
Towards Efficient Cloud Data Processing: A Comprehensive Guide to
CKKS Parameter Selection

Modjtaba Gharibyar1,∗ a, Clemens Krüger2,∗ b and Dominik Schoop2 c

1Research Group for Cryptography and Security, KASTEL Security Research Labs, Germany
2Department of Computer Science, Esslingen University of Applied Sciences, Germany

Keywords: Cloud Computing, Security and Privacy, Homomorphic Encryption, CKKS, Parameter Optimization.

Abstract: Cloud computing offers scalability, cost efficiency, and the ability to process large data volumes. However,
security and privacy concerns deter many organizations from migrating sensitive data to the cloud. Traditional
encryption protects data at rest and in transit but requires decryption for processing, exposing plaintext to
cloud providers or attackers. Fully homomorphic encryption (FHE) addresses this issue by enabling compu-
tations directly on encrypted data. Among available FHE schemes, CKKS stands out for its relatively good
performance but requires careful parameter tuning to balance security, precision, memory use, and runtime ef-
ficiency. This paper explores CKKS’s practical application by analyzing the impact of parameter configurations
on these aspects, demonstrated through prototypical statistical computations. It also provides key criteria for
selecting and optimizing parameters to meet desired security and performance levels. The findings simplify
CKKS parameter management for non-experts, offering practical guidance for user-friendly implementation.

1 INTRODUCTION

Cloud-based Software as a Service (SaaS) is a corner-
stone of modern technology, valued for its scalability,
cost efficiency, and ability to process large data vol-
umes. SaaS allows Data Owners to outsource compu-
tations to cloud providers, leveraging their substantial
processing power.

Despite these advantages, SaaS raises significant
privacy concerns. Although secure transmission pro-
tocols like TLS protect data in transit, plaintext pro-
cessing at the cloud backend leaves sensitive infor-
mation vulnerable to attackers.

Fully homomorphic encryption (FHE) offers a so-
lution by enabling computations directly on encrypted
data, maintaining confidentiality throughout the pro-
cess. Among FHE schemes, CKKS (Cheon et al.,
2017) is particularly suited for approximate compu-
tations, balancing performance with a degree of in-
accuracy. We chose CKKS for this paper, because it
is among the most promising schemes for privacy-
preserving data analysis and machine learning, due
to its comparatively high performance and ability to

a https://orcid.org/0009-0006-8340-6031
b https://orcid.org/0009-0006-2588-0069
c https://orcid.org/0009-0006-9971-3677
∗ The authors Gharibyar and Krüger contributed

equally to this paper.

work on fixed-point numbers. However, its practi-
cal use demands careful parametrization to manage
trade-offs between security, precision, memory use,
and runtime, which can be hard to do properly, espe-
cially for beginners.

This study evaluates the critical parameters of
CKKS using the OpenFHE library (Badawi et al.,
2022). Exemplary statistical calculations, i. e. stan-
dard deviation and multi-stage multiplications, were
performed to demonstrate the impact of parameter
choices on performance and precision.

By addressing these complexities, we aim to pro-
vide user-friendly guidelines to simplify CKKS pa-
rameter configuration, making FHE accessible to non-
experts while ensuring optimal performance and se-
curity.

It should be noted that there has been some ef-
fort in creating compilers which abstract the FHE and
automatically selects parameters (Chowdhary et al.,
2021). Nevertheless, we believe it is important for
FHE developers to have an understanding of how the
parameters interact with each other.

The paper is organized as follows. In Section 2.1,
we provide some brief mathematical foundations un-
derlying the CKKS scheme. Section 2.2 details the
parameters available in the library OpenFHE. Sec-
tion 3 outlines the experimental setup and quantita-
tively defines the objectives. In Section 4, we interpret
the results regarding runtime, memory usage, preci-

502
Gharibyar, M., Krüger, C. and Schoop, D.
Towards Efficient Cloud Data Processing: A Comprehensive Guide to CKKS Parameter Selection.
DOI: 10.5220/0013144800003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 2, pages 502-509
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



sion, and security level, and recommend the optimal
parametrization for our functions. Finally, Section 5
summarizes our research results.

