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Abstract: Decoding of brain activity with machine learning has enabled the reconstruction of thoughts, memories and 
dreams. In this study, we designed a methodology for reconstructing visual stimuli (digits) from human brain 
activity recorded during passive visual viewing. Using the MindBigData EEG dataset, we preprocessed the 
signals and cleaned them from noise, muscular artifacts and eye blinks. Using the Common Average 
Reference (CAR) method and past studies’ results we reduced the available electrodes from 14 to 4 keeping 
only those containing discriminative features associated with the visual stimulus. A convolutional neural 
network (CNN) was then trained to encode the signals and classify the images. A 92% classification 
performance was achieved post-CAR. Three variations of an auxiliary conditional generative adversarial 
network (AC-GAN) were evaluated for decoding the latent feature vector with its class embedding and 
generating black-and-white images of digits. Our objective was to create an image similar to the presented 
stimulus through the previously trained GANs. An average 65% reconstruction score was achieved by the 
AC-GAN without a modulation layer, a 60% by the AC-GAN with modulation layer and multiplication, and 
a 63% by the AC-GAN with modulation and concatenation. Rapid advances in generative modeling promise 
further improvements in reconstruction performance. 

1 INTRODUCTION 

In our everyday lives we are bombarded with visual 
stimuli for which we form visual memories of them 
and of their between associations. A defining feature 
of visual cognition is our ability to imagine these 
stored memories even in the absence of any stimulus, 
allowing us to escape from the limitations of our 
current perspective into a limitless range of virtual 
worlds (Fulford et al., 2018). But how does our brain 
store and retrieve visual memories even in the 
presence/absence of a visual stimulus? Which brain 
areas participate in this visualization process? Can we 
decode our brain signals and reconstruct these visual 
representations? The scope of this study is to address 
these questions. Utilizing the MindBigData dataset of 
brain signals via EEG during passive visual viewing 
of images of digits (0-9) from the MNIST dataset we 
employed an encoder (a CNN) to extract the latent 
feature vector from these brain signals and a decoder 
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(a GAN) to reconstruct the images viewed while these 
brain signals were recorded. The quality of the 
reconstructed images was then compared to the 
ground truth (MNIST images) using two performance 
metrics (the Dice and Structural Similarity Index 
scores) and inferences were drawn. 

2 RELATED WORK 

The reconstruction of high-quality perceived or 
imagined images from brain signals always laid in the 
realm of science fiction. Recent advancements in 
generative AI (GANs) have allowed scientists to turn 
the image reconstruction from brain signals into a 
reality. Below we provide a brief overview of some 
of these attempts. Kavasidis and colleagues (2017) 
employed an encoder (an LSTM layer), which aimed 
to identify a latent feature space for brain signal 
classification, and a decoder (a VAE or a GAN), 

868
Tanner, T. and Cutsuridis, V.
Generative Adversarial Network for Image Reconstruction from Human Brain Activity.
DOI: 10.5220/0013149300003911
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2025) - Volume 1, pages 868-877
ISBN: 978-989-758-731-3; ISSN: 2184-4305
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



which turned the learned feature into images using a 
deconvolution approach. Their encoder reached an 
86% classification accuracy, whereas their decoder 
achieved a below average image reconstruction 
quality. Tirupattur and colleagues (2018) employed 
an 1D-CNN and modified DC-GAN to generate 
images from thought using EEG signals with average 
generation success. Jiao et al. (2019) the EEG data 
were first converted into EEG Map image, which was 
further encoded using visual CNN. The brain signal 
classification accuracy was approximately 93%. The 
encoded signal was then used with a GAN to 
reconstruct high quality perceived images. Recently, 
Khare et al. (2022) developed a pipeline consisting of 
a feature extractor based on a mixture of LSTM and 
gated recurrent neural network layers in order to 
extract important visual features from the EEG data 
regarding the type and structure of visual stimuli. The 
mapping between the extracted feature vector and the 
corresponding image was learned using Conditional 
Progressive GAN (cProGAN). After training and 
testing on a publicly available dataset, their EEG 
classifier was able to achieve 98.8% test accuracy, 
and cProGAN achieved an inception score (IS) of 
5.15 surpassing the previous best 5.07 IS. 

