
Distributed Machine Learning and Multi-Agent Systems for Enhanced
Attack Detection and Resilience in IoT Networks

Gustavo Funchal1 a, Tiago Pedrosa1 b, Fernando de la Prieta2 c and Paulo Leitão1 d

1Research Centre in Digitalization and Intelligent Robotics (CeDRI), Laboratório Associado para a Sustentabilidade e
Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal

2BISITE Digital Innovation Hub, University of Salamanca, Edificio I+D+i, C/ Espejos s/n, 37007, Salamanca, Spain
{gustavofunchal, pedrosa, pleitao}@ipb.pt, fer@usal.es

Keywords: Intrusion Detection Systems, Multi-Agent Systems, Internet of Things, Machine Learning.

Abstract: The exponential growth of connected devices, including sensors, mobile devices, and various Internet of
Things (IoT) devices, has resulted in a substantial increase in data generation. Traditionally, data analy-
sis involves transferring data to cloud computing systems, leading to latency issues and excessive network
traffic. Edge computing emerges as a promising solution by bringing processing closer to the data sources.
However, edge computing faces challenges, particularly in terms of limited computational power, which can
create constraints in the execution of machine learning (ML) tasks. This paper aims to analyze strategies for
distributing ML tasks among multiple nodes based on multi-agent systems (MAS) technology to have a col-
laborative approach and compare these strategies to provide an overview of best practices for achieving the
optimal performance in intrusion detection for Industrial Internet of Things (IIoT). In this way, the well-known
CICIoT2023 data set was used, and centralized and distributed ML techniques were implemented, and evalu-
ated. The distributed edge ML approach achieved promising results, presenting an improvement of between
7.73% and 32.18% in the correction of wrong predictions of detection of attacks on IoT devices, significantly
improving the precision and recall of the applied techniques.

1 INTRODUCTION

The rapid expansion of connected devices, encom-
passing sensors, mobile devices, and a myriad of In-
ternet of Things (IoT) devices, has assisted in an era
of unprecedented data generation. The conventional
practice of transferring this vast amount of data to
cloud systems for analysis has proven to be suscepti-
ble to latency issues and network congestion (Popescu
et al., 2017). In response to these challenges, edge
computing has emerged as a transformative paradigm
(Tyagi and Tyagi, 2024), aiming to process data in
proximity to its source.

In the context of Industry 4.0 (Kagermann et al.,
2013), the integration of digital technologies into
industrial processes, the reliance on connected de-
vices and IoT solutions has become integral. Indus-
try 4.0 promises increased efficiency, automation, and
connectivity in manufacturing and industrial settings.

a https://orcid.org/0000-0002-9691-9956
b https://orcid.org/0000-0003-4873-2705
c https://orcid.org/0000-0002-8239-5020
d https://orcid.org/0000-0002-2151-7944

However, this evolution has also given rise to new
challenges, particularly in the realm of cybersecurity.

In recent times, there has been a rise in security
issues within the Industry 4.0 landscape, with cyber
threats becoming more sophisticated and widespread.
The interconnected nature of devices and systems
within the Industrial Internet of Things (IIoT) has ex-
posed vulnerabilities that require strong security mea-
sures (Pourrahmani et al., 2023). As industries aim to
benefit from digital transformation, ensuring the secu-
rity of these interconnected systems becomes crucial.

One of the critical aspects of cybersecurity in IIoT
environments is the timely detection and mitigation
of cyber threats. Intrusion Detection Systems (IDS)
play a pivotal role in safeguarding industrial systems
against unauthorized access, malicious activities, and
potential disruptions (Hamouda et al., 2021). The
conventional approach of centralizing data analysis
for IDS may, however, introduce latency and conges-
tion, underscoring the need for innovative solutions
such as distributed Machine Learning (ML) at the
edge. In response to these challenges, edge comput-
ing has emerged as a transformative paradigm, aiming

192
Funchal, G., Pedrosa, T., de la Prieta, F. and Leitão, P.
Distributed Machine Learning and Multi-Agent Systems for Enhanced Attack Detection and Resilience in IoT Networks.
DOI: 10.5220/0013154400003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 2, pages 192-203
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



to process data in proximity to its source, thereby re-
ducing latency and mitigating network congestion.

