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Abstract: This study investigates facial emotion recognition, an area of computer vision that involves identifying human 
emotions from facial expressions. It approaches facial emotion recognition as a classification task using 
labelled images. More specifically, we use the FER2013 dataset and employ Convolutional Neural Networks 
due to their capacity to efficiently process and extract hierarchical features from image data. This research 
utilises custom network architectures to compare the impact of various hyperparameters - such as the number 
of convolutional layers, regularisation parameters, and learning rates - on model performance. 
Hyperparameters are systematically tuned to determine their effects on accuracy and overall performance. 
According to various studies, the best-performing models on the FER2013 dataset surpass human-level 
performance, which is between 65% and 68%. While our models did not achieve the best-reported accuracy 
in literature, the findings still provide valuable insights into hyperparameter optimisation for facial emotion 
recognition, demonstrating the impact of different configurations on model performance and contributing to 
ongoing research in this area.

1 INTRODUCTION 

Facial Emotion Recognition (FER) is a field of study 
in computer vision that focuses on identifying human 
emotions from facial expressions, which are essential 
for non-verbal communication. It relies on advanced 
techniques such as deep learning and facial feature 
extraction to detect and analyse subtle changes in 
facial muscles. FER has gained significant attention 
across various fields, including human-computer 
interaction, clinical diagnostics, and behavioural 
analysis, according to (Khan et al., 2013; Sariyanidi 
et al., 2015). In clinical settings, it is used for 
monitoring mental health conditions, such as 
detecting early signs of depression or anxiety. In 
marketing, FER helps assess customer reactions to 
products and advertisements, providing real-time 
insights into consumer behaviour. Its applications are 
rapidly expanding, particularly in interactive systems 
such as virtual assistants and social robots, where 
accurate emotion detection enhances user interaction 
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by making systems more intuitive and responsive. 
Additionally, FER is being integrated into security 
systems for lie detection and threat assessment, 
offering new dimensions of situational awareness. 
While FER technology presents many benefits, it also 
raises ethical concerns regarding privacy and the 
potential misuse of biometric data. 
 This study uses the FER2013 dataset, a widely 
recognised benchmark introduced at ICML 2013. 
FER2013 consists of facial images classified into 
seven emotion classes - anger, disgust, fear, happy, 
neutral, sad and surprise. Although other datasets 
such as CK+, JAFFE, or KDEF are available for 
studies related to FER, in this study, we focused 
solely on FER2013 for several legitimate reasons. 
First, FER2013 contains over 35,000 images, making 
it significantly more prominent than other datasets, 
such as CK+ and JAFFE, with only a few hundred 
samples. This larger dataset provides more data for 
training deep learning models, which typically 
perform better with extensive, diverse datasets. 
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Second, FER2013 is collected in real-world 
conditions, featuring images captured in uncontrolled 
environments with varying lighting, angles, and 
backgrounds. This makes it more representative of 
real-world scenarios compared to more controlled, 
posed datasets like CK+ and JAFFE, which may not 
generalise as well to everyday applications. 
Additionally, FER2013 is a widely used benchmark 
in the field, allowing researchers to compare their 
results with existing studies, ensuring consistency 
and reproducibility. The larger size and diversity also 
reduce the risk of overfitting, making models more 
robust in practical applications. Furthermore, using a 
single dataset simplifies preprocessing and reduces 
computational demands, which is particularly 
important when training complex models. In this 
study, we also performed a preliminary cleaning of 
the FER2013 dataset to improve its quality, though a 
more detailed explanation of this process is provided 
in Section 2.1. Finally, FER2013 includes a balanced 
distribution of common emotions, providing a more 
comprehensive test bed for emotion recognition 
models, whereas other datasets may suffer from class 
imbalance or limited categories. (Tang, 2015) states 
that humans correctly identify the emotions in the 
FER2013 images between 65% and 68% of the time, 
demonstrating the inherent difficulty of emotion 
recognition when working with this dataset. 
 Recent advances in deep learning, particularly 
with Convolutional Neural Networks (CNNs), have 
led to significant improvements in FER. CNNs are 
especially well-suited for image-based tasks due to 
their ability to automatically learn spatial hierarchies 
of features, removing the need for manual feature 
extraction. The literature on FER demonstrates the 
effectiveness of CNNs in handling the complexities 
stemming from the use of the FER2013 dataset. 
(Khaireddin & Chen, 2021)  achieved a 73.28% 
accuracy on the FER2013 dataset using a fine-tuned 
VGGNet architecture, illustrating the potential of 
deep CNN models in emotion recognition tasks. 
(Liliana, 2019) explored the detection of facial action 
units using CNNs and reached a 92.81% accuracy on 
the CK+ dataset, emphasising CNNs' ability to 
capture subtle facial movements indicative of 
emotions. (Hassouneh et al., 2020) extended FER by 
integrating electroencephalograph signals with CNNs 
and Long Short-Term Memory (LSTM) networks, 
highlighting the potential of combining CNNs with 
other modalities for enhanced emotion recognition. 
Similarly, (Akhand et al., 2021) applied transfer 
learning to pre-trained CNNs, fine-tuning models for 
emotion-specific tasks, and reported accuracies of 
96.51% on the KDEF dataset and 99.52% on the 

