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Abstract: Unsupervised image segmentation seeks to group semantic patterns in an image without the use of human
annotation. Similarly, image clustering searches for groupings of images based on their semantic content.
Traditionally, both problems have drawn from sound mathematical concepts to produce concrete applications.
With the emergence of deep learning, the scientific community turned its attention to complex neural network-
based solvers that achieved impressive results in those domains but rarely leveraged the advances made by
classical methods. In this work, we propose a patch-based unsupervised image segmentation strategy that
uses the algorithmic strength of classical graph-based methods to enhance unsupervised feature extraction
from deep clustering. We show that a simple convolutional neural network, trained to classify image patches
and iteratively regularized using graph cuts, can be transformed into a state-of-the-art, fully-convolutional,
unsupervised, pixel-level segmenter. Furthermore, we demonstrate that this is the ideal setting for leveraging
the patch-level pairwise features generated by vision transformer models. Our results on real image data
demonstrate the effectiveness of our proposed methodology.

1 INTRODUCTION

Image segmentation has long been one of the main
tasks in computer vision, and it has been widely ap-
plied in general image understanding or as a prepro-
cessing step for other tasks such as object detection. It
aims to correspond each pixel in an image to a class,
in such a way that semantically similar pixels are as-
signed to the same class. This problem finds various
industrial applications such as autonomous driving,
medical image analysis, video surveillance, and vir-
tual reality to name a few (Minaee et al., 2021).

On the supervised front, deep learning approaches
using convolutional (CNN) and fully convolutional
neural networks (FCN) have achieved unprecedented
results in image segmentation, as illustrated by the
UNet (Ronneberger et al., 2015) and DeepLab (Chen
et al., 2017a) models. Recently, however, methods
using transformer-based models, such as Segformer
(Xie et al., 2021), DETR (Carion et al., 2020) and
DINO (Caron et al., 2021), are slowly outperforming
established CNN solutions. This shift prompted a re-
cent interest in deep models that utilize image patches
rather than individual pixels (Tolstikhin et al., 2021;
Han et al., 2022), leading some to believe that patch
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representations are the main source of vision trans-
formers’ success (Trockman and Kolter, 2022).

These accomplishments come, however, at the
cost of long training schemes and the need for vast
amounts of annotated data, which hinder their appli-
cation in many domains where data can be expen-
sive or scarce, such as in biology, or astrophysics (Yu
et al., 2018). Such issues are resolved via the applica-
tion of unsupervised techniques. In this setting, one
aims to create a model that automatically discovers
semantically important visual features that character-
ize the various objects in a scene. Classically, we
approach this problem using variational, statistical,
and graphical methods, exemplified in active contours
(Chan and Vese, 2001), conditional random fields
(Krähenbühl and Koltun, 2011), and graph cuts (Shi
and Malik, 2000; Boykov and Jolly, 2001). Within the
deep learning literature, prominent advances in un-
supervised deep image clustering (Ren et al., 2022)
eventually led to developments in deep image seg-
mentation (Kim et al., 2020; Hamilton et al., 2021;
Lin et al., 2021; Hamilton et al., 2022; Wang et al.,
2022).

In this work, we introduce GraPL, an unsuper-
vised image segmentation technique that draws inspi-
ration from the success of CNNs for imaging tasks,
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the learning strategies of deep clustering methods,
and the regularization power of graph cut algorithms.
Here, we alternate the training of a CNN classifier
on image patches and the minimization of clustering
energy via graph cuts. To the best of our knowl-
edge, this is the first attempt in the deep cluster-
ing and image segmentation literature to make use
of graph cuts to solve a deep learning-based unsu-
pervised task. We show that our zero-shot approach
detects visual segments in an image without onerous
unsupervised training on an entire image dataset, au-
tomatically finds a satisfactory number of image seg-
ments, and easily translates patch-level training to ef-
ficient pixel-level inference. Furthermore, because of
its patch-level structure, it’s able to naturally incorpo-
rate pretrained patch embeddings (Caron et al., 2021;
Oquab et al., 2023), without relying on them for in-
ference. Finally, we show that this simple approach
achieves state-of-the-art results in deep unsupervised
image segmentation, demonstrating the potential of
graph cuts to improve other patch-based deep seg-
mentation algorithms. Specifically, we make the fol-
lowing contributions with our work:

• We introduce GraPL, an unsupervised segmenta-
tion method that learns a fully convolutional seg-
menter directly from the image’s patches, using
an iterative algorithm regularized by graph cuts.