2 PRELIMINARIES

In this section, we introduce the fundamental con-
cepts and structures essential for understanding the
subsequent analysis and implementation of CKKS.
We provide an overview of the polynomial ring struc-
tures, key generation processes, and homomorphic
operations that form the core of the CKKS scheme.

2.1 CKKS

Let N be a power of two. The ring R := Z[X ]/(XN +
1) consists of polynomials with integer coefficients
and represents the ring of integers of the 2N-th cy-
clotomic field. N is referred to as the ring dimension.
The ring RQ :=R /QR has coefficients reduced mod-
ulo Q.

We use a modulus that supports the number the-
oretic transform (NTT), where RQi := R /QiR rep-
resents the ring with coefficients reduced modulo
Qi = q0q1 · · ·qi, with i ∈ N0. The largest modulus,
QL = q0q1 · · ·qL, corresponds to L multiplicative lev-
els (the number of consecutive multiplications that
can be performed; see Section 2.2.3 for more details).

Secret keys s are elements of R with balanced,
ternary coefficients, where s ∈ {0,±1}N ⊂ R . The
uniform distribution over ternary polynomials is de-
noted by χs. Further, χDG denotes the discrete Gaus-
sian distribution over R , with coefficients sampled in-
dependently with a standard deviation of 3.19, which
is the standard choice according to the FHE security
standards (Halevi and Shoup, 2020; Albrecht et al.,
2019). The CKKS scheme encodes messages using
a scaling factor and a packing method over the real
numbers: m’ = Encode(m), where Encode first scales
up the message m by a scaling factor ∆, computes the
inverse discrete Fourier transform, and then rounds
to integers modulo QL. This packing method al-
lows homomorphic SIMD (Single Instruction Multi-
ple Data) operations, including addition, multiplica-
tion with rescaling (similar to floating-point multipli-
cation), and rotation of the vector of scalars packed in
the plaintexts/ciphertexts.

The OpenFHE library implements an optimized
variant of the Residue Number System (RNS), also
known as the double Chinese Remainder Theorem
(CRT). Additionally, the authors slightly changed
their implementation compared to the original CKKS,
to mitigate key recovery attacks (OpenFHE, 2024).

The key operations that can be performed on cipher-
texts in the CKKS scheme include:

• Ciphertext-constant operations (CAdd, CSub,
CMult): Perform addition, subtraction, and mul-
tiplication with constants.

• Ciphertext-ciphertext operations (Addevk(ct1, ct2),
Subevk(ct1, ct2), Multevk(ct1, ct2): Perform ad-
dition, subtraction and multiplication with relin-
earization using the evaluation key evk.

• Sumrk(ct): Sum all slots in ct iteratively via rota-
tions using the rotating key rk(σ).

• Rotaterk(σ): Rotate ct by σ, incorporating relin-
earization.

2.2 Cryptographic Parameters

In Section 1, we highlighted the inherent trade-off in
CKKS between security level, precision, memory use,
and runtime. Specifically, the choice of security and
precision parameters directly influences runtime and
memory use because these parameters determine the
dimension R , which reflects the number of polyno-
mial coefficients that must be processed and stored,
thereby affecting runtime, ciphertext size, and key
size.

In this section, we identify the specific param-
eters offered by the library OpenFHE that are rele-
vant to CKKS. We categorize these parameters based
on the previously discussed factors—security, preci-
sion, memory use, and runtime—that contribute to the
trade-off in the CKKS scheme.

2.2.1 Cryptographic Parameters for Security

Security Level. In OpenFHE, the security level is
determined by the parameter SecurityLevel, with
options for 128, 192, and 256 bits, applicable to both
Quantum (resistant to quantum attacks) and Classic
(resistant to classical attacks) scenarios. These values
correspond to the computational resources required
to solve the LWE problem at the level of a block ci-
pher. To ensure these security levels, OpenFHE ad-
heres to the ”Security Guidelines for Implementing
Homomorphic Encryption” (Bossuat et al., 2024).

The guidelines specify explicit values for log2(q),
where q = PQ represents the LWE modulus in the
CKKS scheme. This value defines the maximum bit
length required to achieve a specific ring dimension
N at a given security level.

It should be noted that the log2(q) values are esti-
mates based on the Lattice Estimator (Albrecht et al.,
2015), which estimates the costs of various attack
methods for a given parameter set.