3 MATERIALS AND METHODS 

3.1 EEG Data 

The EEG used in our study was part of the 
MindBigData dataset of Vivancos and Cuesta (2022). 
Briefly, a human participant was seated in front of a 
65’’ TV screen viewing for 2 seconds a single digit 
from 0 to 9. Each digit was presented in white font 
over full black background (see Fig. 1). The order of 
presentation of the digits was random with a black 
screen in between them. The brain activity of the 
human participant was recorded using a 14-channel 
(AF3, AF4, F7, F8, F3, F4, FC5, FC6, T7, T8, P7, P8, 
O1 & O2) Emotiv EPOC device (see Fig. 2a) at an 
average sampling rate of 128Hz resulting in ~52000 
brain signals (see Table 1). 

 
Figure 1: Idealized MNIST stimuli (digits from 0 to 9). 

 
Figure 2: (a) Emotiv EPOC electrode positions (Stytsenko 
et al., 2011). (b) Four electrode positions used in our study. 

3.2 Algorithmic Pipeline 

Our high-level algorithmic pipeline is depicted in Fig. 
3. Every step in the pipeline is described in detail in 
the subsequent sections. 

 
Figure 3: Algorithmic pipeline (from EEG data collection 
to image reconstruction). 

3.2.1 Signal Preprocessing 

EEG signals are noisy and full of artifacts. A zero-
phase AC notch filter at 50Hz with a 1hz band was 
applied to the raw EEG data to remove any effects 
from line noise potentially created by interference 
from the mains 50hz circuits. Since the oscillation 
signals are typically in the range of µVs, AC 
fluctuations can completely overwhelm these signals. 
Next, a 5th order Butterworth, non-causal bandpass 
filter was applied using a 0.4hz low-pass and 60Hz 
high-pass band limits to keep only those frequencies 
relevant to visual perception (0.4-60Hz). A -6db 
cutoff frequency was applied to both band limits and 
a Hamming window with 0.0194 passband ripple was 
used. Next, the functionality of the MNE package 
(Gramfort et al. 2013) was utilized to remove epochs 
contaminated with muscular artifacts and eye blinks. 
A maximum 100µV peak-to-peak threshold was set 
based on previous studies (Sanei and Chambers 
2013). Epochs which exceeded this threshold level 
were excluded from further analysis (see Table 1).  
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Table 1: EEG signals per class (digit). 

Class 
label 

Raw EEG 
signals 

from MBD 

EEG signals 
after MNE 

thresholding 

EEG signals 
after CARs 

0 5212 3845  1180 
1 5080 3798  1090 
2 5196 3809  1130 
3 5294 3950  1100 
4 5079 3765  1100 
5 5256 3916  1180 
6 5218 3868  1170 
7 5069 3780  1195 
8 5241 3861  1115 
9 5250 3917  1150 

Total 51895 38509 11410

Because the Emotiv EPOC device uses no 
reference signal, we employed the CAR method 
(Mishra et al., 2021), which required to first calculate 
the average signal from all 14 channels for each digit, 
and then calculate the correlation coefficient ρ 
between each channel signal and the mean signal for 
each digit. The value of correlation coefficient is in 
between -1 to +1. If the value of the correlation 
coefficient was high, that meant the channel signal 
was closer to the mean signal and thus it could be 
considered as less noisy. We selected only those 
signals that were having a correlation coefficient 
greater than a certain threshold (ρ > 0.9) (see Table 
1). Finally, the signal-to-noise ratio (SNR) was 
calculated for all digit signals before CAR and after 
CAR to assess the effectiveness of the CAR method 
(see Table 2). 

Table 2: Final selected EEG signals per class at the end of 
the preprocessing pipeline. SNR measure of effectiveness 
of filtering, epoch rejection and correlation. 

 SNR 
Class 
label 

Before 
CAR 

After CAR 
(ρ>0.9) 

Final selected 
EEG signals  

0  0.378  2.126  203 
1  0.521  2.213  204 
2  0.374  2.131  191 
3  0.352  2.239  193 
4  0.323  2.191  193 
5  0.312  2.068  196 
6  0.474  2.139  197 
7  0.299  1.983  194 
8  0.382  2.155  195 
9  0.280  2.077  192 

Total   1958

As Mishra and colleagues (2021) have shown T7, 
P7, T8 and P8 channels are the only electrodes 
containing discriminative features associated with the 
visual stimulus. Based on their prediction we used 

only these four-channel data (see Fig. 2b) for further 
processing. These data consisted of 256-time samples 
and the associated class label, which were then 
resampled using a sliding window of 32 samples with 
a 4-sample overlap. This resulted in each channel 
being split into 9 x 32 matrix x 4 channels per class 
label. The result of this segmentation was to increase 
the number of training examples. 

