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Abstract: Speaker anonymization is the practice of concealing a speaker’s identity and is commonly used for privacy
protection in voice biometrics. As proposed by the Voice Privacy Challenge (VPC), Automatic Speaker Veri-
fication (ASV) currently represents the de facto standard for privacy evaluation; it includes extracting speaker
embeddings from speech samples, which are compared with a trained PLDA back-end model. We implement
this ASV system to systematically explore the influence of two factors on the ASV performance: a) the amount
of speakers to be evaluated, and b) the amount of utterances per speaker to be compared. The experimentation
encompasses the privacy evaluation of the StarGANv2-VC and the kNN-VC on the LibriSpeech dataset. The
experimental results indicate that the validity and reliability of privacy scores inherently depend on the evalu-
ation dataset. It is, furthermore, demonstrated that limiting the number of speakers and utterances per speaker
can reduce the evaluation time by 99%, while maintaining the reliability of the scores at a comparative level.

1 INTRODUCTION

Speaker anonymization refers to the task of eliminat-
ing any distinguishable features from speech record-
ings that could be used to reveal the original speaker’s
identity (Tomashenko et al., 2022). This process usu-
ally involves transforming the voice of the original
(source) speaker into that of another, commonly ar-
bitrary, target speaker (Mohammadi and Kain, 2017).
The goal of speaker anonymization is to protect the
speaker’s privacy to the greatest possible extent, while
preserving all linguistic and para-linguistic content of
the speech signal (Tomashenko et al., 2022).

Due to the inherent sensitivity of speech data, the
continuous advances in voice biometrics have raised
several public concerns regarding privacy, thereby
highlighting the demand for effective privacy pro-
tection technologies. The recent legislation changes
by the European data protection regulation (GDPR)
lead to a drastically increased interest in privacy pro-
tection within the speech community, most signif-
icantly with the introduction of the Voice Privacy
Challenge (VPC), which proactively aims at evaluat-
ing research and encouraging further advancements
on privacy preservation solutions.

The VPC has spearheaded initiatives to design an
evaluation framework for speaker anonymization, by
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measuring effectiveness in concealing the speaker’s
voice identity, while maintaining intelligibility. It
measures privacy by assuming an attack scenario,
where the attacker has access to one or more ’public’
anonymized trial utterances and several enrollment
utterances of a speaker (Tomashenko et al., 2022).
Evaluation is performed with an Automatic Speaker
Verification (ASV) system that extracts speaker em-
beddings and then analyzes them through a Proba-
bilistic Linear Discriminant Analysis (PLDA) algo-
rithm (Ioffe, 2006).

Anonymization models are assessed by measur-
ing the ASV system’s ability to accurately match the
anonymized samples to the correct speaker identity.
By running numerous samples by multiple speakers
through the ASV system, it is possible to quantify
how often it fails to identify the speakers and thus
how much privacy was gained. Therefore, privacy
assessment may intrinsically depend on the number
of speakers and speech samples used for evaluation,
which highlights the importance of sample quantity in
understanding privacy outcomes. However, the stud-
ies that comprehensively explore different composi-
tions of the evaluation data are fairly limited. In light
of the importance of voice privacy research, there
arises a critical necessity of understanding the impact
of the test dataset’s size on the ASV system’s perfor-
mance.

We seek to find a reliable methodology for quanti-
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fying the privacy gained through speaker anonymiza-
tion. On that account, the following research ques-
tions are derived:

RQ1. How does the size of speaker population in the
evaluation dataset influence the performance
of the ASV system?

RQ2. How does the number of speech samples, i.e.
utterances per speaker, influence the perfor-
mance of the ASV system, particularly when
varying the amount of trial and enrollment ut-
terances?

We expect a significant relationship between the ASV
system’s performance and the number of speaker
pairs and utterance pairs to be examined by the sys-
tem. Therefore, we hypothesize:

H1. The error rates of the ASV system will in-
crease, as the number of speakers increases,
due to the necessity of detecting a greater num-
ber of non-matching speaker pairs.