• We show that this framework naturally employs
patch embeddings for pixel-level segmentation
without the need for postprocessing schemes,
such as CRF refining.

• We demonstrate that GraPL can compete with the
state-of-the-art in deep unsupervised segmenta-
tion, despite having just 23k parameters and op-
erating in a zero-shot paradigm.

2 RELATED WORK

2.1 Deep Clustering

With the advancements in deep supervised image
classification techniques, interest in deep architec-
tures to solve unsupervised problems followed natu-
rally.

This pursuit led to the task of partitioning im-
age datasets into clusters using deep representations,
without human supervision, inaugurating the body
of work which is now referred to as “deep cluster-
ing.” The interested reader is referred to (Ren et al.,
2022) for a comprehensive review of the available ap-
proaches to deep clustering.

In GraPL, we treat image patches as individual
images to be clustered as a pretext task to train our
segmenter and efficiently use graph cuts to impose
constraints on the patch clusters. To the best of our
knowledge, our method is the first to use MRF-based
algorithms for clustering CNN-generated visual fea-
tures.

2.2 Deep Unsupervised Image
Segmentation

As deep clustering aims to learn visual features and
groupings without human annotation via deep neu-
ral models, deep unsupervised image segmentation
hopes to use the same models to learn coherent and
meaningful image regions without the use of ground-
truth labels. To do so, many methods explore strate-
gies that resemble those from deep clustering. Cho et
al. (Cho et al., 2021) iteratively employ k-means to
cluster pixel-level features extracted from a network
trained on photometrically and geometrically vary-
ing image views. The work in (Ji et al., 2019) effi-
ciently extends a mutual information-based deep clus-
tering algorithm to the pixel-level by recognizing that
such a process can be achieved via convolution oper-
ations. (Hwang et al., 2019) computes pixel embed-
dings from a metric learning network and segments
each image using a spherical k-means clustering al-
gorithm.

In (Kim et al., 2020), the authors train an FCN
with pseudo-labels generated by the same network in
a prior step. They attain reliable segmentations by
proposing a complex loss function that ensures the
similarity among pixels in shared segments while en-
couraging their spatial continuity and limiting their
total count. Our method, while similarly training an
FCN, works on patches and reinforces spatial conti-
nuity and low segment count via our graph cut ap-
proach. Furthermore, GraPL’s use of graph cuts al-
lows it to incorporate pairwise patch relationships. Fi-
nally, while other patch-based unsupervised solutions
require a segmentation refinement stage after a patch
feature clustering step (Hamilton et al., 2022; Wang
et al., 2022; Wang et al., 2023), we both discover and
instill patch knowledge interactively, without the need
for postprocessing our result.

2.3 Graph Cuts for Image Segmentation

Modeling image generation as a Markov random field
(MRF) has a long history in computer vision, dating
its initial theoretical and algorithmic achievements to
the works of Abel et al (Abend et al., 1965) and Be-
sag (Besag, 1986). Soon enough, MRFs found ap-
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plications in various image processing tasks, such as
edge detection, image denoising, segmentation, and
stereo (Li, 2009). In particular, the works conducted
by Boykov and Jolly (Boykov and Jolly, 2001) and
Boykov et al. (Boykov et al., 2001) demonstrated
that one can apply efficient min st-cut-based algo-
rithms to solve image segmentation by modeling it as
a Maximum a Posteriori (MAP) estimator of an MRF.
Their groundbreaking results made possible the emer-
gence of classical graph-based segmentation method-
ologies such as GrabCut (Rother et al., 2004) and
were, more recently, used to improve the training of
CNN-based segmenters (Marin et al., 2019). CRF
modeling, closely related to MRF, has also played an
important role in refining coarse network predictions
in recent segmentation methods (Zheng et al., 2015;
Chen et al., 2017a; Chen et al., 2017b).

In some ways, our proposed method draws inspi-
ration from the methodologies proposed by Rother et
al. (Rother et al., 2004), and Marin et al. (Marin
et al., 2019). In (Rother et al., 2004), the authors
propose GrabCut, an algorithm that iteratively bound-
optimizes a segmentation energy, requiring the solu-
tion of a min st-cut problem at each iteration to per-
form unsupervised regularized fitting of the image’s
appearance, which is modeled as a Gaussian mixture
model. Our algorithm also uses min st-cut solvers
iteratively, but here we (1) work on patch data, in-
stead of individual pixels, and (2) fit the image ap-
pearance using a CNN classifier. Due to the na-
ture of CNNs, our network can seamlessly translate
the patch-level classifier into a pixel-level image seg-
menter. In (Marin et al., 2019), the authors show how
to perform weakly-supervised CNN segmentation via
an optimizer that alternates between solving an MAP-
MRF problem and gradient computation. In contrast,
our method solves a fully unsupervised segmentation
problem and does not use our MAP solution to adjust
gradient directions.