JAFFE dataset. These studies demonstrate the 
adaptability and effectiveness of CNNs in FER across 
various datasets and configurations. 
 In this work, custom CNN architectures are 
developed and optimised to improve the accuracy of 
FER using the FER2013 dataset. Different 
hyperparameters and techniques are experimented on 
to observe their effects on the model’s performance 
and assess how various configurations influence the 
results. Additionally, various architectural 
components are explored. While the architectures we 
employed did not achieve the highest reported 
accuracy compared to the best models in the 
literature, we believe our work offers significant 
contributions. Specifically, we conducted extensive 
experiments testing a wide range of hyperparameter 
configurations, providing valuable insights into how 
these variations impact model accuracy. This detailed 
exploration of hyperparameter tuning - covering 
aspects such as architectural depth, augmentation 
techniques, learning rate, batch size, dropout rate, and 
other regularisation methods - offers a unique 
perspective that is often overlooked in studies focused 
solely on peak performance. By systematically 
analysing how different hyperparameter values 
influence model behaviour, our study provides a 
deeper understanding of the intricacies involved in 
optimising CNNs for FER tasks. Such insights are 
critical for researchers looking to refine existing 
models or develop new architectures. Additionally, 
the findings from our hyperparameter analysis serve 
as a practical guide for future research, offering 
actionable recommendations for tuning CNNs in this 
domain. We believe that this contribution fills an 
important gap in the literature and deserves attention 
for advancing both practical applications and 
theoretical understanding of FER model optimisation. 

2 EXPERIMENTAL RESULTS 

This section details the dataset used, as well as the 
experimental setup, including data pre-processing, 
model architecture, and hyperparameter tuning. 
Various experiments were conducted to compare the 
effects of different approaches, such as data 
augmentation techniques, batch sizes, learning rate 
scheduling, and regularisation methods. Additionally, 
comparisons between basic and deeper architectures 
were made, and Keras Tuner (O’Malley, T., et al, 
2019) was employed for fine-tuning 
hyperparameters. These steps were taken to optimise 
model performance and evaluate how each 
modification impacted the results. 
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2.1 Standardised Procedures 