H2. The error rates of the ASV system will de-
crease, as the number of utterances per speaker
increases, as more speech data lead to less vari-
ance for each speaker.

We seek to establish a robust ASV configuration, pro-
viding results that generalize to other datasets and
use cases. Here; we evaluate two powerful Voice
Conversion (VC) models, the StarGANv2-VC (Li
et al., 2021) and the kNN-VC (Baas et al., 2023), on
the LibriSpeech dataset with the help of the evalua-
tion framework proposed by Franzreb et al. (2023),
which implements a similar ASV system from the
VPC 2022. We experiment with different numbers
of speakers and different speech samples per speaker,
focusing on the split between trial and enrollment ut-
terances, while taking into account the variance in-
troduced by different target selections. Thereby, we
assess the role these two factors play when measuring
privacy. The results of the experimentation pose as
a recommendation for conducting privacy evaluation
in a way that ensures a balanced trade-off between
the reliability of the ASV results and the computation
time.

2 RELATED WORK

A few previous studies have made an effort towards
investigating the impact of the speaker population and
utterance amount on the privacy evaluation.

Sholokhov et al. (2020) study the factor that the
number of speakers play from a voice spoofing per-
spective, where an attacker aims at spoofing the ASV

system by finding the closest (trial) impostor for a
given target speaker (enrolled) from a large popula-
tion. They show that an increasing number of speak-
ers results in an increasing probability of false alarm,
thereby demonstrating that a large speaker corpus will
eventually result in a high speaker confusability. They
further examine the effect of the number of utterances,
showing that a low number of available utterances
for impostor search results in lower false acceptance
rates.

Building upon this, Srivastava et al. (2022) as-
sess the quality of speaker anonymization by study-
ing the effect of the speakers’ population size on
the performance of speaker recognition. Their ex-
periments range from a population of 20 to approxi-
mately 25,000 speakers. They show that the ability of
both systems to correctly verify the true speaker de-
creases very rapidly as the number of enrolled speak-
ers increases. Their experiments further show that
an anonymization system with an optimal pseudo-
speaker design strategy provides the same level of
protection against re-identification among 50 speak-
ers as non-anonymized speech among a vastly larger
population of 20,500 speakers.

Exploring a distinct objective, Meyer et al. (2023)
also investigate varying numbers of speakers and ut-
terances per speaker in their experiments. However,
their focus is to reduce the training time of the ASV
system by restricting the size of the training dataset.
Thus, they explore the effect of fine-tuning the already
pre-trained ASV system with two different data re-
duction techniques of the dataset, i.e. (1) by limiting
the number of utterances per speaker, and (2) by se-
lecting all utterances from a limited number of speak-
ers. We propose an extensive experimentation using
the same variables to comprehensively assess the ro-
bustness of the ASV system specifically during the
evaluation phase.

3 EXPERIMENTAL SETUP

The experimentation process is performed with the
help of the open-source evaluation framework by
Franzreb et al. (2023) 1. Here, we discuss the com-
ponents used for privacy evaluation, including the
ASV system deployed within the framework and at-
tack models to be considered, as well as the selected
VC-models and the evaluation datasets.

1https://github.com/carlosfranzreb/spkanon eval
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3.1 Privacy Evaluation

To measure privacy, an attack scenario must be
considered, where an attacker attempts to reveal a
speaker’s identity by comparing anonymized sam-
ples publicly shared by the speaker with found sam-
ples spoken by the same individual. The relation-
ship between privacy and the effectiveness of an at-
tack with the ASV system is inverse analogue. There-
fore, resilience to a strong attack by the ASV signi-
fies a strong speaker anonymization, i.e. high privacy
preservation.