3 METHODOLOGY

GraPL (Graph Cuts at the Patch Level) is a fully un-
supervised segmentation method that operates in a
single-image paradigm. Using patch clustering as a
pretext task for segmentation, during training it learns
distinctive segment features that enable it to effec-
tively segment the image at the pixel level. Although
other techniques have previously shown patch clus-
tering to be an effective surrogate task (Ji et al., 2019;
Ouali et al., 2020; Wang et al., 2022; Wang et al.,
2023), our method demonstrates that clustering the
patches of a single image provides sufficient feature

learning to accurately segment it. GraPL’s training
is guided by patch-level graph cuts; this intervention
imposes spatial coherence priors, which help learn
clusters that are conducive to segmentation. At infer-
ence, the complexities of the pipeline disappear, leav-
ing only the network. Leveraging a generalization of
CNNs, the trained model is “convolved” over the en-
tire image to produce a pixel-level segmentation.

3.1 Algorithm

Let I : Ω 7→ Rc be an image of c channels with
pixel set Ω = {1, . . . ,n} × {1, . . . ,m}, and S : Ω 7→
{1, . . . ,K} be a segmentation map of I in K regions.
Let P be a set of patches from I, such that all patches
are of the same size, i.e., for each p in P , p : Ωp 7→
Rc,Ωp ⊂ Ω, |Ωp| = const. In practice, we populate
P by selecting all patches on a non-overlapping d×d
grid of I, resulting in patches of shape (w/d,h/d). We
make this choice of P based on two factors: (1) effi-
ciency, as this operation can be efficiently performed
by most deep learning libraries via their unfolding
methods, and (2) simplicity, as it’s one of the simplest
ways to generate equal sized patches that span Ω.

Let Fθ : Ω 7→ [0,1]K×|Ω| be an FCN, and F ′
θ

: Ωp 7→
[0,1]K be a CNN patch classifier. In GraPL, both
networks are parametrized by the same parameters θ.
F ′

θ
is used in our training stage and is applied to the

patches in P , while Fθ is employed in our inference
phase and is our final segmenter. The full algorithm
is shown in Figure 1.

Training Stage. Our goal is to learn θ exclusively
from the data in P and transfer it to Fθ. To do so,
our method trains F ′

θ
by minimizing an energy formu-

lated at the patch level of I. Let S′ : P 7→ {1, . . . ,K}
be a labeling for the patches in P . Following the lit-
erature on MRF modeling (Boykov and Jolly, 2001),
we define the energy of S′ for an unknown θ as:

E(S′,θ|P ) =U(S′,θ|P )+λV (S′|P ), (1)

with λ ≥ 0. The unary term U(·) is traditionally de-
fined as:

U(S′,θ|X) =− ∑
p∈P

K

∑
k=1

1(S′(p) = k)[lnF ′
θ(p)]k, (2)

where 1(·) is the indicator function and [·]k is the k-th
position of a vector. Let α and β be probability distri-
butions in RK , and let H(α,β) =−∑

K
k=1[α]k ln[β]k be

their cross entropy. This means that Eq. 2 can be seen
as the sum of cross entropies H(S′(p),F ′

θ
(p)) between

S′(p), taken as a one-hot probability distribution, and
F ′

θ
(p) over all p ∈ P . The pairwise energy term V (·)
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Figure 1: The proposed algorithm. GraPL trains a convolutional neural network to cluster patches of a single image without
supervision under the guidance of graph cuts, spatial continuity loss, and a patch affinity encoder. At inference, this patch
clustering knowledge is applied to pixel-level segmentation of the image. F ′

θ
and Fθ share the same parameters.

is given by:

V (S′|P ) = ∑
(p,q)∈P×P

1(S′(p) ̸= S′(q))φ(p,q), (3)

with the patch similarity function φ(·) defined as:

φ(p,q) =
1

dist(p,q)
exp

(
−aff(p,q)2

2σ

)
, (4)

where the data affinity function aff(p,q) evaluates the
data similarity between p and q, and dist(p,q) con-
siders the Euclidean distance between the centers of
p and q. We select σ as the standard deviation of
affinities for all p,q ∈ P . To compute patch affini-
ties we make use of a patch encoder, which extracts
an embedding from each patch in P .