Towards Efficient Cloud Data Processing: A Comprehensive Guide to CKKS Parameter Selection

503



2.2.2 Cryptographic Parameters for Precision

The ScalingTechnique parameter is crucial for pre-
cision in the CKKS scheme. In OpenFHE, this param-
eter is implemented in two RNS variants: static and
dynamic. These variants control the rescaling process
and directly affect the precision of computations.

Scaling Method. There are static and dynamic scal-
ing methods. The static RNS variant uses the prime
power 2p as the scaling factor across all levels L,
where each RNS modulus qi ≈ 2p is associated with a
specific multiplicative level (Ahmad Al Badawi et al.,
2022; Blatt et al., 2020; Cheon et al., 2019). In
OpenFHE, the static method is selected using the
FIXEDAUTO scaling technique, where rescaling is per-
formed automatically before each homomorphic mul-
tiplication, except for the first one. Alternatively,
rescaling can be performed manually by the user with
FIXEDMANUAL (Ahmad Al Badawi et al., 2022). The
dynamic method uses an adaptive scaling factor ∆

for each level, which varies per level (Kim et al.,
2022). In OpenFHE, this method is implemented us-
ing the FLEXIBLEAUTO and FLEXIBLEAUTOEXT tech-
niques. FLEXIBLEAUTOEXT provides higher preci-
sion than FLEXIBLEAUTO, but it is slower (Ahmad Al
Badawi et al., 2022).

FirstModSize and ScaleModSize. In the cryp-
tographic context of CKKS, the parameters
FirstModSize and ScaleModSize are crucial
for precision and must be configured accordingly.
FirstModSize defines the bit length of the initial
modulus q0, while ScaleModSize determines the
bit length of the scaling factor ∆. These parameters
are always configured in pairs, with FirstModSize
always being larger than ScaleModSize.

To understand the relationship between
FirstModSize and the resulting precision, let
us consider the ciphertext modulus chain as described
in Section 2:

QL = q0 ·q1 · ... ·qL

The initial modulus q0 is the largest element in this
chain and defines the numerical range in which en-
crypted data is represented and processed. Therefore,
the larger the bit length of q0, the larger the num-
bers that can be accurately represented, which implies
higher precision.

The scaling factor ∆ is used to convert real num-
bers into an integer form. The scaling factor ∆ is de-
fined as ∆ = 2ScaleModSize.

2.2.3 Cryptographic Parameters for Runtime
and Memory Use

Ring Dimension. The RingDimension is crucial
for both runtime and memory use. It is typically ex-
pressed as 2n with n ∈N and 10 ≤ n ≤ 17. The choice
of ring dimension is primarily determined by the mul-
tiplicative depth and ScaleModSize, along with the
desired SecurityLevel.

Batch Size. The batch size refers to the number
of data values that can be processed simultaneously
within a single ciphertext. Batching leverages the
property that polynomials in the ring R can be di-
vided into multiple slots, with each slot being manip-
ulated independently.

MultiplicativeDepth. The parameter
MultiplicativeDepth determines the maximal
number of sequential multiplications that can be
carried out before decryption will fail due to the ac-
cumulated error. The user can structure the necessary
computation in a binary tree of minimal height to
optimize this.

3 EXPERIMENTAL SETUP

We carry out an empirical study of the influence of
the previously mentioned parameters of the library
OpenFHE on run-time, precision and memory use.
Therefore, prototype implementations of a number of
formulas are executed on a system with 2 Intel Xeon
Gold 5315Y (3.2GHz) and 512GB RAM running
Ubuntu 22.04.4. We did not utilize any multi thread-
ing other than what the OpenFHE library performs
out of the box. A synthetically generated dataset,
comprising three sets of 65536 (216) encrypted en-
tries was generated randomly. Each value is within
the range [0,1] with a precision of 12 decimal places.
All calculations were performed 10 times, and the av-
erages were taken.

Multiplicative Function. The function calculates
the product of the slots of the vectors x, y, and z, and
sums them over all n elements:

f (x,y,z) =
n

∑
i=1

xi · yi · zi (1)

We utilize a multiplicative depth of 4 for this function.
Note that we require one level to accommodate for
the FLEXIBLEAUTOEXT scaling technique. We chose

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

504



this function as a baseline with a relatively low mul-
tiplicative depth, which utilizes only multiplications
and summation.