3.1.1 The ASV System

The selected framework implements the ASV archi-
tecture proposed by the VPC 2022. The ASV con-
sists of a speaker recognition model for extracting
speaker embeddings from the speech samples and a
PLDA-based backend algorithm. PLDA is a prob-
abilistic extension of the Linear Discriminant Anal-
ysis (LDA); it is a common technique for reduc-
ing dimensionality by projecting data into a lower-
dimensional subspace, where the between-class co-
variance is maximized and the within-class covari-
ance is minimized (Ioffe, 2006). To generalize to un-
seen classes, the PLDA extends the LDA by assuming
that the speaker embeddings follow Gaussian distri-
butions, with which the between-speaker and within-
speaker variability is modelled. The ASV computes
the standard x-vector embeddings, which are then re-
duced to 200 dimensions with the LDA. The extracted
speaker embeddings and their corresponding speaker
labels are used to train the PLDA back-end, in which
parameters are estimated with empirical Bayes 2.

Two attack scenarios are considered according to
the amount of knowledge of the attacker, as illustrated
in Figure 1:

1. Ignorant Attack: The attacker is unaware of the
anonymization step. The training data of ASVeval
and the enrollment data are not anonymized.

2. Semi-Informed Attack: The attacker is aware
of the anonymization and has access to the
anonymization model, but is oblivious to the par-
ticular parameters for target selection. Therefore,
the attacker anonymizes enrollment data with the
same anonymization model, but with different tar-
gets from the trial data. The ASV system, denoted
ASVanon

eval , is trained with an anonymized training
set.

When considering the ignorant scenario, ASVeval
is trained on the original training set. For the stronger

2https://github.com/RaviSoji/plda

Figure 1: The x-vector-based ASV workflows for training
(above) and evaluation (bottom) (Franzreb et al., 2023).

semi-informed scenario, the training data of ASVanon
eval

is anonymized with inconsistent targets for a better
accuracy.

During evaluation, the dataset is split into two sub-
sets: (a) trial set and (b) enrollment set. Each speaker
must have at least one trial utterance, which is trans-
formed with consistent target speakers by the VC-
model during inference. For the semi-informed sce-
nario, the enrollment set is anonymized with consis-
tent targets, meaning that all the enrollment utterances
of the same speaker are anonymized with the same
pseudo-speaker. As the attacker is unaware of the tar-
get selection used for the trial utterances, a random
target selection algorithm is employed for anonymiz-
ing the enrollment set. There is, thereby, a possibil-
ity that the trial and the enrollment utterances of a
speaker are anonymized with the same target.

For each pair of trial and enrollment utterances,
the log-likelihood ratio (LLR) of their speaker em-
beddings is computed with the trained PLDA model
to determine how likely it is that the pair belongs to
the same or a different speaker. The same-speaker vs.
different-speaker decisions for each pair is made by
using a threshold. Privacy is measured from the er-
rors the ASV system makes with regard to the true
speaker labels. Based on the validity of the same- and
different-speaker decisions, two types of detection er-
rors occur: false alarms and misses. The Equal Error
Rate (EER) corresponds to the threshold for which the
two detection errors are equally likely or “balanced”.
A higher EER indicates that the ASV system, i.e. the
attacker, fails at verifying the correct speaker identi-
ties.

3.2 Evaluated VC-Models

With the intention of drawing more general con-
clusions, experiments are performed for two fairly
different VC-models, a non-parallel many-to-many
GAN-based model and a self-supervised any-to-any
model. Both VC-models are evaluated under compa-
rable conditions with the same ASV system and on
the same datasets.
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3.2.1 StarGANv2-VC

The StarGANv2-VC Li et al. (2021) is an unsuper-
vised non-parallel many-to-many VC-model where
an input speech is transformed to conform to a given
style vector of a target. A generator receives as input
the Mel-spectrogram and the extracted F0 contour of
a source speaker, as well as the style vector of a target
from the mapping network. The generator converts
the Mel-spectrogram of the input sample to the given
target style vector, while maintaining F0-consistency.
The synthesis is performed with the Parallel Wave-
GAN (Yamamoto et al., 2020). The VC-model was
originally trained on the VCTK corpus with 20 se-
lected English speakers.

