);

end
end
reorderRecordsToOriginalOrder(D, D∗);

Algorithm 1: Individual Ranking Microaggregation.

The algorithm presented receives dataset D and
the parameter value k as inputs to compute.

First, a copy of D, called D∗, is created. D∗ is
then the dataset to be microaggregated and returned
once the process is completed. The number of clus-
ters generated depends on the number of records n
and the value k. The function f loor is used to return
the largest integer that is less than or equal to the ar-
gument, so that for f loor(102/5) the function returns
20. In this example, 20 clusters are computed and the
remaining values are grouped within the last cluster.

Continuing with Algorithm 1, for each attribute
ag ∈ A∗, the values are sorted in an ascending way,

as well as the rest of record values. Next, the
algorithm continues with the clustering and cen-
troid calculations for each attribute ag independently.
partialCluster groups the set of values that belongs to
cluster, which ranges between 1 and numO fClusters.
Function computeCluster calculates and returns at
least k similar values from attribute ag ∈ D∗, forming
the cluster.

generateCluster returns an array of values, from
which the original values are mapped and replaced by
the computed centroid. Once all centroids are calcu-
lated for all ag ∈A∗, Algorithm 1 reorders each record
to its original position as in the dataset D, resulting in
the microaggregated dataset D∗.

4 PRIVACY-PRESERVING DATA
RELEASES FOR
FRAGMENTED DATA
APPLYING iDP-IR

This section aims to introduce an honest-but-curious
iDP-IR-based system model and its associated pro-
tocols for data releases. The model considers dis-
tributed data in either horizontal or vertical fragmen-
tation and must be locally protected prior to being
shared with a trusted party to guarantee privacy. Also,
it ensures that each participant in the system runs the
protocol exactly as specified (no deviations or mali-
cious parties).

4.1 Distributed System Model

Let us consider an honest-but-curious distributed sys-
tem where several data owners collaborate to con-
struct a robust private dataset for analysis without
compromising data privacy. In this architecture, it is
assumed that both the aggregator and the participating
parties adhere to the protocol.

Figure 1 depicts the architecture of the system and
illustrates the participants and the basic communica-
tion flow.

The proposed architecture encompasses the fol-
lowing participants:

• Data owners φ: Consider the set of data own-
ers φ j, where j ∈ {1,2, ...m}. These data own-
ers may involve on-premise databases as well as
cloud databases holding datasets D j. Each φ j pos-
sesses an iDP-IR mechanism ν j that generates an
ε-individual differentially private dataset D′j. This
work assumes that |φ| ≥ 2.

• Aggregator κ: It is in charge of orchestrating the
aggregation of ε-individual differentially private
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Figure 1: Architecture of the proposed model.

datasets D′j into a combined protected dataset D′,
so that D′ = D′1 ∪D′2 ∪ ...∪D′m. This work as-
sumes that |κ|= 1.

• Users ρ: External users represent individuals who
are willing to use the released data for analy-
sis. Their participation in the model may not
be mandatory, meaning that data releases may be
shared only among data owners to enhance their
knowledge for decision-making.

In the proposed system, the aggregator sets the
privacy parameters to be applied by each data owner
and validates the data schema between parties. Each
data owner is equipped with an iDP-IR mechanism.
Initially, the mechanism computes IR microaggrega-
tion over D j —which represents the dataset each data
owner is willing to share— thereby generating a mi-
croaggregated dataset D∗j .

Finally, for each centroid computed for the several
clusters generated in D∗j , ε-iDP is applied. The noisy
centroid value obtained then replaces the values of the
cluster associated with the centroid in the microag-
gregated dataset, resulting in an iDP-IR dataset D′j.
This dataset is sent to the aggregator, who is respon-
sible for enforcing the protocol for delivering all data
owners’ protected datasets before generating a global
protected dataset for data release. This work assumes

a secure channel connects all parties involved in the
model.

4.2 Composition Property for Data
Fragmentation & iDP-IR

We now explore two possible scenarios of privacy-
preserving data releases in fragmented data: horizon-
tal and vertical fragmentation. Depending on the sce-
nario, the communication flow and data exchange be-
tween φ and κ differ.