According to the IBM report (IBM Security,
2023), cloud environments were frequent targets for
cyber attackers in 2023, with 82% of breaches involv-
ing data stored in the cloud - public, private or mul-
tiple environments with 39% of breaches spanning
multiple environments and incurring a higher than
average cost of US$4.75 million. The report points
out that only one-third (33%) of breaches/attacks
were identified by the organizations’ internal secu-
rity teams and tools. Also, organizations with exten-
sive use of security Artificial Intelligence (AI) and au-
tomation identified and contained a data breach 108
days faster than organizations with no use. This in-
formation reinforces the importance of keeping data
closer to the source and using AI methods to improve
the speed, accuracy and efficiency of attack detection.
However, while edge computing addresses several
challenges associated with data processing, it intro-
duces new complexities, particularly in the context of
ML tasks, where computational limitations can hin-
der the timely and effective detection of cyber threats
in IIoT environments.

Having this in mind, this paper aims to search into
strategies for effectively distributing ML tasks across
multiple nodes with low computational power located
at the edge, using Multi-agent systems (MAS) as in-
frastructure platform, focusing on their application in
enhancing intrusion detection capabilities within In-
dustry 4.0 and IIoT ecosystems. By exploring and
comparing the different strategies, the research aims
to provide insights into best practices for mitigating
security risks associated with the exponential growth
of connected devices and the evolving threat land-
scape in Industry 4.0. For this purpose, this work ex-
plores the following research questions:

RQ1: In which scenarios and under what con-
ditions do distributed ML approaches outperform
centralized ones in terms of attack detection accu-
racy, scalability, and resilience against adversarial
attacks and novel threats?
RQ2: What are the trade-offs between model in-
terpretability and detection accuracy in distributed
training strategies for attack detection, and how
can these trade-offs be optimized?
The findings of this study hold implications for

advancing resilient and efficient ML applications in
the pursuit of safeguarding critical industrial systems
from cyber threats.

The remaining paper is organized as follows: Sec-
tion 2 presents the related work, highlighting the im-
portance of ML distribution at the edge, emphasiz-
ing the work developed in this domain, and especially

outlining the gaps and challenges in this field. Section
3 presents the proposed approach to distributing ML
at the edge by using MAS, summarizing its strengths
and weaknesses. Section 4 describes the implemen-
tation and application of the proposed approach in a
case study and discusses the achieved results. Finally,
Section 5 rounds up the paper with the conclusions
and points out some future work.

2 RELATED WORK

The generalized and exponential adoption of smart
IoT devices, especially in industrial environments,
is accelerating the search for new techniques to
make IoT applications secure, scalable and energy-
efficient (Alsboui et al., 2021). IoT devices typically
come equipped with various sensors that gather en-
vironmental/operational data, serving as key compo-
nents of data-driven intelligence systems (Kong et al.,
2022). As these devices’ deployment expands, the
generated data volume grows exponentially. In or-
der to provide insights to end users, it is necessary to
process this collected data and analyze it first. More-
over, internet traffic between devices in an IoT net-
work must be monitored, commonly by Network In-
trusion Detection Systems (NIDS), acting as a first
line of defense in order to identify potential threats
and protect the network from malicious attacks and
intruders (Gyamfi and Jurcut, 2022). However, most
IoT devices have limited computing resources, mak-
ing this processing a major challenge.

A commonly adopted solution is cloud comput-
ing, where IoT data is sent to remote servers for pro-
cessing, and the results are transmitted back to the de-
vices. While effective, this approach can face signifi-
cant challenges in terms of data transmission rates and
network bandwidth, which can become critical bot-
tlenecks as IoT ecosystems scale (Shi et al., 2016).
In addition, as IoT devices often handle personal
and sensitive data, routing all information to cloud
servers raises security and privacy concerns (Kong
et al., 2022) and when these devices require a high
service response time, it becomes a major challenge
for cloud-based IoT applications (Quy et al., 2023).

In this context, edge computing is gaining atten-
tion, being a type of IT architecture in which data
is processed at the edge of the network, or as close
as possible to the data source, reducing costs and re-
sponse times, increasing data privacy and security,
and making it possible to make decisions in these net-
work applications faster and with lower response la-
tency (Quy et al., 2023). Despite the numerous ad-
vantages of edge computing over cloud computing,

Distributed Machine Learning and Multi-Agent Systems for Enhanced Attack Detection and Resilience in IoT Networks

193



it cannot fully replace cloud services (Ghosh et al.,
2020; Wang et al., 2020a). While shifting analytics
to the edge network is designed to reduce service re-
sponse times, certain services still depend on cloud in-
frastructure. Moreover, the edge computing layer en-
counters several challenges, including task offloading,
performance optimization, energy efficiency, Quality
of Service (QoS) support, and connection manage-
ment (Xie et al., 2019; Qadir et al., 2020).