The resulting data were then split into 80% for 
training and 20% for testing. The 80% training data 
were further split into 75% for training and 25% for 
validation. 

3.2.2 Encoding and Classification 

For the encoding and classification of the EEG data, 
a CNN (see Supplementary Table 1 for CNN design) 
was used consisting of sets of 2D convolutional layers 
where the kernel size was changed so that both time 
and channel axis were passed through the convolution 
together keeping any relation within the same set of 
filters. To achieve this the first layer had its kernel 
size oriented to the time axis, the second layer 
changed its orientation to the channel axis after which 
a max pooling layer was used to concentrate the key 
activations. A further two 2D convolutional layers 
were used to increase the filters with the intention of 
producing a more detailed set of filters to identify the 
smaller interactions. The output from the 
convolutional block was then flattened before passing 
onto a set of fully connected (FC) layers. Batch 
normalization was used before and after the 
convolutional block to help with regularization. The 
FC block took the output vector from the 
convolutional block and reduced the latent dimension 
down to the final output dimension of 128, using a 
10% dropout between each FC layer again to help 
with regularization and stopped potential over 
training. The final FC layer was also batch 
normalised; and used as the latent space vector for 
input to the GAN generator. This layer was finally 
passed to the FC layer with a softmax activation and 
10 nodes to determine the classification probability 
distribution. 

The loss function was based on categorical cross-
entropy, as the class labels were one-hot encoded 
before being used. Optimization of the loss function 
was achieved using adaptive moment estimation 
(Adam) method with a starting rate of 0.001 and 
momentum 0.8. The final two layers are outputs from 
the network, predicted label, and encoded EEG latent 
space vector. The network was trained for a 
maximum of 150 epochs, with a batch size of 128. 
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Figure 4: AC-GAN model architectures. (a) AC-GAN without a modulation layer. The conditional class embedding is 
multiplied with latent vector (z). (b) AC-GAN with a modulation layer. The conditional class embedding is multiplied with 
the modulated vector (µz + σz •  z). (c) AC-GAN with a modulation layer. The conditional class embedding is concatenated 
with the modulated vector (µz + σz • z). 

3.2.3 Decoding and Reconstruction 

For decoding and image generation, a AC-GAN 
(Odena et al. 2017) was used. In the original AC-
GAN, every generated sample has a corresponding 
conditioning class label, c in addition to the noise z. 
In our study the noise z is replaced by the latent vector 
Latent(z) of the encoder. The generator (see 
Supplementary Table 2) then uses both the Latent(z) 
and the Conditioning label c to generate images Xfake 
= G(c; Latent(z)). The discriminator (see 
Supplementary Table 3) gives both a probability 
distribution over sources and a probability 
distribution over the class labels, P(S j X); P(C j X) = 
D(X). The objective function has two parts: the log-
likelihood of the correct source, LS, and the log-
likelihood of the correct class, LC. 𝐿ௌ = 𝐸[𝑙𝑜𝑔 𝑃(𝑆 =  𝑟𝑒𝑎𝑙 | 𝑋௥௘௔௟)] + 𝐸[𝑙𝑜𝑔 𝑃(𝑆 = 𝑓𝑎𝑘𝑒 | 𝑋௙௔௞௘)]     (1) 

 𝐿஼ = 𝐸[𝑙𝑜𝑔 𝑃(𝐶 =  𝑐 | 𝑋௥௘௔௟)] + 𝐸[𝑙𝑜𝑔 𝑃(𝐶 = 𝑐 | 𝑋௙௔௞௘)]      (2) 

D is trained to maximize LS + LC while G is trained 
to maximize LC - LS. 

In some simulations, we added an extra layer 
(modulation layer) before the generator, which 
allowed the modulation of the latent feature space as 
a weighted deterministic function of µz and σz 
described in (Gurumurthy et al., 2017): 𝜇௭ + 𝜎௭ ∗ 𝑧           (3) 

Our objective was then to learn µz, σz, and the AC-
GAN parameters in order to maximize pdata = 
G((µz+σz*Latent(z))|Latent(z)). During the training 

of the AC-GAN on the EEG data, we explored three 
different architectures of it (see Fig. 4): (a) No 
modulation layer, (b) Multiplication of the 
modulation layer with the conditional class 
embedding, and (c) Concatenation of the modulation 
layer with the conditional class embedding. The 
training was left to run for 2000 epochs after which 
time image generation was stabilized. An Adam 
optimizer with learning rate of 0.0002, beta = 0.5 and 
decay of 1e-6 was used for both the generator and 
discriminator. 