This section outlines the standardised procedures 
applied across all experiments. These practices 
remained consistent throughout the study to ensure  
comparability and maintain methodological rigor. 
 The Facial Expression Recognition 2013 
(FER2013) dataset contains 35,887 grayscale images 
at a resolution of 48 × 48 pixels, divided into training 
and testing sets, where each image is labelled with 
one of seven emotions: anger, disgust, fear, 
happiness, neutral, sadness, and surprise. Although 
the dataset is widely utilised in facial expression 
recognition research, it presents some limitations, 
including mislabelled or irrelevant images. To this 
end, a manual data cleaning process was conducted 
on both sets. This involved systematically reviewing 
each image and removing those without a visible face. 
By manually verifying the dataset, we ensured that 
irrelevant or extremely noisy images were eliminated. 
This process enhances the training reliability, leading 
to more accurate model evaluation. The cleaned 
version of the dataset has been uploaded to Kaggle for 
public use (Grillo, 2024).  
 For each experiment, input images were re-scaled 
during pre-processing using the Keras (Chollet & 
others, 2015) class ImageDataGenerator. This 
normalises pixel values to a range of 0 to 1, instead of 
0 to 255. This is a common practice as it reduces 
skewness and variance, leading to improved model 
performance and faster convergence during training.  
 The categorical cross-entropy loss function was 
used throughout the experiments, as it is well-suited 
for multi-class classification tasks such as FER. This 
function computes the negative log-likelihood of the 
correct class, penalising the model when predicted 
probabilities deviate from true labels. Applying a 
logarithmic penalty to misclassifications helps the 
model assign the highest probability to the correct 
class while managing the distribution across other 
classes. This enhances the model’s ability to capture 
subtle distinctions between facial expressions, 
leading to precise weight updates during training and 
improving classification accuracy on unseen images. 
 The Adam (Adaptive Moment Estimation) 
optimiser, introduced by (Kingma & Ba, 2017), was 
used for all experiments in this study due to its 
efficiency and adaptability in handling noisy 
gradients and varying learning rates. Adam improves 
upon traditional Stochastic Gradient Descent by 
adjusting learning rates for each parameter 
individually, based on the first and second moments 
of the gradients. This allows for dynamic learning rate 
adaptation, which enhances convergence speed and 

stability. Adam's ability to maintain adaptive learning 
rates throughout training makes it particularly 
effective for tasks like FER, where variations in data 
can lead to challenges in gradient consistency.  
 Finally, when choosing the most appropriate 
hyperparameter values for our FER application, we 
focus on two key performance metrics: test accuracy 
and precision. Accuracy measures the overall 
proportion of images correctly classified by the 
model. Precision reflects the quality of the model's 
positive predictions. Specifically, we use a weighted 
average of precision across all classes, where each 
class's precision is weighted by its frequency in the 
dataset. For each class, precision is the proportion of 
true positive predictions (correct classifications) 
among all the positive predictions made by the model 
for that class. This ensures that the model is not only 
accurate overall but also reliable in making correct 
positive predictions for each category. 

2.2 Experimental Setup 

This section presents the configurations tested to 
evaluate their effect on model performance. A variety 
of model architectures, hyperparameters, and training 
strategies were systematically explored to understand 
how adjustments in data augmentation, batch sizes, 
learning rate schedules, regularisation techniques, 
and architecture depth impacted FER effectiveness. 

2.2.1 Model Architectures 

For this study, two CNN architectures were 
developed: a basic model serves for initial testing and 
comparative analysis, and a deeper model for 
improved performance through advanced feature 
extraction. Both follow a sequential structure for 
straightforward layer stacking and flexibility. Minor 
configuration adjustments were applied in certain 
experiments, as detailed in later sections. 

The basic architecture processes 48×48 grayscale 
images through four convolutional blocks. Each 
block includes a 3×3 convolutional layer, with a stride 
of 1 and no padding, prioritising central features over 
edge details. Batch normalisation, ReLU activation, 
and 2×2 max pooling are applied in each block, with 
the number of filters increasing from 32 to 256. A 
Global Average Pooling (GAP) layer precedes a 
dense layer with 256 units and dropout, followed by 
a softmax layer for classification into seven 
categories. With 0.47 million parameters, this 
architecture provides a computationally efficient 
baseline for testing and iterative development. 
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The deeper architecture begins with an input layer 
for 48×48 grayscale images and consists of four 
convolutional blocks. The first two blocks have two 
3×3 convolutional layers, while the third and fourth 
blocks include three layers. As in the basic model, 
batch normalisation, ReLU activation, and 2×2 max 
pooling are applied. Filter sizes double progressively 
from 32 to 256. A GAP layer connects to a dense layer 
with 512 units and dropout, culminating in a softmax 
layer for classification. With 2.05 million parameters, 
this adapts elements of VGG16 (Simonyan & 
Zisserman, 2015), optimising for low-resolution FER 
data while maintaining efficiency. 

