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Abstract: A continuous multi-frequency impedance spectroscopy sensor, capable of measuring 16 frequencies, was 
developed to investigate electrodermal activity. Data was collected from a healthy volunteer over a 30-minute 
resting period, minimizing interference from the autonomic nervous system. The resulting data were 
processed with a custom Python algorithm utilizing the ImpedanceFitter library, enabling comparison across 
models incorporating one, two, and three Cole behaviours. A significant enhancement in accuracy was 
achieved with the two Cole behaviours over the single Cole behaviour approach, while no additional 
improvement was observed with a third Cole behaviour. These findings suggest that the two Cole behaviours 
model provides optimal performance in capturing the complexity of electrodermal activity. Future research 
will extend this analysis to a larger cohort, exploring how variations in protocol, electrode type, and stimulus 
may refine the modelling and interpretation of bioimpedance data. 

1 INTRODUCTION 

Electrodermal activity (EDA) is a physiological 
function regulated by the autonomic nervous system 
and is specifically related to signals arising from the 
activity of sweat glands (Sharkey & Pittman, 1996; 
Tremblay, 2005). When the autonomic system is 
activated, it stimulates the sweat glands, which are 
particularly concentrated in the palmar (hands) and 
plantar (feet) areas (Matsunaga et al., 1998). This 
activation leads to increased sweat production within 
the excretory ducts of the glands (Figure 1), resulting 
in a greater amount of sweat on the surface of the skin 
(Goldsmith, 1991). The increase in sweat levels 
enhances skin conductivity, providing measurable 
data associated with electrodermal activity   
This measurement provides valuable information 
relevant to psychological state, including conditions 
such as stress and cognitive load, or 
psychopathologies such as schizophrenia (Edelberg, 
1972). Electrodermal activity is typically measured 
by placing two electrodes on the palmar or plantar 
areas, specifically on the distal or middle phalanx or 
the thenar eminence (Tronstad et al., 2010). A low-
intensity, fixed- or zero-frequency alternating or 
continuous current is passed through the electrodes, 

with the resulting signal corresponding to skin 
conductivity. This process is known as exosomatic 
recoding of electrodermal activity (Fowles et al., 
1981) . 

 
Figure 1: Diagram of skin structure. 

A sensor employing impedance spectroscopy 
in continuous, multi-frequency mode has been 
developed and validated to comprehensively model 
skin properties. The device is capable of measuring 8 
spectra per second across 16 simultaneous 
frequencies (f = [12, 28, 32, 36, 44, 68, 84, 108, 136, 
196, 256, 342, 400, 484, 576, 724] Hz) continuously. 
The primary objective is to analyse the data collected 
by the sensor to enable more accurate model of skin 
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properties. This approach is based on the assumption 
that it is possible to differentiate between the various 
signals present in the data, such as the electrode-skin 
interface, tissues and sweat channels. This makes it 
possible to model electrodermal activity more 
accurately and faithfully. The signals obtained are in 
the form of circle, consistent with the classical Cole 
diagram observed in bioimpedance. Building on this 
observation and supporting by the literature, 
modelling incorporating one, two or even three Cole 
behaviours could refine the analysis (Freeborn et al., 
2014). Such a method would facilitate better 
discrimination between the different components of 
the signals, thereby optimising the accuracy and 
fidelity of the modelling. 

2 MATERIALS AND METHODS 

Data were collected from a volunteer participant in 
the laboratory. The sensor was positioned on the wrist 
of the subject's non-dominant hand, while two 
medium-sized (2.18 x 3.18 mm²) Softrace CONMED 
electrodes were placed on the distal phalanges of the 
same hand (Tronstad et al., 2010). The electrodes 
were connected to the sensor using wires and held in 
place with adhesive plasters to minimise the 
electrode-skin interface and ensure optimal contact 
(Figure 2). No electrode adaptation phase was 
performed before recording commenced. The subject 
was invited to lie on a mattress and relax with his eyes 
closed for approximately 30 minutes. At the end of 
the protocol, the data were retrieved in the form of 
CSV files containing temporal information, as well as 
the real and imaginary parts for the 16 frequencies. 

 
Figure 2 : Sensor and positioning of electrodes on the hand. 

2.1 Cole Model 

The curves were fitted using the Cole model, which 
is widely employed in the field of bioimpedance 
when a Cole diagram is observed. This model is based 

on an electrical circuit a series resistor (𝑅௦), followed 
by a parallel combination of a resistor (𝑅 ) and a 
constant phase element (𝑍ா) (Figure 3). It can be 
used to model various structures, such as tissue, the 
electrode-skin interface, and sweat ducts.  