3.2.4 Performance Metrics 

We used the following metrics for evaluating the 
performances of our classifier: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  ்௉்௉ାி௉       (4) 𝑅𝑒𝑐𝑎𝑙𝑙 =  ்௉்௉ାிே           (5) 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ ௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟        (6) 

where TP are the true positives, TN are the true 
negatives, FP are the false positives and FN are the 
false negatives. 

We used the following metrics for evaluating the 
performance of our image generator: 𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ |௉௥௘ௗ௜௖௧௜௢௡∩ீ௥௢௨௡ௗ ௧௥௨௧௛||௉௥௘ௗ௜௖௧௜௢௡|ା|ீ௥௢௨௡ௗ ௧௥௨௧௛|    (7) 

This metric evaluates the similarity between two 
images, the predicted one (generated) against the 
ground truth (MNIST image). Its value ranges 
between 0 and 1, with 1 being the perfect overlap 

Generative Adversarial Network for Image Reconstruction from Human Brain Activity

871



(100% similarity between the predicted and the 
ground truth) and 0 being no overlap (0% similarity). 

The Structural Similarity Index Measure (SSIM) 
is a perceptual metric used to evaluate the quality of 
generated images by comparing them directly to 
ground truth images. Unlike traditional measures like 
Mean Squared Error (MSE) that only assess pixel-by-
pixel differences, SSIM considers human visual 
perception, focusing on structural information, 
luminance, and contrast to assess image similarity. It 
produces a score between -1 and 1, where 1 indicates 
perfect similarity. SSIM is calculated by comparing 
local patterns of pixel intensities normalized for 
luminance and contrast, providing a more holistic 
view of image quality. It is particularly useful for 
evaluating image generation tasks, such as super-
resolution, denoising, and inpainting, where 
maintaining structural fidelity and visual quality is 
crucial. By accounting for variations in structure, 
texture, and lighting, SSIM offers a robust measure of 
how closely generated images resemble their 
corresponding ground truth, making it an effective 
tool for evaluating generative models: 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (𝑙(𝑥, 𝑦))ఈ ∗ (𝑐(𝑥, 𝑦))ఉ ∗ (𝑠(𝑥, 𝑦))ఊ

  (8) 

where 𝑙(𝑥, 𝑦) = (2𝜇𝑥 ∗  𝜇𝑦 + 𝐶1)/(𝜇𝑥ଶ +  𝜇𝑦ଶ + 𝐶1)  𝑐(𝑥, 𝑦) = (2𝜎𝑥 ∗  𝜎𝑦 + 𝐶2)/(𝜎𝑥ଶ +  𝜎𝑦ଶ + 𝐶2)  𝑠(𝑥, 𝑦) = (𝜎𝑥𝑦 +  𝐶3)/(𝜎𝑥 ∗  𝜎𝑦 +  𝐶3)  
where µ is the mean pixel value, σ is the standard 
deviation of the pixel value and σxy is the covariance 
of the pixel value. C1, C2, and C3 are constraints to 
avoid division by zero with C3 = C2 /2. α, β, and γ are 
positive exponents that change the components 
contribution to the overall SSIM. 

4 RESULTS 

4.1 Classification 

Our CNN model was trained on two sets of data. The 
post filtered data prior to CAR correlation selection 
method and the data set after final CAR correlation 
selection. From Tables 6 and 7, it is evident that 
accuracy improves from an approximate average 46% 
in the pre-CAR selection case to an approximate 
average 92% in the post-CAR selection case. 
 

Table 3: CNN evaluation after trained with pre-CAR 
selection data. 

Label  precision  Recall  F1-score  
0 0.48 0.48  0.48 
1 0.46 0.43  0.45 
2 0.43 0.40  0.41 
3 0.50 0.51  0.51 
4 0.46 0.39  0.42 
5 0.45 0.48  0.46 
6 0.45 0.46  0.45 
7 0.41 0.47  0.47 
8 0.43 0.43  0.43 
9 0.50 0.47  0.47 

 
Accuracy  0.46
Micro avg 0.46 0.46  0.46 

Weighted avg 0.46 0.46  0.46 

Table 4: CNN evaluation after trained with post-CAR 
selection data. 