Some benefits of edge computing were high-
lighted by (Quy et al., 2023), such as cost sav-
ings, backhaul traffic reduction, improved QoS, en-
hanced network customization, and improved service
response times and distribution capabilities, which
justify the growth in the adoption of edge comput-
ing. However, as the complexity of IoT applications
increases, especially in environments such as IIoT,
traditional centralized ML approaches become insuf-
ficient due to computing power constraints and the
need for real-time analysis. This has led to the de-
velopment and integration of distributed ML, where
computational tasks are spread across multiple nodes,
enabling large-scale data processing and model train-
ing closer to the data source.

Distributed ML offers the potential to overcome
the computational bottlenecks that arise from han-
dling large data sets and complex models at the edge.
By distributing the training and inference processes
across several edge nodes, it becomes possible to
leverage the collective resources of the network, re-
sulting in enhanced scalability, reduced latency, and
improved adaptability to dynamic environments. Ad-
ditionally, distributed ML techniques are particularly
effective in scenarios where data privacy is crucial,
as the data can remain localized at the edge nodes,
minimizing the need for transmission to centralized
servers. There are some strategies that can be used
for distribution, such as data parallelism, model par-
allelism, ensemble learning/model combination, and
model diversity. However, there are several issues
that need to be analysed and addressed, namely min-
imal synchronization, communication overhead, de-
vice heterogeneity, security and privacy, among oth-
ers (Duan et al., 2024; Khouas et al., 2024).

As highlighted in (Mwase et al., 2022; Wang et al.,
2020b), data parallelism divides a batch of data into
several smaller batches, and these input data samples
are distributed among several computing resources
(nodes or devices). It can thus improve the perfor-
mance of large batch workloads. Each device per-
forms local processing with its own data and the com-
plete model, a copy of which is stored locally. Be-
cause the full model is present on every device, this
structure works well with a wide range of model

topologies and scales effectively when the model has
few parameters. However, the parameter synchro-
nization becomes a bottleneck when the model has
many parameters (Jia et al., 2018).

On the other hand, (Mwase et al., 2022) notes that
in the model parallelism a part of the model that each
device uses for local processing is stored on it. Every
device has a duplicate copy of the data. Due to its lim-
ited memory footprint and consequently low memory
requirements on each device, this strategy works well
when the model is too big to fit on a single device.
Effective model splitting can be difficult, though, as
a poorly done split can cause synchronization delays
and communication overload, which can cause down-
time (Mwase et al., 2022; Mirhoseini et al., 2017).

In addition to these strategies, there is ensemble
learning (Zhou and Zhou, 2021), in which each node
trains an independent model and then these models
are combined to form a final model. This final model
can be made up of different characteristics, which can
enhance the results obtained by taking advantage of
the strengths and reducing the weaknesses of each
model. There are different possible techniques, such
as bagging (or bootstrap aggregating), boosting and
stacking that can be explored.

ML algorithms are used in IDS because of their
capacity to recognize patterns, correlate events and
adjust to emerging threats (Prazeres et al., 2023;
Berman et al., 2019). The main benefits of using ML
in IDS is the high anomaly detection accuracy, scal-
ability to manage big data sets, and the potential to
get better with time and new information. These tech-
nologies improve security by reducing false positives
and providing real-time threat detection.

In this respect, many works have been developed
in this area, such as the work proposed by (Mohy-
eddine et al., 2022), which highlights the use of ML
algorithms, namely Random Forest, in which they
propose an edge approach with methods for feature
selection, dimensionality reduction and outlier re-
moval in order to reduce computational costs and
time, and improve performance in Industrial IoT in-
trusion detection, and also the work carried out by
(Yang et al., 2023), that proposed a Temporal Con-
volutional Network (TCN) based intrusion detection
method for IoT environments that is lightweight, ef-
fective and relies on cloud edge collaboration, based
on a federated learning framework. To this end, they
have also reduced the dimensionality of the high-
dimensional resources of raw network traffic data
to reduce computing and storage requirements while
overcoming the problem of resource limitations of
edge devices. (Yang et al., 2023) also carried out
some experiments to validate that the collaboration-

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

194



based approach at the cloud edge can share threat in-
telligence and has the potential to defend against un-
known attacks in a collaborative way, showing that
collaboration was extremely important and could help
participants identify their own unknown attacks.