Let the global dataset D be distributed between
data owners φ in either an horizontal (Joyce and Nir-
malrani, 2015; Sauer and Hao, 2015) or vertical way
(Vaidya, 2008). In an horizontally fragmented data,
two data owners φ1 and φ2 contain a disjoint set of
individuals with the same schema, so that A1 = A2
and R1 ∩ R2 = ⊘. These parties are willing to co-
operate by combining samples from multiple sources
to obtain enhanced datasets for robust data analysis.
For instance, two or more small marketing compa-
nies holding different datasets with the same attributes
may desire to gain knowledge by collecting different
insights.

On the other hand, vertical fragmented data col-
lects different sets of attributes about the same indi-
viduals stored in multiple data owners φ j. For two
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data owners φ1 and φ2, A1∩A2 =⊘ and R1 = R2. As
an example, two subsidiary companies belonging to
the same parent company may have stored different
features about the same clients. The parent company
may decide to join these datasets to perform descrip-
tive and predictive analyses for decision-making.

In the context of these two data fragmentation
scenarios, an aggregated ε-iDP dataset in κ may be
achieved for data release by correctly applying the
composition property as described in Theorem 1 and
Theorem 2. This process is explained and illustrated
in the following sections, along with the protocols
between the participants for each data fragmentation
scenario.

4.2.1 Horizontal Fragmentation

For horizontally fragmented data, parallel composi-
tion is utilized to obtain an ε-individual differentially
private dataset D′ from protected datasets D′j. Fol-
lowing Theorem 2, if (ε1 = ε2 = ... = εm), an ε-iDP
dataset D′ is computed by ensuring that each ν j pro-
vides ε-iDP records ∈ D′j accordingly.

Protocol for Horizontal Fragmentation

1. κ requests ∀ j ∈ A j, i.e., the attributes each data
owner φ j is willing to share.

2. ∀ j ∈ φ j, A j metadata is sent to κ.

3. κ verifies if A1 = A2 = ...= Am.

4. κ requests ∀ j ∈ φ j a protected dataset D′j with pa-
rameters k ≥ 3 and equal ε-iDP, following Theo-
rem 2.

5. ∀ j ∈ φ j, k partitions are computed ∀g, ag ∈ A j,
generating a microaggregated dataset D∗j .

6. ∀ j ∈ φ j, ε-iDP is applied over D∗j by adding
noise to each centroid, which then replaces the at-
tribute values in the cluster, generating a protected
dataset D′j.

7. κ retrieves ∀ j ∈ D′j, aggregating them into a pro-
tected dataset D′.

8. κ releases D′ to ρ and φ.

4.2.2 Vertical Fragmentation

For the case of vertical data fragmentation (i.e., dis-
joint attributes), where different mechanisms ν j are
independently computing different sets of attribute
outputs of the same individual, let us consider The-
orem 1 to compute an ε-iDP-IR private dataset D′.

Assuming that the aggregator equitably divides ε

between all data owners φ j, then a (∑m
φ j=1 ε j)-iDP-IR

dataset D′ is obtained from the combination of their

individual outputs. Locally in φ j, each masked at-
tribute value output is computed as ε j

l , resulting in an
iDP record (∑l

ag=1
ε j).

In vertical fragmentation, either all data owners
must share a common identifier or the data must be
fragmented in a way that allows for record recon-
struction during the defragmentation process at the
aggregator. As a result, this fragmentation method
is computationally more demanding than horizontal
fragmentation.

Protocol for Vertical Fragmentation

1. κ requests ∀ j ∈ A j, i.e., the attributes each data
owner φ j is willing to share.

2. ∀ j ∈ φ j, A j metadata is sent to κ.

3. κ verifies if A1∩A2∩ ...∩Am =⊘.

4. κ requests ∀ j ∈ φ j a protected training dataset D′j
with parameters k ≥ 3 and ε

m -iDP, following The-
orem 1.

5. ∀ j ∈ φ j, k partitions are computed ∀g, ag ∈ A j,
generating a microaggregated dataset D∗j .

6. ∀ j ∈ φ j, ε

m -iDP is applied over D∗j by adding
noise to each centroid, which then replaces the at-
tribute values in the cluster, generating a protected
dataset D′j.

7. κ retrieves ∀ j ∈D′j, constructs records and aggre-
gates them into a protected dataset D′.

8. κ releases D′ to ρ and φ.