3.2.2 kNN-VC

The kNN-VC (Baas et al., 2023) uses a more straight-
forward approach with the k-nearest neighbors regres-
sion. Contrary to StarGANv2-VC, it performs an any-
to-any conversion that transforms source speech sam-
ples into the voice of any target speaker, given that
some reference utterances of the speaker are provided.
The model utilizes WavLM-Large encoder (Chen
et al., 2022) to extract feature sequences from both
the source speaker’s input and the target speaker’s
reference utterances. kNN-VC converts the input se-
quences by replacing them with the mean of the clos-
est matching segments from the reference. The con-
verted feature sequences are then transformed into
audio waveforms using a HiFi-GAN-based vocoder
(Kong et al., 2020). kNN-VC is not pretrained on
target speakers, therefore the LibriSpeech dev-clean
subset consisting of 40 speakers is selected for tar-
gets.

3.3 Datasets

The LibriSpeech is an openly available data set,
which contains approximately 1,000 hours of clean
read English speech sampled at 16 kHz. The corpus
is derived from a large collection of public domain
audiobooks by the LibriVox project.

The ASV system, i.e. the LDA and PLDA al-
gorithms are trained on the LibriSpeech train-clean-
360 subset (see Table 1, either on the original cor-
pus for the ignorant scenario (ASVeval) or on the
anonymized corpus for the semi-informed scenario
(ASVanon

eval ). The ASV is trained once for each VC-
model.

An overview of the selected evaluation datasets
are presented in Table 2. In our experiments, the gen-
ders are not considered for evaluation; they are only

Table 1: Training data for the ASV system.

Subset Gender Spkrs Hours

train-clean-360 Male 482 363.6Female 439

Table 2: Selected LibriSpeech Subsets.

Subset Gender Speakers Hours

test-clean
Male 20

5.4
Female 20

test-other
Male 16

5.1
Female 17

train-other-500
Male 602

496.7
Female 564

displayed to highlight the gender balance of the cor-
pus in terms of the number of speakers. To avoid im-
balances and optimize computation, samples that are
shorter than 2 seconds or longer than 25 seconds are
filtered from the datasets.

4 RESULTS

The experimentation is performed on subsets of the
evaluation datasets by considering two data reduction
strategies:

(1) selecting different amounts of speakers to be
evaluated, and

(2) selecting different amounts of utterances per
speaker to be evaluated.

With regard to the second experimentation tech-
nique, two sub-strategies are to be considered: (2a)
selecting different amount of enrollment utterances
with a fixed number of trials per speaker, and (2b)
selecting different amount of trial utterances, while
keeping the number of enrollments per speaker con-
stant.

The relevant statistics of the evaluation datasets
are illustrated in Table 3. The test-clean and test-
other are combined into one dataset, i.e. the test set,
to moderately increase their range of speakers and
utterances. For a more challenging evaluation, the
train-other-500 is also used, which allows for a larger-
scale experimentation. On that account, the results
of the experiments will provide insight on the role
the speaker and sample size play in the ASV perfor-
mance.

We run our experiments on an NVIDIA
RTXA6000 GPU, which has 48 GB of memory.
For both VC-models, the datasets are anonymized
five times with different seeding to avoid bias stem-
ming from target selections. For each experiment, the

On the Effect of Dataset Size and Composition for Privacy Evaluation

513



Table 3: Evaluation datasets. Spk. stands for speakers and
Utt. for utterances.

Dataset Spk. Utt. Utt. / Spk.

test set 73 5,454 73

train-other-500 1,166 148,182 127

speakers/utterances are randomly sampled five times.
This process is repeated for the five different target
selections, resulting in a total of 25 repetitions per
experiment. The results consistently report the score
averaged over all seeded target selections for each
attack scenario.