Both architectures have significantly fewer 
parameters than popular models such as VGG16 (138 
million) and Inception (6.99 million) (Szegedy et al., 
2014). The deeper model is also more lightweight 
than MobileNetV2, which has 3.5 million parameters 
(Sandler et al., 2019). Figure 1 illustrates the 
structures of these architectures. 

 

 
Figure 1: Basic (right) and Deeper (left) Architectures. 

2.2.2 On-the-Fly vs. Static Augmentation 

Experiments using the basic architecture were 
conducted on the FER2013 dataset to evaluate the 
effects of data augmentation strategies. The model 
was trained with a batch size of 64 for up to 100 
epochs, with early stopping with a patience of 10 to 
prevent overfitting. 20% of the training set was 
reserved for validation, with validation loss as the 
early stopping metric. 
 For on-the-fly augmentation, transformations 
such as horizontal flipping (50% chance), rotations 
(±10°), width and height shifts (up to 20%), and 
zooming (80%-120%) in real-time during training 
were applied. These were derived from (Khaireddin 
& Chen, 2021). These augmentations introduced 
variability while keeping the dataset size unchanged. 
 Static augmentation applied a horizontal flip 
(50% chance) and a ±30° rotation to each image, 
inflating the dataset by about 250%. Augmented 
images were saved to the training directory, making 
this setup more memory-intensive and limiting the 
variety of transformations possible. A third 
experiment with no augmentation was also set up. 
 On-the-fly augmentation was the most effective, 
achieving the highest test accuracy and precision, 
while having the smallest loss. This method 
introduced variability during training without 
increasing memory requirements, enabling a wider 
range of transformations and better performance. 
Static augmentation, despite using pre-augmented 
images, resulted in lower metrics and more 
misclassifications. All methods struggled with the 
disgust class, with only the on-the-fly model correctly 
classifying one instance. From a computational 
standpoint, static augmentation was the most 
resource-intensive. On-the-fly, while taking longer 
than no augmentation, offered better accuracy and 
generalisation and will be used in all subsequent 
experiments. Table 1 summarises the results. 

Table 1: Results of data augmentation experiments. 

Type Test Loss Test Acc. Prec.  
No Aug 1.602 0.5292 0.5872 

On-the-fly 1.161 0.5586 0.5976 
Static 1.614 0.5248 0.1748 

2.2.3 Optimising Batch Size 

These experiments were aimed at isolating the effects 
of batch size variation on model performance and 
identifying the optimal batch size. Batch sizes of 8, 
16, 32, 64, and 128 were tested. A grid search was 
conducted, maintaining basic model architecture and 
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on-the-fly augmentation, with a maximum of 100 
epochs and early stopping with a patience of 12. 

Batch sizes 16 and 8 were closely matched in 
overall performance; however, batch size 16 was 
chosen for subsequent experiments as it had superior 
classification of underrepresented classes. Loss and 
accuracy plots indicated that as batch sizes increased, 
oscillations became more pronounced, suggesting 
greater variance and reduced stability in training, as 
illustrated in Figure 2. Larger batch sizes, like 64 and 
128, struggled with underrepresented classes, with 
batch size 128 struggling particularly with the fear 
category and classifying one image in the disgust 
class. Based on these findings, batch size 16 will be 
used in all subsequent experiments due to its balance 
between stability and accuracy across all classes. 
Refer to Table 2 for a summary of results. 

 
Figure 2: Loss and accuracy plots of experiments with batch 
sizes 8 (top) and 16 (bottom). 

Table 2: Results of batch size grid search. 