Inspired by GrabCut (Rother et al., 2004), GraPL
minimizes E using a block-coordinate descent itera-
tive strategy, where we alternate between optimizing
for θ and S′, keeping the other constant. The current
labeling S′t is updated using the current network pa-
rameters θt−1, now taken as fixed in Eq. 1:

S′t = argmin
S′

E(S′|θt−1,P ). (5)

The above problem can be approximately solved by a
series of minimum st-cut in the form of α-expansion
or αβ-swap moves (Boykov et al., 2001). This step
is can be quickly accomplished due to the efficiency
of such graph cut algorithms and the comparatively
small size of P , which presents a further advantage
to our patch-based framework. We then compute the
updated parameters θt via:

θt = argmin
θ

L(F ′
θ(P ),S′t), (6)

where F ′
θ
(P ) = {F ′

θ
(p)}p∈P . We employ traditional

gradient descent-based backpropagation to solve the
above problem. The loss L(·), is designed to predict
the outputs of F ′

θ
on each patch using the labels from

S′t . Keeping S′t fixed, Eq. 2 conveniently formulates
that process as a sum of cross entropy losses, just as
one would naturally devise in a supervised segmenta-
tion learning scheme. We then follow Kim et al. (Kim
et al., 2020) and include a patch-level continuity loss
C(θ):

C(θ) = ∑
p∈P

∑
q∈Np

|F ′
θ(p)−F ′

θ(q)|, (7)

where |·| is the L1 norm and Np is the set of patches
immediately neighboring p in Ω space. In the general
case, one can employ a k-nearest neighbors graph of
the elements in P , considering the Euclidean distance
between patch centers. For the d × d grid from Eq.
1, we choose Np to be given by the patches immedi-
ately above and to the left of p, resembling what is
done in (Kim et al., 2020). This continuity loss brings
spatial coherence outside the graph step and encour-
ages smooth boundaries on the network outputs. In
practice, we found it to be beneficial to have both the
graph step and C(θ) in our method. Our final loss is
then defined as:

L(F ′
θ(P ),S′t−1)=∑

p∈P
H(S′t−1(p),F ′

θ(p))+µC(θ), (8)

where µ ≥ 0. As a consequence of the use of both
graph cuts and the continuity loss described above,
GraPL naturally suppresses extraneous labels aris-
ing from irrelevant patterns or textures, automatically
promoting model selection. As the alternation con-
tinues, F ′

θ
improves to the point where it no longer
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requires the guidance of the graph cuts to produce
spatially and semantically coherent patch clusters. At
that point, we end our training phase.

Inference Stage. Once F ′
θ

is trained, our next goal
is to classify all possible patches in I of shape equal to
the patches in P . To that end, we first assume that, as
a CNN, F ′

θ
is composed of an initial series of convo-

lutional layers and a final stage of say Q dense layers,
along with a softmax function at the end. Assume that
the inputs of all layers are unpadded, and that each
dense layer has sq units leading to a final output of
size K. Now, one can replace each dense layer in F ′

θ

with a convolutional one of kernel size √sq and retain
its exact functionality. Our resulting FCN, Fθ, is now
capable of efficiently being applied to I, by effectively
“convolving” it with patch classifier F ′

θ
.

3.2 Advantages of Using Graph Cut

In the absence of labels, GraPL learns to cluster
patches via an iterative procedure. This general for-
mulation allows us to inject knowledge about the
domain by designing an apt method for selecting
pseudo-labels. While similar methods use k-means
(Caron et al., 2018), mixture models (Hwang et al.,
2019), or simply argmax (Kim et al., 2020) to trans-
form network outputs into new pseudo-labels, GraPL
uses these response vectors to define the unary energy
of a patch-level MRF graph of the image.