Standard Deviation. The standard deviation σx of
a vector x measures how much the values of x deviate
from their mean x̄:

σx =

√
n−1

n

∑
i=1

(xi − x̄)2 (2)

We therefore need to use an approximation func-
tion. The OpenFHE library supports the homomor-
phic evaluation of Chebyshev polynomials for this
purpose, which approximates a function to a certain
polynomial degree within the given bounds. To ac-
commodate for the approximation, we utilize a mul-
tiplicative depth of 12. This formula was chosen in
contrast to the previously introduced Multiplicative
Function, due to its much higher complexity. Firstly,
it utilizes a wider range of operations, including mul-
tiplication, summation, subtraction, squaring and the
square root. Secondly, the square root specifically in-
troduces the commonly used approximation, which
drastically increases the depth as well as the complex-
ity of the formula.

3.1 Evaluation Framework for the
Calculations

In this section, we aim to define and quantify the goals
for these parameters before moving on to the spe-
cific choices made for our implementation. We will
let the OpenFHE library automatically determine the
RingDimension based on the configured parameters.

Security. For our performance experiment, we vary
the SecurityLevel parameter by choosing κ = 128,
κ = 192 and κ = 256 within the Classic setting.

Precision. For our study, we are measuring not only
the runtime of different parameter sets, but also the
precision of the results. Precision should be assessed
by comparing the decrypted result of a ciphertext with
the result of an unencrypted reference calculation.
We first calculate the relative error between the un-
encrypted (m) and the homomorphically calculated
(m′) results for each slot i using RE = abs(m(i) −
m’(i))/abs(m(i)). We then convert this error into bits
by calculating − log2(RE). We then take the average
of these results.

Runtime. We will measure relative runtime by
recording the total execution time in seconds for

each computation run. This will encompass the time
required for encryption, homomorphic computation,
and decryption. We do not measure the time for key
generation and setting the crypto context.

Memory Use. Memory use is evaluated by analyz-
ing the size of both the ciphertext and the crypto-
graphic keys, measured in kilobytes. This assessment
will consider the storage requirements for encrypted
data and the associated evaluation keys.

Parameterization. We test all ScaleModSizes be-
tween 20 and 59 (greatest possible value for
OpenFHE in 64-bit mode). Within this range, ad-
ditional parameters were selectively adjusted to as-
sess the corresponding RingDimension chosen for
the given Security Level, as well as the respec-
tive measurement results. Our measurements con-
sist of several dimensions of parameters, which are
used for all tested algorithms. First of all, we test
the three Classic Security Levels 128 bits, 192 bits
and 256 bits (represented as 1-3). Secondly, we
test three ScalingTechniques, namely FIXEDAUTO,
FLEXIBLEAUTO, and FLEXIBLEAUTOEXT (represented
as 1-3). For the scaling parameters, we systemati-
cally test all values for ScaleModSize in the range
[20, ...,59], while leaving the FirstModSize as the
maximum value of 60. Finally, to determine how the
chosen BatchSize influences the runtime of the cal-
culation, we perform each measurement in two vari-
ants: First, we test full packing by setting the maxi-
mum possible BatchSize, i. e. half the ring dimen-
sion. Secondly, we perform the same measurements
with a BatchSize of 32, representing sparse packing.

3.2 Polynomial Degrees for Chebyshev
Approximation

As previously discussed, the standard deviation re-
quires a square root operation which needs to be ap-
proximated. The degree of the chosen Chebyshev
polynomials massively influences the results. The
higher the chosen degree, the more accurate the re-
sults will be, however the number of consumed mul-
tiplicative levels as well as the runtime will also in-
crease.

We therefore conducted measurements with sev-
eral degrees to determine the best trade-off for this
study. We tested every polynomial degree in the range
[10, 20, 30, ..., 2020]. Each parameter set was tested
5 times and the average computation time and preci-
sion was taken. We set the SecurityLevel to 1, the
ScalingTechnique to 2, the FirstModSize to 40,
the ScaleModSize to 39 and the BatchSize to 32.