5 EXPERIMENTAL EVALUATION

This section evaluates the iDP-IR-based privacy-
preserving data release system proposed for frag-
mented data. The focus is on assessing the informa-
tion loss obtained from the protected datasets using
iDP-IR in a centralized environment with different (ε,
k) pairs.

This is compared to the information loss obtained
from the aggregated protected datasets following the
horizontal and vertical fragmentation protocols pre-
sented, using the same (ε, k) pairs.

The tests were conducted on a Windows 11 Home
PC with an Intel i7-1355U CPU @5.00 GHz and 16
GB DDR5 RAM.

5.1 Evaluation Datasets

The following UCI datasets have been selected for the
experimental evaluation due to their diverse attribute
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data types, ensuring a more robust analysis across dif-
ferent scenarios:

• Adult is a well-known dataset available on the
UCI Machine Learning Repository, comprising
48,842 records of census income information. Its
objective is to predict whether income exceeds
$50,000 per year. For the Adult dataset evalua-
tion, the following attributes are used: age, work-
class, education, marital status, occupation, rela-
tionship, race, sex, hours per week, and native
country. The attributes in this dataset include dis-
crete numerical values and categorical data.
A pre-processing step was carried out to remove
records with missing values. The final dataset
used in our evaluation consists of 45,222 records.

• The Wine Quality dataset (Cortez et al., 2009)
contains Portuguese red and white wine sam-
ples, collected from protected designation of ori-
gin samples that were tested at the official certifi-
cation entity from May 2004 to February 2007.
The dataset originally split into two separate
datasets, Red and White wine. In our study, we
combined the two samples into a single dataset
containing 6,497 records. The following attributes
are used: fixed acidity, volatile acidity, citric acid,
residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulphates, and alco-
hol. This dataset includes continuous and discrete
numerical attributes.

The evaluation consists of comparing the informa-
tion loss between the protected dataset Dbase —which
results from applying the data masking process to the
original Adult and Wine Quality datasets using iDP-
IR in a centralized manner— and the results obtained
from the aggregated protected dataset D′ using the
presented protocols. In this centralized scenario, we
assume a single party holds the entire datasets and an
iDP-IR mechanism.

Given the composition property of iDP, we expect
a comparable level of information loss between the
global protected dataset D′, result of the aggregation
of protected datasets subsets D′j, and Dbase.

To quantify the information loss of the
anonymized dataset concerning Dbase and D′,
we used the Sum of Squared Errors (SSE) in our
tests. SSE represents the sum of squared distances
between the original and anonymized dataset records.
In order to show a more informative measure, the
mean SSE is computed by dividing the SSE by the
number of the records in the dataset.

MeanSSE = (1/n) ∑
h=1,...,n

dist(rh,r′h)
2 (5)

To calculate the distance between the original
record rh and the anonymized record r′h, we consid-
ered the average of the distances between attributes.
Then, for two records rh and r′h we have

dist(rh,r′h) = (1/l)

√√√√ (d1((rh,a1),(r′h,a
′
1))/σ

2
1)

2+

. . .+(dl((rh,al),(r′h,a
′
l))/σ

2
l )

2

(6)
where dg is the distance between values of at-

tribute ag, σ2
g is the sample variance of attribute ag

in the original dataset and l is the number of attributes
in D j.

Centroids Computation for Categorical At-
tributes. For categorical attributes, we sort the
attribute values based on their frequency of ap-
pearance. Clusters are then formed by selecting
k contiguous values. For example, assuming the
frequencies of a1 = 10 and a2 = 15, we have a1

2 and
a2

1, where the superscripts indicate the order. For a
cluster of 3 elements, an example may be { a1

2,a
1
2,a

2
1

}. Since it is not possible to operate directly on the
values, we operate on the indices instead.

The centroid of a cluster is the value correspond-
ing to the average index. From the previous example,
1+1+2

3 = 1.33. Notice that the centroid does not cor-
respond to an actual value. To convert it into an actual
value, we round the index to the nearest integer (i.e., 1
in this example). However, this rounding step is per-
formed only after noise has been added.

5.1.1 Baseline - Centralized Scenario

The mean SSE obtained for the centralized scenario-
used as a baseline for comparison-for the Adult and
Wine Quality datasets are shown in Figure 2 and Fig-
ure 3, respectively. These figures present a heatmap
representing the mean SSE calculated for different
(ε,k) pairs, where each attribute value is the result of
the average of fifty (50) consecutive runs of iDP-IR.