4.1 Effect of Speaker Population Size

In this section, we explore the effect of the speaker
population size on the performance of the ASV sys-
tem. Following the standard evaluation method de-
fined in the framework Franzreb et al. (2023), each
speaker has one anonymized utterance in the trial set
and the remaining utterances are included either orig-
inal for ASVeval or anonymized for ASVanon

eval in the
enrollment set. Within the following experiments of
this section, all utterances from a specific subset of
speakers are used for evaluation.

Table 4 lists the mean EERs for the two VC-
models for various speaker subsets. The speaker se-
lection is increased gradually and randomly sampled
from all speakers of the subset. Looking at the re-
sults for the semi-informed scenario ASVanon

eval , it can
be observed that the more we increase the amount
of speakers, the more the EER increases. Compar-
ing the results for #spkrs = 10 and #spkrs = 50 of
the test set, the EERs show an increase of 14% for
StarGANv2-VC and of 16% for kNN-VC, whereas
the standard deviation decreases. A similar increas-
ing trend of the EER is also displayed in the results
for the larger train-clean-500 subset, where the EER
changes from 14.47% to 15.17% for StarGANv2-VC
and from 4.15 % to 5.20 % for kNN-VC, when in-
creasing the speakers from 50 to 1000.

4.2 Effect of Sample Amount per
Speaker

Moreover, we measure the impact of the sample
amount per speaker on the performance of the ASV
system, by evaluating with different splits between
trial and enrollment utterances. To eliminate bias,
both the enrollment utterances and the trial utterance
are randomly selected for each speaker, ensuring that
no utterance is included in both sets.

4.2.1 Impact of Enrollment Utterances

In this section, we present the results for investigating
the effect of different sample amounts in the enroll-
ment set. On that account, an increasing amount of
enrollment utterances per speaker is chosen for each
experiment, while the number of trial utterances is
consistently limited to one per speaker. Figure 2a il-
lustrates the results for both VC-models on the test
set, where the three speakers with less than 31 speech
samples are excluded. It can be observed from the
results that the EER follows a decreasing trend for
ASVanon

eval , as the number of enrollment utterances per
speaker increases. The EER curve shows a plateau af-
ter 20 enrollment utterances. A comparable behavior
of the EER is noted for the train-other-500, for which
speakers with less than 120 utterances are excluded
from evaluation, resulting in a dataset of 796 out of
1166 speakers. As shown in Table 5, the ASVanon

eval per-
formance is nearly equivalent for #enroll per spkr
= 20 and #enroll per spkr = 100; it shows only
a 2.5% decrease for StarGANv2-VC and a 5.25% de-
crease for kNN-VC, whereas σ is relatively low.

4.2.2 Impact of Trial Utterances

Figure 2b shows the influence of the trial utterance
amount on the EERs. Here, the VC performance is as-
sessed for an increasing number of trial utterances per
speaker, while the number of enrollment utterances
remains consistent. Based on the previous results, 20
enrollment utterances are used for each speaker for
every evaluation, to limit the computation time.

Comparing the standard of #trial per spkr= 1
and #trial per spkr= 5, the EER of ASVanon

eval de-
creases by 32% for StarGANv2-VC, from 23.59% to
15.94%. Similarly, there is an EER decrease of 61%
for kNN-VC from 13.36% to 5.16%, when 5 utter-
ances are included in the trial set for each speaker.
Moreover, the EER approaches a 49% reduction for
StarGANv2-VC and 70% for kNN-VC with 30 trial
utterances per speaker. An analogous EER trend
decrease is observed, when experimenting with the
train-other-500. Looking at the StaGANv2-VC re-
sults in Table 6, the effect of increasing the trial utter-
ances achieves an EER decrease of 51% for (#trial
per spkr= 50), with a very low σ of 0.51. For kNN-
VC, the EER shows 86% decrease for 50 trial utter-
ances, with a variability close to zero.