Towards Efficient Cloud Data Processing: A Comprehensive Guide to CKKS Parameter Selection

505



0 250 500 750 1000 1250 1500 1750 2000
Degree

0

5

10

15

20

25

30
Pr

ec
isi

on

Precision

0

2000

4000

6000

8000

10000

Ho
m

om
or

ph
ic 

Ru
nt

im
e 

(m
s)

Computation Time

Figure 1: Chebyshev approximation results.

Ring dimension: 214

Ring dimension: 215

Ring dimension: 216

Ring dimension: 217

FIXEDAUTO
FLEXIBLEAUTO
FLEXIBLEAUTOEXT

Figure 2: Legend of result graphs.

We performed several measurements for the ap-
proximation of the square root across one ciphertext
with varying polynomial degrees and then calculated
the average of each of the results. This average can
now be compared to the average result of the plaintext
reference implementation to get an understanding of
the precision of the approximation.

Figure 1 shows the results of these measurements.
On the left, the graph plots the precision of the results
in bits. On the right, the computation time is shown.
It is clearly visible that the precision increases loga-
rithmically until it reaches its limit of about 28 bits
at a polynomial degree of around 750. The computa-
tion time appears to grow logarithmically as well, al-
though there is no clear limit in the tested range. For
our measurements, we chose the polynomial degree
of 247 for all further approximations, as it provides
a decent level of precision at around 25 bits, which
is only about 3 bits below the upper limit, while still
having comparatively low computation time.

4 RESULTS

After evaluating the calculations as described in Sec-
tion 3, we present the results, including the average
computation times, the precision of the results, as well
as the sizes of the keys and ciphertexts. In the follow-
ing sections, we will show and discuss the results for
the two exemplary functions in detail. .

Unless otherwise specified, the following graphs
adhere to the legend shown in Figure 2. The color of
each point defines the ring dimension of the measure-
ment, and the marker style defines the utilized scaling
technique.

4.1 Multiplicative Function

We discuss the computation time, precision and mem-
ory usage of each parameter set for the Multiplicative

20 25 30 35 40 45 50 55 60
Scale Mod Size [bit]

200

300

400

Co
m

pu
ta

tio
n 

Ti
m

e 
[m

s] Security Level 128 bits

20 25 30 35 40 45 50 55 60
Scale Mod Size [bit]

200

300

400

Co
m

pu
ta

tio
n 

Ti
m

e 
[m

s] Security Level 192 bits

20 25 30 35 40 45 50 55 60
Scale Mod Size [bit]

200

300

400

Co
m

pu
ta

tio
n 

Ti
m

e 
[m

s] Security Level 256 bits

Figure 3: Computation time for the Multiplicative Function.

Function (Equation 1).

Computation Time. Figure 3 shows the compu-
tation time for each value of ScaleModSize. The
graph shows the measurements with full packing
only. The differences between full and sparse pack-
ing will be discussed later. For a security level of
128 bits, every measurement results in a ring di-
mension of 214. For 192 bits, all measurements
with ScaleModSizes higher than 31 using the scaling
techniques FIXEDAUTO and FLEXIBLEAUTO lead to a
higher ring dimension of 215. Incidentally, these mea-
surements also roughly double the computation time
compared to the rest of the results. The scaling tech-
nique FLEXIBLEAUTOEXT already results in a higher
ring dimension starting with ScaleModSize 27, due
to the fact that it consumes an additional level. For
256 bits, all measurements result in a ring dimension
of 215.

The graph shows that the computation time mainly
scales with the chosen ring dimension, whereas the
ScaleModSize has no noticeable direct influence.
However, as a higher ScaleModSize eventually in-
creases the ring dimension, there is of course a transi-
tive influence. With a ring dimension of 215 the com-
putation time is roughly double compared to ring di-
mension 214.

Comparing the three security levels one can see
that 128 bits can be achieved with a ring dimension
of 214 throughout all ScaleModSizes. With 192 bits,
after a certain ScaleModSize the ring dimension in-
creases to 215. At 256 bits all measurements resulted
in the ring dimension 215. Therefore, the security
level of 192 bits shares its results with parts of the
other security levels. This indicates that the chosen
parameters for 128 bits for the measurements until
ScaleModSize 31 happen to be high enough for both
128 bits as well as 192 bits. The same goes for the

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

506



20 25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0.020

0.021

0.022

0.023

0.024

0.025

0.026

Am
or

tiz
ed

 R
un

tim
e 

[m
s]

20 25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0

2

4

6

Am
or

tiz
ed

 R
un

tim
e 

[m
s]

Figure 4: Full vs. sparse packing for the Multiplicative
Function.