The color degradation in the heatmaps from
cream to red indicates that, the redder the cell, the
larger the information loss between the original and
anonymized datasets. Notice that we included the
mean SSE obtained for k = 1, which is equivalent to
applying plain iDP over each attribute value, i.e., no
microaggregation step.

Notice that the privacy budgets are set to ε =
[0.1,1], a range commonly used in the literature for
robust privacy protection. Because of the difference
in the number of records between the two datasets an-
alyzed, the k values are set to [50,2000] and [50,300]
for the Adult and Wine Quality datasets, respectively.
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Figure 2: Adult iDP-IR SSE Baseline.
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Figure 3: Wine Quality iDP-IR SSE Baseline.

Theoretically, for larger ε, we may expect a de-
crease in SSE due to the relaxation of the privacy bud-
get, resulting in less noise injection. Also, for larger
k, we may also expect a decrease in SSE because of
the reduced data sensitivity, resulting in less required
noise. This pattern is exactly what is observed in Fig-
ures 2 and 3.

These results now serve as the baseline for evalu-
ating the proposed iDP-IR system model. The data
fragmentation configuration of the datasets is de-
scribed in detail for both scenarios, outlining how the
datasets are partitioned and distributed among multi-
ple predefined parties.

Before evaluating the Dbase and the data fragmen-
tation scenarios, we illustrate the advantages that iDP-
IR offers in reducing information loss compared to
plain iDP for each attribute value and to DP-IR, which
applies IR microaggregation and DP rather than iDP
(i.e., global sensitivity).

Evaluation of iDP and iDP-IR. The application of
IR as a pre-processing step significantly impacts the
reduction of information loss in data releases. This ef-
fect is depicted in Figures 2 and 3. Specifically, when
considering plain iDP, i.e., k = 1, the results show that
the decrease in information loss is minimal while in-
creasing the ε values.

This observation indicates that, even though local
sensitivity is employed, each attribute value indepen-
dently maintains a high sensitivity to noise modifica-
tions. Consequently, achieving meaningful utility ne-

cessitates higher ε values. However, this requirement
inherently results in a trade-off where the utility gains
are offset by a corresponding decrease in privacy pro-
tection.

Evaluation of DP-IR and iDP-IR. We now com-
pare the information loss obtained from comparing
iDP-IR (local sensitivity) and DP-IR (global sensitiv-
ity), the latter as presented in (Sánchez et al., 2016).

Figure 4 shows the differences obtained from iDP-
IR and DP-IR for both Adult (left) and Wine Quality
(right). The calculated values represent the difference
between the mean SSE depicted in Figures 2 and 3 for
iDP-IR and those obtained using DP-IR. Notice that,
for all pairs (ε,k), iDP-IR obtains better SSE com-
pared to DP-IR, i.e., lower values from the former re-
sult in a negative SSE relative to the latter.

5.1.2 Horizontally Fragmented Datasets
Configuration

In this scenario, we aim to generate unbalanced sub-
sets of data to reflect common situations in collab-
orative environments where organizations contribute
varying amounts of data. Additionally, a shuffling
mechanism has been implemented, allowing records
to be exchanged among data owners during each eval-
uation iteration. This may help us examine how
record redistribution affects information loss, assess
the robustness of the proposed iDP-IR system, and
understand the impact of data variability on evalua-
tion outcomes.

Adult. The evaluation considers four (4) data own-
ers storing randomized subsets of the dataset in an
unbalanced split: φ1 contains 11,100 records, φ2 con-
tains 15,000 records, φ3 contains 12,000 records, and
φ4 contains 7,122 records.

Wine Quality. The evaluation considers three (3)
data owners storing randomized subsets of Wine
Quality in an unbalanced split: φ1 contains 500
records, φ2 contains 1,000 records, and φ3 contains
4,997 records.

The domain of the attributes in this dataset has
been limited to twice the maximum attribute value.

5.1.3 Vertically Fragmented Datasets
Configuration

Adult. We considered ten (10) data owners, each
storing the same number of records belonging to the
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Figure 4: Adult (left) and Wine Quality (right) Comparison of iDP-IR and DP-IR.

same individuals, but with different attributes. There-
fore, each data owner holds a single attribute, such
that φ1 contains attribute age, φ2 contains attribute
workclass, ..., φ10 contains native country.