Label  precision  Recall  F1-score  
0 0.92 0.88  0.90 
1 0.93 0.90  0.92 
2 0.91 0.87  0.89 
3 0.94 0.94  0.94 
4 0.91 0.93  0.92 
5 0.89 0.91  0.90 
6 0.92 0.89  0.90 
7 0.90 0.96  0.93 
8 0.93 0.95  0.94 
9 0.92 0.93  0.93 

 
Accuracy  0.92
Micro avg 0.92 0.92 0.92

Weighted avg 0.92 0.92 0.92

Figures 5 and 6 show the confusion matrix 
between class predictions, and the t-SNE map of class 
separability, respectively, before the application of 
the CAR selection method. Both figures clearly show 
the extent of class confusion which is caused by the 
remaining noise in the signals prior to extracting the 
data which had a high correlation threshold. 

In contrast, figures 7 and 8 show the confusion 
matrix between class predictions, and the t-SNE map 
of class separability, respectively, after the 
application of the CAR selection method. It is clearly 
evident that the classes are mostly separable and very 
little confusion between them is present. 

4.2 Image Reconstruction 

From Figure 9 it is clear that the AC-GAN with no 
modulation layer is able to reconstruct well all digits 
with the exception of ‘2’, which confuses it with ‘0’. 
The SSIM score for ‘2’ is 0.098 (see Table 5). 
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Figure 5: Class confusion matrix of CNN model trained 
with pre-CAR selection data. 

 
Figure 6: t-SNE class separability of CNN model trained 
with pre-CAR selection data. 

 
Figure 7: Class confusion matrix of CNN model trained 
with post-CAR selection data. 

 
Figure 8: t-SNE class separability of CNN model trained 
with post-CAR selection data. 

 
Figure 9: Reconstruction of digit (0-9) images (columns 1 
and 3) compared to the MNIST digit (0-9) images (columns 
2 and 4) by the AC-GAN without a modulation layer (see 
Fig. 4a for GAN architecture) 

Table 5: Summary of reconstruction evaluation results of 
AC-GAN without a modulation layer. 

Label  Prediction  Dice score SSIM score  
0 TRUE 0.581 0.229
1 TRUE 0.408 0.449
2 FALSE 0.285 0.098
3 TRUE 0.437 0.293
4 TRUE 0.408 0.380
5 TRUE 0.467 0.316
6 TRUE 0.567 0.401
7 TRUE 0.198 0.139
8 TRUE 0.568 0.271
9 TRUE 0.454 0.334

Average 0.4373 0.291
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From Figure 10 it is clear that the AC-GAN with 
modulation layer and multiplication of the modulated 
latent vector with the conditioning class embedding is 
able to reconstruct well all digits with the exception 
of ‘6’, which confuses it with ‘5’. The SSIM score for 
‘6’ is 0.118 (see Table 6). Similarly, the SSIM score 
for ‘5’ is 0.115 even though the model is able to 
reconstruct the correct digit. 

 
Figure 10: Reconstruction of digit (0-9) images (columns 1 
and 3) compared to the MNIST digit (0-9) images (columns 
2 and 4) by the AC-GAN with a modulation layer and 
multiplication of the modulated latent vector with the 
conditional class embedding (see Fig. 4b for GAN 
architecture). 

Table 6: Summary of reconstruction evaluation results of 
AC-GAN with a modulation layer (multiplication of the 
modulated latent vector with the conditional class 
embedding). 

Label  Prediction  Dice score SSIM score 
0  TRUE 0.538 0.128 
1 TRUE 0.467 0.474 
2 TRUE 0.476 0.184 
3 TRUE 0.446 0.218 
4 TRUE 0.416 0.193 
5 TRUE 0.370 0.115 
6 FALSE 0.234 0.118 
7 TRUE 0.159 0.164 
8 TRUE 0.415 0.281 
9 TRUE 0.382 0.199 

Average  0.39 0.2074 

From Figure 11 it is clear that the AC-GAN with 
modulation layer and concatenation of the modulated 
latent vector with the conditioning class embedding is 
able to reconstruct well all digits with the exception 

of ‘0’, which confuses it with ‘2’. The SSIM score for 
‘0’ is 0.064 (see Table 7). 