However, there are still other distributed ap-
proaches, such as those based on MAS (Wooldridge,
2009), which act as containers/repositories for AI al-
gorithms (Queiroz et al., 2019). According to (Leitão,
2009), an agent can be defined as an autonomous en-
tity, which represents a physical or logical part of
the system, and which will be able to take actions
to achieve the system’s objectives and will also be
able to interact with other agents in the system when
it does not have the skills to achieve its objectives
alone. Thus, the use of MAS allows to distribute
intelligence and adaptation (Leitão et al., 2016), in
which decisions are made in a decentralized manner,
as opposed to centralized structures that are unable to
meet the requirements related to response time, data
privacy and security, network bandwidth, among oth-
ers. Although there is a certain complexity to coor-
dinating the actions of various agents in a distributed
environment, it becomes very advantageous to use it
in dynamic systems, especially in IoT environments,
where conditions change rapidly, there is a great het-
erogeneity of devices, which can use different algo-
rithms due to their available computing resources.

Despite the fact that the aforementioned works
have presented excellent solutions and results, differ-
ent ways of distributing intelligence at the edge have
not yet been explored, especially with regard to distri-
bution using MAS, which can already be used for col-
laborative work in the edge network, and could also
make the system more secure with an IDS based on
ML. In this way, the proposed work aims to analyze
the different strategies for distributing intrusion anal-
ysis and detection at the edge, using MAS as the ba-
sis for distribution. The main focus is on exploring
the different strategies analyzed in a case study, high-
lighting the strengths and weaknesses of each strategy
and summarizing the main conclusions reached.

3 DISTRIBUTED ATTACK
DETECTION IN IoT

This section aims to describe the system architecture,
the distribution strategies for ML algorithms for at-
tack detection, and the MAS-based IDS.

3.1 System Architecture

The proposed system architecture is composed of two
layers, edge and cloud, where detection nodes are dis-
tributed utilizing MAS technology, as shown in Fig-
ure 1. This architecture integrates multiple agents
across both layers, with edge agents being responsible
for monitoring specific processes or systems to ensure
the correct functionality and detect anomalies caused
by external attacks. In cases where edge agents are
unable to independently execute detection or diagno-
sis tasks, they are capable of initiating cooperative in-
teractions with other agents.

On the other hand, cloud agents manage the entire
system, assisting edge agents in achieving their local
goals. Due to their superior computational capabili-
ties, they can execute more advanced ML algorithms,
enabling the identification of complex system behav-
ior patterns. Additionally, cloud agents can provide
refined inferences regarding the parameters used in
the models deployed in edge agents. Consequently,
cloud agents can recommend updates to the ML mod-
els at the edge, enhancing the detection accuracy and
the overall system performance. More details of this
architecture and the interaction patterns between the
agents can be found in (Funchal et al., 2024).

Cloud

updated model

updated model
updated model

cloud agent

Functionalities
ML model managent

updates the low-complexity models
of edge agents

performs analysis of data
exchanged by agents at the edge

collaborate with edge agents

model owners

Fuzzy Logic 

Fuzzy Logic 

Process data

3

Process data

2

Process data

1

Edge

cloud agentcloud agent

ML model managent

updates the low-complexity models
of edge agents

Cloud

edge
agent

...

updated
model

private and sensitive data

updated
model

updated
model

cloud
agent

model owners

Fuzzy Logic 

Fuzzy Logic 

Process
data n

Process
data 2

Process
data 1

Edge

storage processing ML engine

Legend

Communication between edge agents
Communication between cloud agent

and edge agents
Transfers of model updates between

processes and model owners
Communication between cloud agents

cloud agent edge agent ML model

Legend

Communication between edge agents
Communication between cloud agent

and edge agents
Transfers of model updates between

processes and model owners
Communication between cloud agents

cloud agent edge agent ML model

Figure 1: System architecture composed of agents dis-
tributed along the edge to cloud continuum (adapted from
(Funchal et al., 2024)).

Although the architecture covers the edge to cloud
continuum, the focus of this work is to analyze differ-
ent strategies to use ML algorithms on edge devices,
including how they will be trained, embedded and de-
ployed together on edge devices.