Batch Size Test Loss Test Acc. Prec.
8 1.066 0.6233 0.6344

16 1.008 0.6211 0.6345
32 1.087 0.6071 0.6208
64 1.161 0.5586 0.5976
128 1.591 0.4937 0.6094

2.2.4 Experimenting with Learning Rate, 
Validation Set Size Reduction and 
Further Regularisation 

This section evaluates the impact of learning rate 
scheduling techniques, including staircase 
exponential decay and dynamic adjustments using 
ReduceLROnPlateau, on the basic and deeper 
model. The effects on training and validation metrics 
are also analysed, along with the responsiveness of 
these strategies on a reduced validation set. Here we 

also experiment with L2 regularisation to see how the 
model reacts. 

2.2.5 Using Exponential Staircase Decay 
with Basic Architecture 

The first set of experiments in this section examined 
the effect of exponential staircase decay on 
performance using the basic architecture. The initial 
learning rate was set at 0.001, with decay occurring 
every steps_per_epoch*10 at a rate of 0.95, where 
steps_per_epoch represents the number of batches 
processed per epoch. This configuration yielded a test 
accuracy of 60.98%, which did not surpass the best 
accuracy of the previous experiments. The respective 
confusion matrix indicated more misclassifications, 
suggesting the adjustments did not enhance the 
model's discriminative capacity. Additionally, loss 
and accuracy plots showed similar oscillation patterns 
to previous trials using the same batch size, indicating 
that the learning rate modifications failed to smooth 
the convergence process or improve training stability.  

Two additional experiments tested different decay 
schedules. The first adopted a less aggressive rate of 
0.96, applied every steps_per_epoch*8, resulting 
in an accuracy of 60.03%. This facilitated gradual 
convergence but did not significantly improve 
performance. The second implemented a more 
aggressive decay rate of 0.94, applied every 
steps_per_epoch*12, leading to an improved 
accuracy of 63.81%.  This slower, more aggressive 
decay schedule improved performance, particularly 
in underrepresented emotions and demonstrated more 
stable convergence patterns. The improved 
performance on the disgust class highlighted the 
effectiveness of a slower decay in learning subtle 
features. The results are summarised in Table 3. 
Experiments with other parameters produced inferior 
results and were not explored further. 

Overall, the experiments emphasise the 
importance of optimising learning rate decay 
strategies to improve model stability, generalisation, 
and accuracy, especially for underrepresented classes 

Table 3: Summary of results of experiments using 
exponential staircase decay with the basic architecture. 

Decay 
Freq.

Decay 
Rate

Test 
Loss 

Test 
Acc. 

Prec. 

8 0.96 1.095 0.6003 0.6265
10 0.95 1.048 0.6098 0.6196
12 0.94 1.010 0.6381 0.6417
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Figure 3: Loss and accuracy plots of the experiments using 
the basic (top) and deeper (bottom) architectures, with 
exponential staircase decay (0.94  /steps_per_epoch*12). 

 
Figure 4: Confusion matrices of basic (left) and deeper 
(right) architectures, with exponential staircase decay 
applied at a rate of 0.94 every steps_per_epoch*12. 

2.2.6 Using Exponential Staircase Decay 
with Deeper Architecture 

This section extends previous findings by applying 
the best parameters to the deeper model architecture. 
The model was trained for up to 150 epochs, with 
early stopping after 15 epochs. While more 
computationally demanding, the deeper model 
improved performance, achieving 66.33% accuracy.  

The deeper model also outperformed the basic 
model in overall precision and also across most classes 
individually, particularly improving in classifying the 
underrepresented disgust class, as shown in the 
confusion matrix in Figure 4. Loss and accuracy plots 
showed greater stability in training, with reduced 
oscillations compared to the basic model, suggesting 
improved training dynamics and reduced instability. 
Overfitting was also present in both models, as seen in 
the plots of Figure 3. These results suggest the deeper 
model’s enhanced capacity to recognise subtle features 
and provide consistent performance, positioning it as a 
strong candidate for further development. 