Wine Quality. The dataset’s attributes are dis-
tributed across three (3) data owners, grouping indi-
viduals’ attribute values as follows: φ1 contains at-
tributes { fixed acidity, volatile acidity, citric acid },
φ2 contains { residual sugar, chlorides, free sulfur
dioxide, total sulfur dioxide }, and φ3 contains { den-
sity, pH, sulphates, alcohol }.

As a pre-processing step, each record holds an
identifier prior to the split, allowing for the defrag-
mentation of the records when κ receives the subsets
of protected data from the data owners φ j.

5.1.4 Evaluation Results

Figures 5 and 6 present the results obtained from the
two datasets by comparing the average from the data
fragmentation scenarios and the baseline (i.e., central-
ized scenario) for pairs (ε, k). Hence, each cell in the
heatmap is computed from the difference between the
average obtained from the data fragmentation scenar-
ios and the baseline average (as presented in Figures
2 and 3).

The creamer the cell, the closer the difference be-
tween the mean SSE of the centralized and data frag-
mentation scenarios is to 0. Mean SSE lower than
computed on the baseline is also set to 0 (i.e., cream
cell). The redder the cell, the larger the information
loss between the data fragmentation and the baseline.

Notice that the mean SSE for the data fragmen-
tation configurations is also calculated as the average
after fifty (50) runs.

Adult. Overall, the differences between the mean
SSE averages for the horizontally fragmented data
scenarios are minimal compared to the baseline for
low k values (i.e., k = [50,250]). However, some in-
formation loss can be observed for larger k values,

where it increases compared to the baseline. This
behavior may occur for data owners with a lower
number of records to share because microaggregation
depends on data distribution, data homogeneity, and
group size, which can result in less optimal data clus-
tering for subsets of records.

In this particular case, considering that Adult
mostly contains categorical attributes (a type that has
no natural order and has been artificially sorted based
on data distribution), the results are prone to larger
differences with respect to the baseline, as the sorted
values depend on the actual distribution on each data
owner.

For vertical fragmentation, the variation with re-
spect to the baseline is negligible, with the maximum
differences obtained being around 0.04, as shown in
Figure 5. Parameter k does not significantly affect the
resulting outcome in this scenario because the entire
set of values for each attribute remains the same as in
the baseline. This occurs because IR microaggrega-
tion treats each attribute independently. Hence, a cor-
rect implementation of the iDP-IR composition prop-
erty for this type of fragmentation results in similar
information loss compared to the centralized baseline.

Wine Quality. For the Wine Quality dataset, the
horizontal fragmentation scenario provides robust re-
sults, similar to that of the vertical fragmentation, ac-
cording to the similar differences between both and
the centralized outputs. Notice that for this dataset,
most of the cells in the heatmap are cream. As
such, the results are either as good as in the central-
ized scenario or yield slightly better results due to
the unpredictable nature of the noise addition. For
ε = {0.01,0.1}, where the mean SSE in the central-
ized scenario is in the thousands, the difference with
respect to both data fragmentation scenarios are be-
low 300. For ε = {0.5,1}, we mostly observe slightly
different mean SSE values, indicating that both hor-
izontal and vertical splitting do not significantly im-
pact IR clustering for this dataset.
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Figure 5: Adult SSE comparison between the iDP-IR data fragmentation scenarios and the centralized scenario.
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Figure 6: Wine Quality SSE comparison between the iDP-IR data fragmentation scenarios and the centralized scenario.

6 CONCLUSIONS

This work proposes a distributed data release model in
which a set of parties is willing to release a protected
dataset to an aggregator. Following an honest-but-
curious model, data owners may only share data us-
ing iDP-IR as a utility-preserving privacy mechanism,
which relies on the application of IR microaggrega-
tion as a pre-processing step to iDP, thereby reduc-
ing data sensitivity to noise injection. Consequently, a
lesser amount of noise injection is required to achieve
ε-iDP datasets.

The results from the experimental scenarios for
both horizontal and vertical fragmentation data show
that it is possible to achieve similar information loss
from distributed iDP-protected datasets to those ob-
tained in a centralized setting for the same pairs (ε,k).
This is achieved thanks to the composition properties
that iDP inherits from standard DP.
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