3.2 ML Distribution Strategies

Distributing ML algorithms to obtain a distributed
IDS can require a lot of analysis and searching for the
best application that fits within the system’s require-

Distributed Machine Learning and Multi-Agent Systems for Enhanced Attack Detection and Resilience in IoT Networks

195



ments. As a result, different strategies can be used
to achieve the best performance in distributed detec-
tion. This means analyzing how to use the data for
training, how to train the models, how to use differ-
ent models on each device and how to aggregate the
different results to achieve a final result in the case of
collaboration between several detection nodes.

Among the different possibilities, when it comes
to using the available data set to train the models,
the data set can be divided into several parts, keep-
ing the same proportions of each type of attack, in
order to ensure that each training data set is represen-
tative of the overall distribution of the data, avoiding
class imbalance that could harm the model’s perfor-
mance. These different data sets are used to train mul-
tiple models, which can help reduce training time and
explore different subsets of the training data.

Another approach that can be adopted is to sep-
arate the data by different categories of attacks and
train separate models for each category. With this, dif-
ferent types of attacks can have/present distinct char-
acteristics, and this allows the models to specialize in
detecting specific patterns associated with each type
of attack, potentially improving the overall perfor-
mance of the intrusion detection system.

Thus, three strategies will therefore be considered
for analysis in this work:

• Centralized Strategy: train several models with
all available data, select the best model and have
it as a centralized approach.

• Full Knowledge Strategy: Train several mod-
els with different portions of data (all available
data has been partitioned into several subsets of
data that contain the same portion of each type of
data/attack), select the best model for each sub-
set of data, embed each model in a device and use
them in a distributed and collaborative way.

• Specialized Knowledge Strategy: Train sev-
eral models with different portions of data (all
available data has been partitioned into several
data subsets containing different classes of at-
tack/data), select the best model for each data sub-
set, embed each model in a device and use them
in a distributed and collaborative way.

These strategies are modeled using set theory and
mathematical notations to illustrate their similarities
and differences.

Centralized Strategy

Let D be the entire data set, containing all types of
attacks:

D = {d1,d2, . . . ,dN}

In the centralized strategy, each model Mi is
trained on the same complete data set D:

ŷi = Mi(D), for i = 1,2, . . . ,n

The model with the best performance, based on a
pre-defined metric, is selected as the final model M∗.
The final prediction ŷ is then:

ŷ = M∗(Xnew)

where Xnew represents new input data., and M∗ is the
model that performed best on the full data set D.

Full Knowledge Strategy

In the Full Knowledge Strategy, the data set D is di-
vided into subsets Di1 ,Di2 , . . . ,Dik :

D = Di1 ∪Di2 ∪·· ·∪Dik ,

where each subset preserves the proportion of all
types of attacks. Each model Mi is trained on a spe-
cific subset Di j of the data, which still contains knowl-
edge about all types of attacks:

ŷi = Mi(Di j), for i = 1,2, . . . ,n

When a model Mi has low confidence in its pre-
diction, it can request help from other models. The
final prediction ŷ is made based on the weighted pre-
dictions of all models:

ŷ =
∑

n
i=1 wiŷi

∑
n
i=1 wi

where wi are the weights corresponding to the confi-
dence levels Ci of each model’s prediction.

Specialized Knowledge Strategy

In the Specialized Knowledge Strategy, the data set D
is divided into disjoint subsets Dk based on different
types of attacks or characteristics:

D =
m⋃

k=1

Dk where Di ∩D j = /0 for i ̸= j

where each subset contains only one category of at-
tack. Each model Mk is trained only on the subset Dk,
which contains data from a single type of attack:

ŷk = Mk(Dk), for k = 1,2, . . . ,m

If a model Mk requests help due to low confidence,
the final decision ŷ is derived from the collaborative
predictions of all specialized models:

ŷ =
∑

m
k=1 wkŷk

∑
m
k=1 wk

where wk are the weights corresponding to the confi-
dence levels Ck of each specialized model.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

196



Combining the results of several models can also
be challenging. This combination can be done in dif-
ferent ways, either by voting, in which the majority
of the decisions reached will be considered, or by a
simple average of the decisions obtained. A weighted
average can also be used, in which the weights are
based on metrics such as the confidence of the predic-
tions (e.g., accuracy of that decision), or by selecting
the best decision among those obtained.