This approach for patch clustering introduces
some advantages to our method. First, while the MRF
modeling step is done primarily to impose a spatial
coherence prior, due to the known shrinking bias of
graph cuts (Kolmogorov and Boykov, 2005), the re-
sultant partition also smooths segment boundaries and
reduces the number of distinct segments, leading to
natural model selection. The spatial regularization in-
troduced by the proposed graph can also be general-
ized to accommodate other classical graph formula-
tions that consider segmentation seeds (Boykov et al.,
2001), appearance disparity (Tang et al., 2013), cur-
vature (El-Zehiry and Grady, 2010), or target distri-
butions (Ayed et al., 2010). Finally, in contrast to
methods that discover objects by clustering patch em-
beddings arising from pretrained transformers and ap-
plying a segmentation head (Hamilton et al., 2022)
or CRF refinement (Wang et al., 2022; Wang et al.,
2023), GraPL considers patch embeddings only as
way to guide its training stage, yielding a final pixel-
level segmentation map without postprocessing. We
consider our graph cut-based approach to handle rich
patch features beneficial, as we do not overly depend
on their clustering power, and simply reference them
as guidance when regularizing our training.

4 EXPERIMENTS

4.1 Experimental Setup

Segmentation Task. To evaluate the behaviors of
GraPL (Section 4.2), the algorithm was tasked with
segmenting the 200-image test set of BSDS500 (Ar-
belaez et al., 2011) using a variety of hyperparame-
ters. Segmentation performance is measured in terms
of weighted mean intersection over union (mIoU)
(Garcia-Garcia et al., 2017), with predicted segments
matched one-to-one with target segments using a ver-
sion of the Hungarian algorithm modified to accom-
modate K̂ ̸= K∗, where K̂ is the number of dis-
tinct segments in the final segmentation, and K∗ is
the number of segments in the ground truth. Re-
sults are averaged across 10 different random seeds
for initialization. In addition to BSDS500, we com-
pare GraPL to competing methods using COCO-stuff
(Caesar et al., 2018), as configured in (Ji et al., 2019),
presenting the standard macro averaged mIoU of each
model.

Hyperparameters. Unless otherwise specified, the
following configuration was used during testing.
Pseudo-labels were initialized according to the SLIC-
based (Achanta et al., 2012) algorithm described in
Paragraph 4.2. GraPL was run for four training iter-
ations, and the number of gradient steps in the loss
minimization at each iteration was 40, 32, 22, and
12 respectively. K0, the number of initial segments
was set at 14, and d was set to 32. Graph cuts were
implemented using pyGCO (Li and Borovec, 2023),
and the pairwise energy coefficient, λ, was set to 64.
The continuity loss was assigned a weight of µ = 3.
The L2 norm between DINOv2 (Oquab et al., 2023)
(ViT-L/14 distilled) patch embeddings was used as an
affinity metric to determine pairwise weights.

Network Architecture. An intentionally minimal
CNN architecture was used, consisting of 2 3×3 un-
padded convolutional layers with 32 and 8 filters, re-
spectively. In F ′

θ
, this is followed by a dense classi-

fication head with K0 units, and in Fθ it is followed
by a ( h

d − 4)× (w
d − 4) convolutional segmentation

head with K0 filters. The network layers are each
separated by batch normalization, tanh activations,
and dropout with a rate of 0.2. Without padding,
our network is subject to certain regularization im-
plications. In CNNs, the use of zero padding has
the effect of dropping out some of the weights of the
subsequent convolutional layer. As our method re-
quires the training phase to be executed on unpadded

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

106



images, it is effectively deprived of this regulariza-
tion feature. We found that applying dropout be-
fore the first convolutional layer all but resolved is-
sues arising from the network’s lack of padding. De-
spite its simplicity, this network is complex enough
to achieve reliable segmentations, and more complex
networks did not lead to better performance. In our
work, we also abstain from using padding on our in-
ference phase, which results in Ŝ = Fθ(I) being of a
size smaller than Ω, due to the convolution operations
in Fθ. GraPL handles this discrepancy by interpolat-
ing Ŝ to the original dimensions via nearest neighbor
interpolation. Networks were implemented using Py-
Torch 2.0.1 (Paszke et al., 2019) and ran on a Nvidia
A100 GPU.

Early Stopping. If a cross-entropy loss of less than
1.0 was reached during the first iteration, it was
stopped early, and new pseudo-labels were assigned.
During the first iteration, we are fitting the initial
pseudo-labels, which are either arbitrary or assigned
by SLIC. By imposing this early stopping condition,
we are avoiding the local minima where GraPL may
be overfitting to a less performant (or worse, arbi-
trary) segmentation.