Full packing
BatchSize 32

Figure 5: Legend of packing graphs.

higher ScaleModSizes which result in parameters
high enough for both 192 bits and 256 bits. Due to
the much higher computation times in the respective
higher ring dimensions, it is recommended to choose
a ScaleModSize within the tight range where the pre-
cision is optimal but ring dimension stays low.

Figure 4 shows the amortized computation time
per slot in the ciphertexts across all measurements
for the Multiplicative Function. The different
RingDimensions are color-coded the same as the
previous graphs, whereas the marker style shows the
packing type as described in Figure 5.

The first graph shows both packing types in one,
whereas the second graph zooms into the results of the
full packing only. It is clearly visible that the batch
size massively influences the computation time. Gen-
erally speaking, higher BatchSizes result in higher
computation times. However, since the throughput is
also increased due to the fact that more numbers are
calculated per batch, the amortized computation time
is much lower with full packing. Additionally, the
RingDimension plays a noticeable role here as well,
however it is much smaller compared to the pack-
ing type. These observations make it clear that if
the implemented application is able to utilize higher
BatchSizes, full packing should always be used.
If the application does not get any advantages from
high BatchSizes, then a more appropriate smaller
BatchSizes should be chosen to minimize the over-
all computation time.

Precision. Figure 6 shows the precision in bits (as
defined in Section 3) of each computation result
across all tested ScaleModSizes, specifically those

20 25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0

10

20

30

Pr
ec

isi
on

 [b
it]

Security Level 128 bits

20 25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0

10

20

30

Pr
ec

isi
on

 [b
it]

Security Level 192 bits

20 25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0

10

20

30

Pr
ec

isi
on

 [b
it]

Security Level 256 bits

Figure 6: Precision for Multiplicative Function.

with full packing. It is evident that the ScaleModSize
has a big impact on the precision of the end re-
sult. The same goes for the Scaling Technique, where
FLEXIBLEAUTOEXT leads to the highest precision and
FIXEDAUTO to the lowest. Neither the security level
nor the chosen ring dimension have a noticeable ef-
fect on the precision. It can also be seen that there
is a clear upper limit to the precision of this func-
tion, which is at around 30 bits. This upper limit
is reached with a ScaleModSize of about 50 in the
worst case, for some Scaling Techniques even ear-
lier. Therefore there is no reason to choose higher
values. For the security level of 192 bits, the ring di-
mension increases with ScaleModSizes larger than
41 for the first two scaling techniques. To get a good
trade-off between runtime and precision, it would be
best to choose 41, as the precision is already rela-
tively high, whereas the runtime is comparably low
due to the lower ring dimension. Since the ring di-
mension stays the same within the measurements for
both 128 and 256 bits and the previous section showed
that ScaleModSize does not influence performance
meaningfully, there is no such trade-off to be made
here. For these security levels, the precision can be
freely chosen according to the application require-
ments.

Table 1: Average memory usage for different ring dimen-
sions of Multiplicative Function.

Ring Dimensions
Parameter 214 215

CiphertextSize [MB] 1.002 2.002
PublicKeySize [MB] 1.830 3.676
EvalMultKeySize [MB] 5.490 11.038
SecretKeySize [MB] 0.666 1.338

Memory Usage. Table 1 shows the detailed mem-
ory usage for the ciphertext, public key, multiplication
key and private key across all measurements for this

Towards Efficient Cloud Data Processing: A Comprehensive Guide to CKKS Parameter Selection

507



25 30 35 40 45 50 55 60
Scale Mod Size [bit]

2000

4000

6000

Co
m

pu
ta

tio
n 

Ti
m

e 
[m

s] Security Level 128 bits

25 30 35 40 45 50 55 60
Scale Mod Size [bit]

2000

4000

6000

Co
m

pu
ta

tio
n 

Ti
m

e 
[m

s] Security Level 192 bits

25 30 35 40 45 50 55 60
Scale Mod Size [bit]

2000

4000

6000

Co
m

pu
ta

tio
n 

Ti
m

e 
[m

s] Security Level 256 bits

Figure 7: Computation time for the Standard Deviation.

function, separated by ring dimension. The ring di-
mension is the main contributor to memory size. As
can be seen in the table, the memory usage roughly
doubles from the lower to the higher ring dimension.