 
Figure 3: Cole Model. 

Cole's diagram provides key parameters, 
including 𝑅௦  (resistance at high frequency), 𝑅 
(resistance at low frequency), 𝜏 (time constant), and 𝛼 (dispersion factor, which describe how the circle is 
depressed below the y-axis) (Figure 4). 

 
Figure 4: Cole diagram with all Cole parameters. 

The aim was to accurately model this system to 
extract relevant observations. To refine this 
modelling, the data were analysed by applying one, 
two or three Cole behaviours to assess their impact 
and relevance. 

The Modelling was carried out using the Python 
programming language, in conjunction with the 
ImpedanceFitter library, which allows data to be 
fitted using models based on one or more of Cole's 
behaviours. The first spectrum is initialized and fitted 
using manual values. For all subsequent spectra, the 
fit is performed automatically, taking the best fit of 
the previous spectrum as the initial value. This 
approach is based on the assumption that the variation 
between successive spectra remains small, allowing 
very close-fitting results to be obtained. The sensor, 
as mentioned previously, collects 8 spectra per 
second, generating several tens of thousands of data 
points over the 30-minute protocol. An automatic 
algorithm was developed in conjunction with 
ImpedanceFitter, enabling the analysis of this vast 
amount of data in just a few minutes. This algorithm 
proved to be time saving comparing with manual 
extraction from a commercial software such as Zview 
(Scribner). 
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3 RESULTS 

A total of 14,000 spectra were acquired as part of the 
30-minute protocol. All the spectra were analysed 
using one, two or three Cole behaviours. The graphs 
showing the acquired data and the best fit represent 
just one arbitrary spectrum from the entire signal. In 
addition, the error plots show the average of the 
fitting error over the whole signal for the 16 
frequencies. 

3.1 One Cole Model 

 
Figure 5: Cole Model – 1 Cole behaviour. 

Comparing the curve measured by the sensor with the 
adjustment made using a single Cole model (Figure 
5) for a spectrum, there is a noticeable shift between 
the real part and the imaginary part at each frequency 
(Figure 6). This shift results in a relatively high error 
rate over the entire signal, particularly at high 
frequencies, ranging from 1% to 30% depending on 
the frequency (Figure 7). These results suggest the 
possible presence of additional electrophysiological 
behaviour in the signals, which justifies the 
introduction of a second Cole model to improve the 
fit. 

 
Figure 6: Example of a Nyquist plot of an impedance 
spectrum acquired (Sensor data) together with the result of 
a single Cole model fitting. 

 

 
Figure 7: Average error plot the for 1 Cole behaviours over 
the entire signal.  

During the execution of the algorithm, the Cole 
parameters (𝑅, 𝑅௦, 𝜏 and 𝛼) were estimated. It was 
observed that 𝑅௦ tended towards 0, a consequence of 
the limitations of the software, which prevents 
negative values for 𝑅௦ from being obtained, as these 
are biologically impossible (Table 1). Although this 
constraint is justifiable, it may nonetheless limit the 
accuracy of the data fit and necessitate improvements 
to better reflect actual biophysical properties. 

Table 1: Cole parameters for one Cole behaviour. 

 Cole Parameters 𝑹𝒔 2.37e-24 Ω 𝑹𝒑𝟏 286393 Ω 𝜶𝟏 0.79 𝝉𝟏 10.2 ms 

3.2 Two Cole Model 

 
Figure 8: Cole Model – 2 Cole behaviours. 

For the same spectrum, the data was then processed 
using two Cole behaviours (Figure 8). The measured 
impedance curve, initial values and fit are shown in 
the graph below (Figure 9). A significant 
improvement was observed at all frequencies, with a 
significant reduction in the errors for both the real and 
imaginary parts. This improvement is further 
confirmed by the error plot over the whole signal, 
where the errors approach 0% at low frequencies and 
14% at high frequencies, which is halved compared 
to the fit with a single Cole's behaviour (Figure 10).  

Evaluating Time-Constant Models in Electrodermal Activity Using Continuous Multi-Frequency Impedance Spectroscopy

159



 
Figure 9: Example of a Nyquist plot of an impedance 
spectrum acquired (Sensor data) together with the result of 
a double Cole model fitting. 

 
Figure 10: Average error plot the for 2-time constants over 
the entire signal.  

The Cole parameters obtained with two constants 
showed positive 𝑅௦  values, consistent with the 
expected physiological properties, demonstrating the 
effectiveness of this approach (Table 2). 

Table 2: Cole parameters for two Cole behaviours. 