4.2 Ablation Studies

Initialization. As an iterative algorithm, proper ini-
tialization is an important factor in training GraPL.
Although similar deep clustering algorithms have
used randomly initialized pseudo-labels (Caron et al.,
2018; Kim et al., 2020), we were unsure whether ig-
noring more principled approaches was leaving per-
formance on the table. To answer this question,
we compared four initialization strategies: “patch-
wise random,” “seedwise random,” “spatial cluster-
ing,” and an approach based on SLIC (Achanta et al.,
2012). The “patchwise random” approach individu-
ally assigns each patch p in P a random label. In
the “seedwise random” strategy, we select K0 random
patches and assign them each one of the K0 labels; the
remaining patches are assigned the label of the patch
closest to them. For “spatial clustering,” patches are
clustered using k-means according to their (x,y) spa-
tial coordinates to form K0 clusters of roughly equal
size. In the SLIC-based approach, we unfold a K0
cluster SLIC segmentation with low compactness into
the same patches as the input image. The onehot la-
bels of these patches are averaged and normalized to
produce soft labels. These soft initializations are an
attempt to regularize and retain all salient features of
the patch during training.

Tests demonstrated that patchwise random initial-

ization is not an ideal choice for GraPL (Table 1).
This is likely because it encourages a disregard for
spatial coherence during the first and most important
iteration. While SLIC was shown to be the best choice
out of the methods tested, seedwise random and spa-
tial clustering initialization performed only 1.0% and
0.6% worse, respectively, and the algorithm could
likely be tuned such that they meet or exceed the per-
formance of SLIC. However, in the current configura-
tion, we notice a tendency for both of these methods
to result in undersegmentation, in which ∆K =K0−K̂
is considerably higher than the SLIC version (Figure
2).

Pairwise Edge Weights. The pairwise energy func-
tion (Eq. 4) used by GraPL includes an affinity func-
tion aff(p,q). Designed with vision transformers in
mind, this function is defined by the Euclidean dis-
tance between some patch metric or embedding m(p)
for p ∈ P .

Though DINOv2 (Oquab et al., 2023) has been
shown to produce excellent, fully unsupervised fea-
tures on the patch level, requiring minimal super-
vised fine-tuning to produce an effective segmenta-
tion model (Oquab et al., 2023). However, it’s un-
clear whether the features are easily separable using
unsupervised methods.

We examined the applicability of three definitions
for m(p): DINOv2 embedding, mean RGB color, and
patch position. To produce the final DINO embed-
dings, images were resized to 14d × 14d, such that
each GraPL patch corresponds to a 14 × 14 DINO
patch. These embeddings were reduced to K0 dimen-
sions using 2nd-degree polynomial PCA. As a base-
line, we also tested a version where the fully con-
nected graph was replaced with a 4-neighborhood lat-
tice of uniformly weighted edges.

In our tests, DINOv2 embeddings were a signif-
icantly better metric than distance alone (Table 2).
However, they were outperformed by simple RGB
color vectors. Acknowledging DINOv2’s ability to
act as a feature extractor for supervised segmentation,
further research is needed to determine what types of
transformations are necessary for converting the em-

(a) (b) (c) (d) (e)
Figure 2: Example of undersegmentation from non-SLIC
initialization. (a) Input image. (b) Patchwise Random (K̂ =
2). (c) Seedwise Random (K̂ = 4). (d) Spatial Clustering
(K̂ = 4). (e) SLIC (K̂ = 6).
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Table 1: Comparison of pseudo-label initialization meth-
ods.

Initializer mIoU

Patchwise Rand. 0.496
Seedwise Rand. 0.507
Spatial 0.509
SLIC 0.512

Table 2: Comparison of pairwise weighting metrics.

Metric mIoU

Uniform 0.459
Position 0.476
Color 0.527
DINOv2 0.512

beddings into a better affinity metric.

Warm Start. GraPL is designed to train the same
network continuously throughout all iterations. This
is in contrast to similar iterative methods which pre-
fer a “cold start,” re-initializing the parameters of the
surrogate function before subsequent iterations. Pre-
liminary tests showed that in our case, a “warm start”
approach is preferred to re-initializing the network
each time. These two approaches produce very differ-
ent loss curves (Figure 3). Cold starts produce large
spikes in loss at the beginning of each training itera-
tion, whereas warm starts require only minor adjust-
ments at these points. We expect that the first iter-
ations of training provide important feature learning
to the first layers of the network. By starting cold
at each iteration, subsequent iterations are unable to
benefit from the learned low-level feature detectors
and therefore present a more unstable training phase.