4.2 Standard Deviation

In this section we present the measurement results for
the Standard Deviation. We will discuss the compu-
tation time, precision and memory usage of each pa-
rameter set.

Computation Time. Here we can see considerable
differences compared to the previous function. Figure
7 shows the computation times of the Standard Devi-
ation, where the effects of the square root approxi-
mation are apparent, as the computation takes much
longer. There are two factors here which drive this
increase in runtime. First of all, the approximation
function itself takes a noticeable amount of time. Sec-
ondly, the approximation requires a much higher mul-
tiplicative depth for the calculation, which increases
the overall runtime of all calculations. To get a high
ScaleModSize above 47 bits combined with 256 bits
of security, the ring dimension jumps to 217. In gen-
eral, the computation times are about 10 times higher
than those of the Multiplicative Function with compa-
rable ring dimensions. With the highest ring dimen-
sion, the computation time goes up to about 7 sec-
onds, compared to a maximum of about 0.5 seconds
for the other functions.

Figure 8 shows the relationship between full and
sparse packing for the Standard Deviation. Again, the
difference between the packing strategies is apparent.
However, in this graph the change in runtime for the
different RingDimensions is a lot more noticeable.
Here, in contrast to the two functions previously dis-
cussed, the difference between RingDimensions is

25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0.06

0.08

0.10

Am
or

tiz
ed

 R
un

tim
e 

[m
s]

25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0

20

40

60

Am
or

tiz
ed

 R
un

tim
e 

[m
s]

Figure 8: Full vs. sparse packing for the Standard Devia-
tion.

25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0

10

20

Pr
ec

isi
on

 [b
it]

Security Level 128 bits

25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0

10

20

Pr
ec

isi
on

 [b
it]

Security Level 192 bits

25 30 35 40 45 50 55 60
Scale Mod Size [bit]

0

10

20

Pr
ec

isi
on

 [b
it]

Security Level 256 bits

Figure 9: Precision for the Standard Deviation.

even discernible for the full packing. This is due to the
fact that the overall runtimes are much higher for the
Standard Deviation, which makes these effects stand
out more against small measurement noise.

Precision. While the precision curve of the Stan-
dard Deviation (Figure 9) follows the same pattern as
the previous function, there is a clear difference. In
this case, the limit of the precision is at 20 bits, as
compared to 30 bits before. This can be attributed
to the inclusion of the approximated square root,
which reduces the maximum possible precision for
this function. This maximum precision is reached at a
ScaleModSize of 44 throughout all security levels. It
can be seen that the highest possible precision can be
reached at a security level of 256 bits without having
to accept a ring dimension of 217. The same goes for
128 bits of security, where ring dimension 215 is not
needed for optimal results.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

508



Table 2: Average memory usage for different ring dimen-
sions of the Standard Deviation.

Ring Dimensions
Parameter [KB] 215 216 217

CiphertextSize 5.519 12.663 26.740
PublicKeySize 8.224 17.512 36.740
EvalMultKeySize 24.980 52.683 110.217
SecretKeySize 3.269 6.622 13.371

Memory Usage. The higher multiplicative depth of
the Standard Deviation leads to a drastically increased
memory usage (Table 2). This can be attributed to the
fact that the higher depth also increases the modulus,
which in turn affects the memory usage. This shows
that while the ring dimension is a major factor when
it comes to memory usage, other factors such as the
multiplicative depth also influence it.

In the highest ring dimension, which is needed to
reach the highest ScaleModSizes in the 256 bits se-
curity level, the memory usage is more than 10 times
higher than the highest ring dimension for the previ-
ous function. However, as described above, this ring
dimension can be avoided without loss of precision or
security.

5 CONCLUSION

In this paper we evaluated the main parameters for
configuring the CKKS encryption scheme within the
library OpenFHE. The results indicate that both run-
time and precision are strongly affected by the com-
putational complexity of the functions being exe-
cuted.