In order to improve the final decision made after
receiving all predictions from all entities, the decision
proposed by (Funchal et al., 2024) will be considered,
in which an indicator function has been added so that
only predictions with the stipulated minimum confi-
dence weight are considered. In this way, the final
decision will be given by the following Equation:

ŷ =

{
1, if

(
∑

n
i=1(wi·ŷi·I(Ci≥β))

∑
n
i=1 wi

)
≥ α

0, otherwise
(1)

In this extended decision-making process, an in-
dicator function I is introduced, which ensures that
only predictions with a confidence level greater than
or equal to a predefined threshold β are considered.
Specifically, for each model Mi, the function I(Ci ≥ β)
returns 1 if the confidence Ci meets or exceeds β, and
0 otherwise. The final decision ŷ is then calculated
based on the weighted sum of predictions that satisfy
this confidence criterion. The decision threshold α

determines whether the aggregated prediction leads to
a positive classification (1) or a negative classification
(0), as shown in Equation 1.

Thus, this method enhances the combination of re-
sults in distributed strategies by ensuring that only re-
liable predictions contribute to the final decision. This
is particularly beneficial in distributed environments,
such as those modeled with MAS, where the collabo-
ration between different models or devices is essential
for achieving robust predictions.

3.3 MAS-Based IDS Structure

The implementation of a distributed IDS on the edge
requires that distributed devices have communication
and collaboration capabilities, and present a scalable,
efficient and secure structure to meet the demands of
the Industry 4.0. To this end, the use of MAS fits
these requirements perfectly, where each autonomous
agent has the characteristics of communication and
collaborative decision-making.

Detection nodes are then distributed along the
edge cloud continuum by using MAS, in which each
device has an embedded agent and ML algorithms.
Figure 2 illustrates an overview of the agents dis-
tributed on the edge, which is the focus of this work.

In general, it has several agents that may be in the
same or different organizational relationships, but
which are constantly acquiring knowledge of a given
environment (data collection, whether it’s from the
process, a task, or the network to which the IoT de-
vice is connected), and depending on the complex-
ity of the tasks or process, the agents can communi-
cate with other agents that are linked to an organiza-
tional relationship or even with other agents linked to
other processes in order to exchange information to
meet the demands of the process. Interaction between
agents depends on the needs of each one and the com-
plexity of the task to be solved, so the agent can have
a certain level of autonomy in consulting/requesting
the collaboration of certain agents present in the sys-
tem. In addition, the agents have the ability to run
ML algorithms to recognize patterns in the data being
monitored in that environment.

Enviroment

Agent Organizational
Relationship Interaction Area of

influence

Multi-Agent
System

ML
engine

Edge

Figure 2: MAS structure (adapted from (Jennings, 2001)).

In practical terms, by having several detection
nodes in the system, they can interact with each other
to make better decisions when their self-analysis in-
dicates that their decision may not be the best for
that situation. Thus, this agent autonomy can facili-
tate adaptive responses to emerging threats and make
the system more resilient to new threats. Figure 3
shows how the collaborative IDS is formed at the de-
vice edge, where the embedded systems are located.

Interaction between agents consists of exchanging
messages for a specific purpose, which is structured
according to the FIPA-ACL. The interaction pattern
between the agents for intrusion detection is shown in
Figure 4. The agents are autonomous in requesting
collaboration, self-analyzing their results and, in case
of uncertainty, they will request the collaboration of
others to achieve a better prediction result.

Distributed Machine Learning and Multi-Agent Systems for Enhanced Attack Detection and Resilience in IoT Networks

197



Internet

Gateway Firewall

Switch

Wireless
router

...

IoT device #1 IoT device #2 IoT device #n

IDS
inference

Distributed IDS

IDS
inference

IDS
inference

agent #1 agent #2 agent #n

D
is

tr
ib

ut
ed

 a
nd

co
lla

bo
ra

tiv
e 

ID
S

Figure 3: Distributed and collaborative IDS at the device
edge.

security
agent 1:

security
agent 2:

security
agent n:

Threat
detection runs local model

requests collaboration

returns model 2 result

requests collaboration

returns model n result

handles the event
based on eq. 1

runs local
model

runs local model

threat analysis

...

Figure 4: Interaction pattern for intrusion detection (based
on (Funchal et al., 2024)).

4 EXPERIMENTAL
IMPLEMENTATION

This section describes the implementation carried out
to test the different strategies presented in the previous
section, and the achieved results.