4.3 Computation Time

During evaluation, each utterance of the trial set is
compared with each utterance on the enrollment set,
therefore the number of evaluated utterance pairs in-
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Table 4: EERs (%) for different amounts of speakers. The table shows the mean EER and standard deviation σ for ASVeval
and ASVanon

eval . The results compare the behavior of EER with an increasing amount of speakers.

StarGANv2-VC kNN-VC
Subset #spkrs ASVeval σ ASVanon

eval σ ASVeval σ ASVanon
eval σ

test set 10 35.33 7.67 19.91 7.66 43.36 7.60 9.51 4.5
30 35.18 3.43 22.55 3.45 43.82 4.22 10.97 3.13
50 35.98 2.68 22.71 2.20 44.02 2.25 11.02 2.49

train-clean-500 50 28.05 3.21 14.47 1.86 40.07 3.57 4.15 1.24
200 26.59 1.76 15.52 1.45 40.97 1.81 5.22 0.68
500 27.18 0.59 15.04 0.76 40.49 1.04 5.14 0.38
1000 26.98 0.60 15.17 0.47 40.96 0.67 5.20 0.19
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(a) EERs for increasing enrollment utterances per speaker.
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(b) EERs for increasing trial utterances per speaker.

Figure 2: Comparison of the effect of increasing a) enrollment utterances and b) trial utterances per speaker on ASVanon
eval ,

for both StarGANv2-VC (left y-axis) and kNN-VC (right x-axis) on the test set. For increasing enrollment utterances, each
speaker has one utterance in the trial set. On the other hand, each speaker is assigned 20 enrollment utterances, for increasing
trial utterances.

Table 5: EERs (%) for different amounts of enrollments per
speaker from train-other-500.

VC #enroll ASVeval σ ASVanon
eval σ

StarGANv2 20 27.71 0.59 15.20 0.72
100 27.57 0.74 14.82 0.61

kNN-VC 20 40.35 0.69 4.57 0.37
100 40.29 0.59 4.33 0.39

Table 6: EERs (%) for different amounts of trials per
speaker from train-other-500.

VC #trial ASVeval σ ASVanon
eval σ

StarGANv2 1 27.72 0.76 15.05 0.64
50 25.71 0.70 7.39 0.51

kNN-VC 1 40.25 0.49 4.69 0.36
50 39.88 0.38 0.64 0.09

creases prominently, as demonstrated in Figure 3. The
average time cost for ASVanon

eval is 0.5 hours on average
for 796 speakers, with #enroll per spkr=20 and
#trial per spkr=5. Increasing the trial utterances
to 50 per speaker results in a time cost of approxi-
mately 18 hours for ASV evaluation.

5 10 20 30 40 50
0

500

1,000

1,500

#trial utts per spkr

Ti
m

e
in

[m
in

]

Figure 3: Time Cost for increasing trial utterances for both
StarGANv2-VC and kNN-VC. 796 speakers are filtered
from train-other-500 and 20 enrollment utterances are se-
lected for each speaker.

We repeat the experimentation based on the above
results to investigate how the EER and the time
cost change. Both the test set and train-other-500
are limited to 50 speakers, where only 20 enroll-
ment utterances and 5 trial utterances are selected
per speaker. The proposed ASVanon

eval configuration re-
sults are compared to the results of evaluating on the
whole datasets, as presented in Table 7. The proposed
data reduction decreases the computation time to one
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Table 7: Comparison of ASVanon
eval EERs obtained by evaluating the whole dataset (all) vs the proposed configuration of 50

speakers with 5 trial and 20 enrollment utterances per speaker.

StarGANv2-VC kNN-VC
Subset #spkrs ASVanon

eval σ ASVanon
eval σ

test set all 22.57 1.85 10.47 1.57
proposed 14.50 1.78 4.34 1.62

train-clean-500 all 15.10 0.42 5.18 0.18
proposed 9.18 2.02 1.24 0.93

minute on average. Compared to 5.5 hours needed for
the whole train-other-500, we decrease the time cost
by 99%.