Pairwise Energy Coefficient (λ). GraPL uses
graph cuts to generate each new set of pseudo-labels,
working on the theory that this graphical representa-
tion of the image provides an important spatial co-
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Figure 3: Comparison of loss curves using warm and cold
starting methods, averaged over all test images in BSDS500
(Arbelaez et al., 2011). Here we consider the loss value at
the end of each gradient step. On the x-axis, we depict the
instants where a new training iteration starts.
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Figure 4: Effects of pairwise energy coefficient. (a) Effect
of λ on mIoU. (b) Effect of λ on ∆K.

herence prior, which is perhaps missing from similar
unsupervised methods and accounts for its success.
Furthermore, GraPL relies on pairwise costs as well
as the continuity loss to gradually decrease K̂. To
test these ideas, we evaluated the segmentation per-
formance of the algorithm as well as ∆K across dif-
ferent values of λ, the hyperparameter that defines the
scale of the pairwise energy as defined in Eq. 4.

When λ = 0, cutting any non-terminal edge incurs
no cost. In this case, the function of the cut is effec-
tively the same as the argmax clustering step found in
(Kim et al., 2020), as pseudo-labels are entirely de-
pendent on the current network response vectors. As
λ increases, network response vectors are made less
influential in the pseudo-label assignment process, as
expected.

The results in Figure 4 demonstrate a logarithmic
increase in segmentation performance as λ is raised
from 0 through 64. However, increasing λ to values
higher than 64 tends to result in comparatively poor
performance. Because increasing λ strengthens pair-
wise connections, we would expect it to be closely
correlated with ∆K. When λ ≤ 64, we observe this
behavior; however, higher values result in a plateau
or slight decrease in ∆K.

In a configuration where the pairwise edges were
uniformly weighted (or weighted according to spatial
distance), we would expect higher than optimal values
of λ to push ∆K too high and produce oversimplified
segmentations, where multiple target segments are
collapsed into a single predicted segment. However,
when pairwise edges are weighted by patch encoder
embedding affinity, pushing λ too high can instead re-
sult in an overly detailed segmentation, in which the
graph cut considers the pairwise energy (dictated by
the patch embeddings) more than the unary weights
learned by GraPL.

Continuity Loss. Spatial continuity loss, first intro-
duced in (Kim et al., 2020), provides GraPL a spatial
coherence prior which penalizes the network directly
at each gradient step, rather than through the graph
cut produced pseudo-labels at the end of each itera-
tion. Though shown effective in (Kim et al., 2020),
we instinctively believed that it would be redundant
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Figure 5: Effect of spatial continuity loss weight on mIoU.

in a graphically guided pipeline like GraPL. However,
we observed that the combination of the two different
spatial coherence priors produced more accurate seg-
mentations than either one alone (Figure 5).

In practice, we noted that this loss has a differ-
ent mechanism of action than the graphical coherence
prior. In the absence of this spatial loss, GraPL em-
ploys a level of trust in the patch encoder that may be
unfounded, as the pairwise energy only penalizes the
separation of patches with a great affinity; but when
using a patch encoder like DINO, which is defined
by a large neural network, the edge weights may be
high variance. In this case, increasing λ only serves to
emphasize the patch encoder’s bias for certain edges.
However, increasing the weight of the spatial conti-
nuity loss applies a higher penalty for all edges. In
effect, it could be compared to an additive bias term
in the pairwise energy function that raises the cost, no
matter the patch affinity.

Patch Size. Patch-based approaches are faced with
a choice between granularity (with smaller patches)
and the information richness of input (with larger
patches). In GraPL’s case, smaller patches also en-
tail more complex graphs that take longer to solve,
and larger patches entail higher memory usage. We
found that setting d equal to 32 offered both optimal
performance and near-optimal efficiency (Table 3).

4.3 Comparison to Other Methods

We compare the segmentation performance of GraPL
on BSDS500 to four other unsupervised deep-
learning methods: Differentiable Feature Clustering
(DFC) (Kim et al., 2020), DoubleDIP (Gandelsman

Table 3: mIoU and segmentation time as a function of patch
size. Time measurements are based on segmentation of
BSDS500 test set.

d mIoU Seconds per Image

8 0.248 3.49
16 0.372 1.72
32 0.512 1.75
64 0.496 6.98

Table 4: Quantitative comparisons to other unsupervised
deep-learning methods and baselines. † denotes the use of
pretrained DINO ViT.

(a) Performance on BSDS500

Method mIoU pAcc

SLIC (RGB features) 0.137 0.416
SLIC (DINOv2 features) 0.258 0.280
W-Net (Xia and Kulis, 2017) 0.428 0.531
DoubleDIP (Gandelsman et al.,
2019)

0.356 0.423

IIC (Ji et al., 2019) 0.172 -
DFC (Kim et al., 2020) 0.398 0.505
GraPL (proposed) 0.527 0.569

(b) Performance on COCO-stuff.