 
Figure 11: Reconstruction of digit (0-9) images (columns 1 
and 3) compared to the MNIST digit (0-9) images (columns 
2 and 4) by the AC-GAN with a modulation layer and 
concatenation of the modulated latent vector with the 
conditional class embedding (see Fig. 4c for GAN 
architecture). 

Table 7: Summary of reconstruction evaluation results of 
AC-GAN with a modulation layer (concatenation of the 
modulated latent vector with the conditional class 
embedding). 

Label  Prediction  Dice score SSIM score 
0  FALSE 0.155 0.064 
1 TRUE 0.130 0.151 
2 TRUE 0.321 0.205 
3 TRUE 0.473 0.323 
4 TRUE 0.446 0.393 
5 TRUE 0.466 0.225 
6 TRUE 0.421 0.195 
7 TRUE 0.379 0.291 
8 TRUE 0.482 0.409 
9 TRUE 0.296 0.255 

Average  0.3569 0.2511 

5 DISCUSSION 

Our study has produced interesting results regarding 
the reconstruction of mental content (visual stimulus) 
from EEG with generative AI by leveraging the latent 
vector (not random noise) and a predicted semantic 
(class) embedding. The study demonstrated that EEG 
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signals can effectively be processed to extract 
meaningful features, which, when fed into a trained 
classification encoder and a subsequent generative 
network, can generate representative images of the 
perceived visual stimulus. When comparing the SSIM 
scores of the AC-GAN models, we found that the 
model with the best reconstruction score was the AC-
GAN without modulation (Average SSIM = 0.291 or 
65% average similarity between the generated images 
and the ground truth). The model with the worst 
reconstruction score was the AC-GAN with 
modulation and multiplication (Average SSIM = 
0.2074 or 60% average similarity between the 
generated images and the ground truth). The average 
Dice scores for the three AC-GAN models were 
lower than the average SSIM scores (Average Dice 
for AC-GAN without modulation = 43.73%; Average 
Dice for AC-GAN with modulation and 
multiplication =39%; Average Dice for AC-GAN 
with modulation and concatenation = 35.69%). Since 
the Dice score depends solely on the similarity 
between the reconstructed images and the ground 
truth on a pixel-by-pixel basis and excludes any 
structural information, luminance, and contrast 
information from the evaluation, then the SSIM score 
is a more accurate reconstruction metric. 

In this study, we utilized EEG data collected from 
a different group (MindBigData (Vivancos and 
Cuesta, 2022)) to which we had no control of their 
experimental design, recording and collection 
processes. Furthermore, EEG signals by nature are 
noisy, full of muscular artifacts and eye blinks 
particularly the signals from the frontal electrodes. 
Careful preprocessing of the MindBigData EEG 
signals reduced the data for training and testing from 
51895 samples to 1958 samples, which was only 
3.77% of the total data set. Even though the final EEG 
dataset used for encoding and classification was 
small, our CNN model reached a 92% classification 
performance on average, which is close to the current 
state-of-the-art (~96% (Mahapatra and Bhuyan, 
2023)). Given the single-subject nature of these data, 
it is unclear how the results would generalize to a 
larger population. We believe this could be a fruitful 
area for future investigation.  

Despite the AC-GAN model's ability to generate 
conditioned images, it is unable to rectify 
misclassifications based solely on the encoded EEG 
latent vector and conditioning label. As a result, when 
the model generates an image that is incorrectly 
classified, the resulting image exhibits a low SSIM 
score, indicating poor similarity to the ground truth 
(e.g. reconstructed ‘2’ digit by the AC-GAN without 
modulation (see Fig. 9), or reconstructed ‘0’ digit by 

the AC-GAN with modulation and concatenation (see 
Fig. 11)). Paradoxically in some cases, this 
misclassified image may still receive a relatively high 
score, suggesting a potential discrepancy between the 
model's perception of the image and its actual fidelity 
to the ground truth (e.g. reconstructed ‘6; digit by the 
AC-GAN with modulation and multiplication (see 
Fig. 10)). This is because in the current model design 
the predicted class conditioning label has a higher 
influence on the predicted image over the encoded 
latent vector. 