5 DISCUSSION

In the above section, the results of different evaluation
strategies were presented with regard to their impact
on the ASV performance:

The first objective we explored was the impact of
the speaker population size on the EERs. We hypoth-
esized that the EER of the ASV system will increase,
as the number of source speakers increases. This was
expected and confirmed by the experimentation, as a
larger number of speakers will result in more non-
matching speaker pairs, i.e. a larger amount of enroll-
ment speakers that may be confused with each trial
speaker. Moreover, the above results demonstrate that
a very small speaker subset introduces a high vari-
ability and unreliability, i.e. high standard deviation.
This is especially problematic, as the EER might sug-
gest a better privacy protection than what is actually
provided by the evaluated VC-model. Although eval-
uating on a very large number of speakers seems to
output more reliable results, the time cost should also
be considered.

With regard to the sample quantity, our results
confirm our second research hypothesis: an increase
in the amount of samples per speaker, i.e. trial or en-
rollment utterances, resulted in an EER decrease. On
that account, it must be acknowledged that the com-
putation time is inherently dependent on the amount
of trial-enrollment-comparisons. As each trial utter-
ance must be compared with every utterance in the en-
rollment set, the time cost increases significantly with
numerous trial utterances. Although evaluating the
full dataset with several trial utterances per speaker
leads to the strongest attack by the ASV, it is impor-
tant to consider a balanced trade-off between EER and
computation time.

6 LIMITATIONS

For privacy evaluation, the LibriSpeech dataset was
selected for evaluation, as it contains a wide range of
speakers in noise-free ambient conditions. It should
be considered that kNN-VC was originally trained
on LibriSpeech. Therefore, it was expected that the
kNN-vc might output overall lower EER in contrast
to StarGANv2-VC, which was trained on an exter-
nal dataset. However, the interest of this research
centers on the trend changes of the EER with regard
to different data reduction strategies, rather than the
results per sé. It was, therefore, essential that both
VC-models were investigated under comparable con-
ditions for generalization purposes.

The emphasis of sample amount experimentation
shifted to the number of utterances per speaker. For
evaluation, samples between 2 and 25 seconds were
included from the selected datasets. This diversity of
duration between the samples might contribute to the
variability of the EER. Shorter utterances are known
to degrade the ASV performance, as they are unable
to capture all the variations of a speaker’s voice (Park
et al., 2017). Further experimentation is needed to
provide more insight into the impact of utterance du-
ration on the reliability of ASV evaluation.

It should also be considered that we leverage a
pre-trained speaker embedding model to circumvent
the need for training additional models during the
evaluation process, thereby minimizing the computa-
tion time. Future work could address this by training
the speaker embedding model tailored to our data, po-
tentially improving performance and the overall accu-
racy of the results.

Since we performed these experiments, the VPC
has released a new framework. Regarding the privacy
evaluation, this new edition removes the consistency
constraint when selecting the target speakers for the
enrollment utterances. In previous editions, all the ut-
terances of each enrollment speaker were anonymized
with the same target speaker. The effect of this change
on the behavior of the ASV system is unknown, and
we leave it for future work.
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7 CONCLUSION

We examined the influence of varying number of
speakers and speech samples in privacy evaluation
with ASV. The experimental results demonstrated that
a very small subset of speakers or utterances per
speaker might produce unreliable EER that create a
misleading impression of high privacy protection by
the evaluated VC-model. We further showed that we
could decrease the computation time needed for eval-
uation by 99% by reducing the number of speakers
and samples per speaker, while still upholding the re-
liability of the results. We anticipate that our research
could offer insights for conducting privacy evalua-
tion in a way that ensures the validity of the results
and their applicability to the greatest possible number
of scenarios. Experimentation on further VC-models
and with more challenging datasets would provide ad-
ditional contributions to generalizability.
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