Method mIoU pAcc

IIC (Ji et al., 2019) 0.067 0.218
PiCIE (Cho et al., 2021) 0.144 0.500
TransFGU†(Zhaoyun et al., 2022) 0.175 0.527
SegDiscover (Huang et al., 2022) 0.143 0.401
STEGO†(Hamilton et al., 2022) 0.282 0.569
ACSeg†(Li et al., 2023) 0.164 -
GraPL (proposed) 0.179 0.613

et al., 2019), Invariant Information Clustering (IIC)
(Ji et al., 2019), and W-Net (Xia and Kulis, 2017).
We also tested two baselines that use SLIC to seg-
ment images based on RGB and DINOv2 (Oquab
et al., 2023) patch embeddings (interpolated to the
pixel level). These baselines were selected to demon-
strate that the success of our method does not sim-
ply originate from its initialization or its pretrained
guidance. We also compare GraPL to five popular
methods on COCO-stuff (Caesar et al., 2018): IIC,
PiCIE (Cho et al., 2021), TransFGU (Zhaoyun et al.,
2022), SegDiscover (Huang et al., 2022), and ACSeg
(Li et al., 2023).

Table 4 summarizes the quantitative comparative
results of the above methods, where segmentation
performance was measured in terms of both mIoU and
pixel accuracy (pAcc) (Garcia-Garcia et al., 2017).
As with mIoU, pixel accuracy was computed using a
one-to-one label matching strategy. Figure 6 displays
some segmentation results from the above methods
for qualitative comparison.

Compared to the other unsupervised methods
tested on BSDS500, GraPL decomposes complex
foregrounds into detailed yet semantically salient
components. Notice how GraPL can pick up on small
details like sunglasses in the distance while ignoring
less relevant features of the image, such as creases
in clothing. In many cases, it can handle color gra-
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Figure 6: Qualitative comparison of GraPL to other deep learning-based unsupervised segmentation methods. We selected
two of the available ground truth segmentations (GT1 and GT2) for comparison, one more detailed and one less detailed.

dient variation, usually present in sky backgrounds
or shadow regions. On occasion, GraPL detects seg-
ments that are not present in the ground truth, such as
the bird heads on the last qualitative example, which,
despite being reasonable, decreases its quantitative
performance. Finally, it also struggles to detect fine
structures, such as castle tops, small holes, and bird
beaks. Despite that, our proposed method outper-
forms all of the compared methods by at least 7.2% in
accuracy and 23.1% mIoU on BSDS500 (Table 4a). It
is also worth noting the low performance of our base-
lines when compared to GraPL. This demonstrates
that our method does not merely rest on the success
of our initializer, SLIC. Instead, GraPL’s success is a
product of its training and inference methodology.

While GraPL falls short of first place mIoU on
COCO-stuff (Table 4b), it bears repeating that: (1) its
default configuration has just 23k parameters, making
it 200 times smaller than the next smallest competi-
tor (IIC); (2) it does not require any pretraining, while
STEGO, ACSeg, and TransFGU use DINO initializa-
tion; and (3) it operates in a zero-shot paradigm, while
all competing methods require a full training dataset.
In spite of its remarkably low complexity, it scores
second in mIoU (or first excluding DINO-based mod-
els) and is 7.7% more accurate than its closest com-

petitor. On the other hand, GraPL leads the pixel ac-
curacy (pAcc) performance on both datasets.

5 CONCLUSION

In this paper, we introduce GraPL, a deep learning-
based unsupervised segmentation framework that
learns a pixel-level classifier by solving a patch clus-
tering surrogate task. GraPL is the first deep learning
method to employ a graph cut regularizer during train-
ing, encouraging spatial coherence and leveraging the
discriminative power of patch embeddings. Further-
more, it seamlessly translates patch-level learning to
the pixel-level without the need for postprocessing.
Our experiments reveal the promising capabilities of
our algorithm, as it can outperform many state-of-the-
art unsupervised segmentation methods, despite oper-
ating in a zero-shot paradigm and being several orders
of magnitude less complex than its closest competitor.
As such, GraPL constitutes a remarkably strong base-
line for unsupervised segmentation. Our work can be
seen as further evidence of the benefit of using graph
cuts in deep learning, especially in the context of un-
supervised segmentation.
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