A future extension to our study would be to 
include a reinforcement learning agent applied to the 
class label prediction. This agent would penalize the 
incorrect class label thus reducing its influence on the 
predicted image over the encoded latent vector. 
Which in cases where the classification is incorrect 
the agent would provide unsupervised learning 
adjustments which may help to correct the AC-GAN 
prediction and validity to indicate an uncertain score. 
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APPENDIX 

Supplementary Table 1: EEG encoder/classifier CNN 
design. 

Layer Output 
Shape 

Attributes Parameters

Input (None, 9, 32, 1)   
BatchNormalization (None, 9, 32, 1)  4 

2D Convolution (None, 9, 32, 
128) 

128 filters, 
(9,1), pad 1, 

same 

640 

2D Convolution (None, 9, 32, 
64) 

64 filters, 
(9,1), pad 1, 

same 

73792 

MaxPooling2D (None, 9, 16, 
64) 

(1, 2) 0 

2D Convolution (None, 64, 13, 
40) 

64 filters, (4, 
25), pad 1, 

valid 

57644 

MaxPooling2D (None, 64, 6, 
40) 

(1, 2) 0 

2D Convolution (None, 15, 5, 
128) 

128 filters, 
(50, 2), pad 

1, valid 

512128 

Flatten (None, 9600)  0 
BatchNormalization (None, 9600)  38400 

Dense (None, 512) 512 nodes, 
Relu 

4915712 

Dropout (None, 512) 0.1 0 
Dense (None, 256) 256 nodes, 

Relu 
131328 

Dropout (None, 256) 0.1 0 
Dense (None, 128) 128 nodes, 

Relu 
32896 

Dropout (None, 128) 0.1 0 
BatchNormalization (None, 128)  512 

Dense (None, 10) Softmas, L2 
regularizatio

n 

1290 

Supplementary Table 2: AC-GAN generator network 
model design. 

Layer Output 
Shape Attributes Parameters

Input (class 
label) (None, 1)  0 

Embedding (None, 1, 128)  1280 
Flatten (None, 128)  0 

Input (EEG latent 
space) (None, 128)  0 

Modulation of 
EEG Layer (None, 128)  256 

Multiply (None, 128)  0 

Dense (None, 6272) Nodes 6272, 
Relu 809088 

Reshape (None, 7, 7, 
128)  0 

Batch 
Normalization 

(None, 7, 7, 
128)  512 

UpSample2D (None, 14, 14, 
128) nearest 0 

2D Convolution (None, 14, 14, 
128) 

128, kernel 3, 
stride 1, pad 
same, Relu 

147584 

Batch 
Normalization 

(None, 14, 14, 
128)  512 

UpSample2D (None, 28, 28, 
128) Nearest 0 

2D Convolution (None, 28, 28, 
64) 

64, kernel 3 
stride 1, pad 
same, TanH 

73792 

Batch 
Normalization 

(None, 28, 28, 
64)  256 

2D Convolution (None, 28, 28, 
1) 

1, kernel 3, 
stride 1, pad 
same, Tanh 

577 
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Supplementary Table 3: AC-GAN discriminator network 
model design. 

Layer Output Shape Attributes Parameters
Input (generated 

image) (None, 28, 28, 1)  0 

2D Convolution (None, 14, 14, 
16) 

16, kernel 3, 
stride 2, pad 

same 
160 

LeakyRelu 
activation 

(None, 14, 14, 
16) 0.2 0 

Dropout (None, 14, 14, 
16) 0.25 0 

2D Convolution (None, 7, 7, 32) 
32, kernel 3, 
stride 2, pad 

same 
4640 

ZeroPad (None, 8, 8, 64)  0 
LeakyRelu 
activation (None, 8, 8, 64) 0.2 0 

Dropout (None, 8, 8, 64) 0.25 0 
Batch 

Normalization (None, 8, 8, 64) 0.8 128 

2D Convolution (None, 4, 4, 128) 
64, kernel 3, 
stride 2, pad 

same 
18496 

LeakyRelu 
activation (None, 4, 4, 128) 0.2 0 

Dropout (None, 4, 4, 128) 0.25 0 
Batch 

Normalization (None, 4, 4, 64) 0.8 256 

2D Convolution (None, 4, 4, 128) 
128, kernel 3, 
stride 1, pad 

same 
73856 

LeakyRelu 
activation (None, 4, 4, 128) 0.2 0 

Dropout (None, 4, 4, 128) 0.25 0 
Flatten (None, 2048  0 

Dense (validity 
confidence) (None, 1)  2049 

Dense (class 
prediction) (None, 10)  20490 
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