2.2.7 Reducing Validation Set Size 

This section investigates  reducing  the  validation  set  

size from 20% to 10%, primarily to provide more 
training data while still maintaining sufficient metrics 
for early stopping. Both the basic and deeper models 
were tested using a staircase exponential decay with 
training extended to 300 epochs and early stopping 
patience set to 30 to accommodate for increased 
variability from the smaller validation set. 

The basic model required 144 epochs with the 
smaller validation set, compared to 83 with the larger 
set, indicating increased computational demands. The 
deeper model showed minimal change in training 
duration. Accuracy improved to 65.59% for the basic 
model and 66.44% for the deeper model. While both 
models saw small gains in precision, the deeper 
model did not consistently outperform the basic 
model. Surprisingly, the basic model with a reduced 
validation set performed better in classifying 
underrepresented emotions like disgust, correctly 
identifying 65 of 111 instances, as indicated by the 
matrix in Figure 5. Loss and accuracy plots also 
indicated greater training stability in the deeper 
model. Reducing the size of the validation set 
benefitted the basic model more significantly than the 
deeper model.  

2.2.8 Implementing L2 Regularisation 

In an effort to further improve generalisation, L2 
regularisation with a coefficient of 1e-3 was applied 
to each convolutional layer and to the dense layer of 
the deeper model. This value was chosen based on the 
suggestions of (Goodfellow et al., 2016). This 
technique adds a penalty for larger weights to the loss 
function, encouraging the model to learn more 
general patterns. However, the model showed 
considerable variation in emotion classification and 
performed the worst overall. While it successfully 
identified classes like happy and surprise, it failed to 
recognise disgust and also underperformed in fear and 
angry. The model also displayed a strong bias toward 
the neutral class, as indicated by the confusion matrix 
in Figure 7. The model frequently misclassified other  

 
Figure 5: Confusion matrices of basic (left) and deeper 
(right) models, with exponential staircase decay (0.94 / 
every steps_per_epoch*12) and a smaller validation set. 
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emotions as neutral, where the features are often less 
distinct and closer to the average across all classes. 

The loss and accuracy plots in Figure 6 revealed 
erratic training behaviour, with a sharp spike in 
training loss and high variability in validation 
accuracy, indicating poor learning and generalisation. 

 
Figure 6: Loss and accuracy plots of the experiment with 
L2 regularisation. 

 
Figure 7: Confusion matrix of experiment with L2 
regularisation. 

2.2.9 Implementing ReduceLRonPlateau 

Here, we examine the use of the 
ReduceLROnPlateau callback for dynamic learning 
rate adjustment, which reduces the learning rate when 
no improvement in validation loss is observed over a 
set number of epochs. Three experiments were 
conducted on the deeper model, all with a patience of 
10 epochs and varying the reduction factor: 0.1, 0.12, 
and 0.08. All experiments used 10% of the training 
set for validation and trained for up to 300 epochs 
with early stopping patience at 30 epochs. 

Performance across the experiments was closely 
matched, with the third experiment, using a reduction 
factor of 0.08, achieving the highest accuracy at 
68.45%, compared to 68.21% and 66.77% in the other 
two, as seen in Table 4. This suggests a moderate 
reduction factor improves performance without 
sacrificing stability. Evaluation metrics for the 
classification report show ReduceLROnPlateau 
outperformed exponential decay, achieving better 
metrics, particularly in underrepresented classes.  

 Figures 8 and 9 show the loss and accuracy plots 
and confusion matrix, of the best performing model. 

Table 4: Summary of results of ReduceLROnPlateau 
experiments. 

Reduction 
Rate 

Patience Test 
Loss 

Test 
Acc. 

Prec. 

0.08 10 0.969 0.6845 0.6853
0.1 10 0.958 0.6821 0.6853
0.12 10 0.971 0.6677 0.6689

 
Figure 8: Loss and accuracy plots of the best-performing 
model from this series of experiments. 

 
Figure 9: Confusion matrix of the best-performing model 
from this series of experiments. 