 Cole Parameters 𝑹𝒔 2137 Ω 𝑹𝒑𝟏 117078 Ω 𝜶𝟏 0.88 𝝉𝟏 42.7 ms 𝑹𝒑𝟐 190348 Ω 𝜶𝟐 0.87 𝝉𝟐 23 s 

 

 

 

3.3 Three Cole Model 

 
Figure 11: Cole model – 3 Cole behaviours. 

Finally, an analysis using three Cole behaviours was 
performed (Figure 11). However, no significant 
improvement over the two-constant model was 
observed (Figure 11). The error rate did not decrease 
further at low frequencies but increased considerably 
at high frequencies compared at the 2-time constants 
(Figure 12). Although the adjustment was always 
more effective than that obtained with a single time 
constant (Table 3).  

 
Figure 12: Example of a Nyquist plot of an impedance 
spectrum acquired (Sensor data) together with the result of 
a triple Cole model fitting. 

 
Figure 13: Average error plot the for 3 Cole behaviours over 
the entire signal. 

 
 
 

BIODEVICES 2025 - 18th International Conference on Biomedical Electronics and Devices

160



Table 3: Cole parameters for three Cole behaviours. 

 Cole Parameters 𝑹𝒔 1158 Ω 𝑹𝒑𝟏 134181 Ω 𝜶𝟏 0.86 𝝉𝟏 5 ms 𝑹𝒑𝟐 1349 Ω 𝜶𝟐 0.79 𝝉𝟐 15.5 ms 𝑹𝒑𝟑 183733 Ω 𝜶𝟑 0.82 𝝉𝟑 28.3 ms 

4 DISCUSSION  

The results obtained confirmed the effectiveness of 
using two Cole behaviours to accurately model skin 
conductivity assessed on palms, as performed in the 
frame of electrodermal activity analysis. When the fit 
was based on a single Cole behaviour, a significant 
error rate was observed, particularly at high 
frequencies, where the differences between the real 
and imaginary parts were pronounced. This 
observation suggests that the underlying phenomena, 
especially at the electrode-skin interface, cannot be 
fully captured with a single Cole behaviour. These 
results align with the literature, which indicates that 
heterogeneous biological systems do not conform to 
a single Cole model (Lazović et al., 2014). The 
addition of a second Cole behaviour significantly 
improved the accuracy of the fit, with a marked 
reduction in the error rate across all frequencies. In 
particular, the 𝑅𝑠 values, which were close to 0 in the 
one Cole model due to software constraints, showed 
a better alignment with physiological realities in the 
two Cole model. However, a persistent higher error 
superior at 4% for the high frequency indicates a 
potential limitation of the device at high frequency. 
This could be due to interference or hardware 
artefacts, necessitating further investigation to 
optimise the device’s accuracy at these frequencies. 
The application of a model with three Cole 
behaviours showed no significant improvement over 
the model with two Cole behaviours. This suggests 
that the use of two Cole behaviour is sufficient to 
capture the majority of information related to 
electrodermal activity in this context. However, it 
remains possible that increasing the precision of the 
device or exploring more complex experimental 
contexts could reveal additional electrophysiological 
phenomena with a three Cole model.  

Compared with conventional methods of 
analysing electrodermal activity, which are limited to 
the use of a fixed or zero frequency, multi-frequency 
spectroscopy, combined with dual Cole behaviour 
modelling, offers a superior capability in analysing 
skin conductivity. The multi-frequency approach 
enhances resolution and enables a more accurate 
analysis of the different electrophysiological 
components. In the future, it will be investigated if the 
use of dual  Cole behaviour modelling could not only 
improve the accuracy of skin conductivity modelling 
in the frame of electrodermal activity analysis, but 
also provide a better understanding of the underlying 
physical and physiological mechanisms. By varying 
the electrodermal stimuli, the duration of the protocol, 
the subjects studied, or the size and type of electrodes, 
this approach could provide a more comprehensive 
view of the system's behaviour. It will be studied if 
these variations could reveal additional information 
and refine the interpretation of the electrodermal 
responses. 

5 CONCLUSION 

A sensor using continuous multifrequency 
spectroscopy was designed and validated, enabling 
more accurate modelling of skin conductivity on 
palms. Data analysis, based on the assumption of a 
Cole diagram, was conducted using a Python 
algorithm built on the ImpedanceFitter library, with 
fits to one, two and three Cole behaviours. The results 
demonstrated a significant improvement with two 
Cole behaviours compared with one, while adding a 
third behaviours yielded no additional benefit. For 
future work, the aim will be to collect and analyse 
new data from different subjects, modifying the 
protocol to include more stimuli, varying the type or 
size of electrodes, or adjusting the duration of the 
protocol, to further refine the modelling of 
electrodermal activity. 
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