Our observations provide some guidance on
which parameters affect which aspects of the results.
In general, the computation time and memory usage
are mainly influenced by the ring dimension as well
as the multiplicative depth. The precision on the other
hand is influenced mostly by the ScaleModSize.

The main goal when designing an application us-
ing the CKKS scheme is to optimize the parameters.
It is crucial to choose parameters which have accept-
able precision, but at the same time achieve the low-
est possible ring dimension for the chosen Security
Level. Especially the measurement results for 192
bits of security across all three functions showed that
it is possible to stay in a lower ring dimension while
still retaining close to the maximum precision.

REFERENCES

Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David
Bruce Cousins, Saroja Erabelli, Nicholas Genise,
Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo
Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy

Polyakov, Saraswathy R.V., Kurt Rohloff, Jonathan
Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod
Vaikuntanathan, and Vincent Zucca (2022). Openfhe:
Open-source fully homomorphic encryption library.

Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser,
S., Gorbunov, S., Halevi, S., Hoffstein, J., Laine,
K., Lauter, K., Lokam, S., Micciancio, D., Moody,
D., Morrison, T., Sahai, A., and Vaikuntanathan, V.
(2019). Homomorphic encryption standard. Cryptol-
ogy ePrint Archive, Paper 2019/939.

Albrecht, M. R., Player, R., and Scott, S. (2015). On the
concrete hardness of learning with errors. Journal of
Mathematical Cryptology, 9(3):169–203.

Badawi, A. A., Alexandru, A., Bates, J., Bergamaschi, F.,
Cousins, D. B., Erabelli, S., Genise, N., Halevi, S.,
Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D.,
Pascoe, C., Polyakov, Y., Quah, I., R.V., S., Rohloff,
K., Saylor, J., Suponitsky, D., Triplett, M., Vaikun-
tanathan, V., and Zucca, V. (2022). OpenFHE: Open-
source fully homomorphic encryption library. Cryp-
tology ePrint Archive, Paper 2022/915.

Blatt, M., Gusev, A., Polyakov, Y., Rohloff, K., and Vaikun-
tanathan, V. (2020). Optimized homomorphic en-
cryption solution for secure genome-wide association
studies. BMC Medical Genomics, 13:1–13.

Bossuat, J.-P., Cammarota, R., Cheon, J. H., Chillotti, I.,
Curtis, B. R., Dai, W., Gong, H., Hales, E., Kim, D.,
Kumara, B., Lee, C., Lu, X., Maple, C., Pedrouzo-
Ulloa, A., Player, R., Lopez, L. A. R., Song, Y., Yhee,
D., and Yildiz, B. (2024). Security guidelines for
implementing homomorphic encryption. Cryptology
ePrint Archive, Paper 2024/463.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y.
(2019). A full RNS variant of approximate homomor-
phic encryption. In Selected Areas in Cryptography–
SAC 2018: 25th International Conference, Calgary,
AB, Canada, pages 347–368. Springer.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Ho-
momorphic encryption for arithmetic of approximate
numbers. In Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory
and Applications of Cryptology and Information Se-
curity, Hong Kong, China, pages 409–437. Springer.

Chowdhary, S., Dai, W., Laine, K., and Saarikivi, O. (2021).
Eva improved: Compiler and extension library for
ckks. In Proceedings of the 9th on Workshop on En-
crypted Computing & Applied Homomorphic Cryp-
tography, pages 43–55.

Halevi, S. and Shoup, V. (2020). Design and implemen-
tation of HElib: a homomorphic encryption library.
Cryptology ePrint Archive, Paper 2020/1481.

Kim, A., Papadimitriou, A., and Polyakov, Y. (2022). Ap-
proximate homomorphic encryption with reduced ap-
proximation error. In Galbraith, S. D., editor, Topics in
Cryptology – CT-RSA 2022, Security and Cryptology,
pages 120–144.

OpenFHE (2024). Security notes for homomorphic encryp-
tion. https://openfhe-development.readthedocs.io/en/
latest/sphinx rsts/intro/security.html.

Towards Efficient Cloud Data Processing: A Comprehensive Guide to CKKS Parameter Selection

509