2.2.10 Hyperparameter Tuning Using Keras 
Tuner 

Keras Tuner (O’Malley, T., et al, 2019) is an 
advanced framework for hyperparameter tuning in 
TensorFlow and Keras models. It employs algorithms 
such as Random Search, Hyperband (L. Li et al., 
2018) and Bayesian Optimisation to explore various 
hyperparameter configurations. A hypermodel, 
serving as a flexible model framework, is defined 
with a search space for the hyperparameters. Keras 
Tuner then iteratively builds and evaluates models 
based on these configurations, using techniques like 
early stopping to improve efficiency. In this section, 
four targeted experiments are conducted, each 
focusing on optimising a specific aspect of the model.  

The first experiment aimed to find the optimal 
number of dense layer units and initial learning rate 
using the Hyperband class to balance model capacity 
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and convergence speed. Dense layer sizes of 256, 
512, 1024, 2048, and 4096 were explored, alongside 
learning rates of 0.01, 0.001, and 0.0001. The tuning 
ran for up to 50 epochs, with early stopping after 5 
epochs without validation loss improvement, and 
dynamic learning rate adjustments using 
ReduceLROnPlateau. The optimal configuration 
was 1024 dense units and a learning rate of 0.0001. 
The process took five hours and 48 minutes. 

The second experiment focused on optimising 
dropout rates using Hyperband class, to reduce 
overfitting while retaining expressiveness. Dropout 
rates from 0% to 50% in convolutional layers and 
20% to 70% in the dense layer were tested. Early 
stopping based on validation loss was applied, with 
configurations evaluated for up to 50 epochs. After 
nearly 28 hours, the optimal configuration was found 
- no dropout for the 32-filter and 128-filter layers, 
25% for the 64-filter layer, 5% for the 256-filter layer, 
and 25% for the dense layer. 

The third optimised batch normalisation 
momentum and found a better balance between 
stability and adaptability during training. Hyperband 
was used, testing values between 0.89 and 0.99. The 
tuner dynamically adjusted the number of epochs up 
to 50, with early stopping after 10 epochs of no 
validation loss improvement. The optimal value was 
0.91, and the search completed in 1 hour and 39 
minutes, due to the smaller search space. 

The final experiment aimed to optimise the L2 
regularisation coefficient to better control overfitting. 
RandomSearch class was used to test values from 1e-
6 to 1e-3 . The experiment ran over four trials of 30 
epochs, with dynamic learning rate adjustments via 
the ReduceLROnPlateau callback. The optimal L2 
regularisation coefficient values were much smaller 
than those used in the experiment of Section 2.3.3.4. 
The optimal coefficients were found to be  1e-3 for 
the first 32-filter layer, 1e-6 for the second, 1e-4 for 
the 64-filter and 128-filter layers, 1e-4 and 1e-6 for 
the 256-filter layers, and 1e-5 for the dense layer. The 
process ran for 7 hours. 

Following these searches, we combined optimal 
hyperparameters to maximise performance in the 
deeper model. Dropout was applied after batch 
normalisation, as recommended by (X. Li et al., 2018), 
to prevent variance inconsistency. All experiments 
were capped at 300 epochs with early stopping after 30 
epochs of no validation loss improvement, and 
dynamic learning rate adjustments applied. 

In the first experiment, we increased the dense 
units from 512 to 1024 to evaluate the impact of 
capacity on performance. This had no significant 
impact, with an accuracy of 66.52%, similar to prior 

results. The model trained for 81 epochs without 
added computational cost. In the second experiment, 
L2 regularisation and batch normalisation momentum 
improved accuracy to 67.36% with training extending 
to 141 epochs. Additional regularisation reduced 
overfitting compared to the first experiment. 

In the third and fourth experiments, learning rate 
was reduced to 0.0001, following a warm-up at 0.001 
for 8 epochs, as suggested by the tuner. The third, 
with 1024 dense units, completed in 119 epochs, 
while the fourth, adding batch normalisation 
momentum and L2 regularisation, took 126. The 
fourth showed the best generalisation, with less 
overfitting than the others. 

2.2.11  Further Architectural Changes 

In this section, we experimented further with 
architectural changes to the deeper model, including 
the addition of fully-connected layers, convolutional 
layers, and adjustments to the block structure. This 
was to assess whether increasing the network's 
capacity, through additional parameters and depth, 
would lead to an improved performance.  

Table 5 summarises the configurations of the 
experiments. The rows represent convolutional 
blocks with respective filter sizes and dense layers. 
The values correspond to the number of filters in the 
block or the number of units in the dense layer. The 
final row is the total number of parameters, in 
millions,. Results are summarised in Table 6. 

Table 5: Architectural configurations of the experiments. 

Layer 
Type 

Exp 
1 

Exp 
2 

Exp  
3 

Exp 
4 

Exp 
5 

Conv 32 2 2 2 0 2 
Conv 64 2 2 2 2 2 
Conv 128 3 3 3 2 3 
Conv 256 3 3 3 3 3 
Conv 256 0 0 0 0 3 
Conv 512 0 0 0 3 0 
Dense 1 1024 2048 256 2048 2048 
Dense 2 1024 1024 2048 1024 1024 
Params 3.23 4.55 2.52 10.80 6.31 

Table 6: Summary of results of experiments in this section. 

Exp no. Test Loss Test Acc. Prec. 
1 0.921 0.6683 0.6677
2 0.933 0.6772 0.6767
3 0.904 0.6700 0.6707
4 0.938 0.6933 0.6929
5 0.952 0.6735 0.6748
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From the loss and accuracy plots, all experiments 
exhibited similar learning behaviours. Experiment 4, 
the most complex, achieved the best results, with the 
highest test accuracy, precision, and disgust class 
performance. This suggests that additional layers and 
parameters improved the model’s ability. 

Experiment 3, with the fewest parameters, had the 
lowest test loss, indicating good generalisation 
despite having a slightly lower accuracy than 
Experiment 4. This shows that simpler models can 
still be competitive for generalisation, though they 
may struggle with complex or underrepresented data. 

Experiment 5, despite having more parameters 
than Experiment 3, achieved almost the same 
accuracy. This suggests increasing parameters does 
not guarantee better performance and highlights 
diminishing returns from added complexity without 
effective optimisation. Figures 10 and 11 show the 
loss and accuracy plots and confusion matrix of 
Experiment 4, the best-performing model. 
 

 
Figure 10: Loss and Accuracy Plot of Experiment 4. 

 
Figure 11: Confusion Matrix of Experiment 4. 

3 CONCLUSION 

This study investigated CNNs for FER using a clean 
version of the FER2013 dataset, focusing on the 
impact of architectural modifications, learning rate 
schedules, and regularisation techniques. Key 
findings demonstrated the benefits of on-the-fly 
augmentation, optimal batch sizes, and dynamic 
learning rate adjustment. Hyperparameter tuning 

using Keras Tuner optimised dense units, learning 
rates, dropout, and L2 regularisation, providing 
insights into balancing performance and efficiency. 

While our models did not achieve the highest 
reported accuracy, the findings contribute to 
understanding how hyperparameter configurations 
affect performance and generalisation. Theoretical 
insights suggest that certain architectural 
modifications, such as deeper convolutional layers 
and dropout placement, improve feature extraction 
and stability, which may generalise to other FER 
problems or low-resolution datasets. However, the 
performance gap compared to state-of-the-art models 
may be attributed to the limited complexity of the 
architectures used, suggesting further exploration of 
deeper or more advanced designs. 

Future work should explore the generalisability of 
these findings to other architectures, datasets, and 
tasks. Assessing performance variability across 
repeated runs, different splits of training data, and 
random initialisations would strengthen the 
robustness of comparative results. Additionally, 
addressing class imbalance through weighted classes 
and extending augmentation techniques could further 
improve generalisation. Validation strategies like k-
fold cross-validation and more extensive architectural 
refinements—such as filter size variations or 
alternative optimisers—may provide deeper insights 
into model behaviour. 
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