4.1 Data Preparation

As mentioned in the previous section, different strate-
gies have been proposed to analyze the impact of col-
laboration on attack detection in an IoT environment.
These strategies consist, in practical terms, of training
different ML models with different subset of data, in
order to select the best pairs (model-subset of data)
to employ in each IoT node, so as to have a net-
work of nodes with detection systems embedded at
the edge, spread across a network, with communica-
tion characteristics/skills that will make it possible to
have a collaborative and resilient IDS at the edge. For

this purpose, it was necessary to structure the avail-
able data set, separating it in a viable way, and select
lightweight models so that they are fast and efficient
to run on devices with low computing power in IoT
nodes at the edge.

The CICIoT2023 data set (Neto et al., 2023) was
used, which contains data from 105 devices and 33
different types of attacks in IoT environments. With
regard to the different data groups, to be used in the
Specialized Knowledge Strategy, they have been sep-
arated (according to similarity) into five different cat-
egories, the first of which contains data related to Dis-
tributed Denial of Service (DDoS), Denial of Service
(DoS) and Mirai attacks, the second contains Recon-
naissance data, the third Spoofing, the fourth Brute
force and the fifth web-based, as illustrated in Figure
5, which highlights the types of attack present in each
category. It is important to note that in the case of the
strategy that consists of using the same knowledge for
all models (Full Knowledge Strategy), all categories
were considered. Furthermore, in addition to the data
that has been described, there is the set of data that is
normal and benign to the system.

Categories 
of attacks

1
DDoS

Mirai

DoS

Recon

Spoofing

Brute force

Web
based

ACK fragmentation, 
UDP flood, SlowLoris, ICMP

flood, RSTFIN flood, PSHACK
flood, HTTP flood, UDP

fragmentation, TCP flood,
SYN flood, SynonymousIP
flood, GREIP flood, Greeth

flood, UDPPlain

Ping sweep, OS
scan, vulnerability

scan, port scan,
host discovery

ARP spoofing,
DNS spoofing

Dictionary brute force

Sql injection,
command injection,
backdoor malware,

uploading attack, XSS,
browser hijacking

2

3

4

5

Figure 5: Categories of the different data sets for specialized
training.

4.2 System Implementation

To implement the system, some ML algorithms were
selected taking into account the processing restric-
tions of the computer platforms used, so that they
do not cause bottlenecks during execution and are
capable of returning good results. The models con-
sidered were Support Vector Machine (SVM), Ran-
dom Forest (RF), Logistic Regression (LR), Gaus-
sian Naive Bayes (GNB), and Convulational Neural
Network (CNN), which were implemented using the
scikit-learn library.

The data was split into 80% for training and 20%
for testing. The part of the data for training was then

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

198



differentiated for the two distributed strategies men-
tioned, where for the Full Knowledge Strategy the
Stratified Split was used to have several portions of
data with the same amount of data representative of
each type of attack, and for the Specialized Knowl-
edge Strategy, the training data was separated accord-
ing to the category of attacks (as shown in Figure 5).
The test data was the same for all strategies.

The models were then trained with the data and
the best models were selected (according to the
observed accuracy, precision, recall and f1-score).
For the Full Knowledge Strategy, the best perform-
ing models were selected for each data subset, for
Specialized Knowledge Strategy the best performing
models were selected for each attack category, and all
models were saved using the Joblib tool. The saved
models were then embedded in the devices so that in-
ferences could be made directly on the devices at the
edge, namely in the Raspberry Pi 3 model b+, to im-
plement the distributed and collaborative IDS.

The core of the proposed distribution is based on
MAS. For this purpose, the MAS was implemented
by using the JADE framework, which individual be-
havior and interact patterns are described in (Funchal
et al., 2024) and in Figure 4. The agents are then em-
bedded in IoT devices (Raspberry Pi 3), together with
the ML models in order to have a distributed and col-
laborative IDS system, as illustrated in Figure 6.

Realistic IoT attack dataset that contains features
extracted from .pcap files, presenting 33 different

types of attacks (including DDoS, brute force,
spoofing, DoS, Recon, Web-based and Mirai)

and benign data.

ML engine

Raspberry Pi #2

Raspberry Pi #3

Raspberry Pi #n

Multi-Agent System (MAS)

...

Raspberry Pi #1

Other devices

Device #1

Process A Process B

kernel

Shared memory

security agent

Figure 6: Structure of edge devices with collaboration and
attack detection capabilities.

Each device contains two processes, the security
agent and the ML engine. The function of the secu-
rity agent is to acquire network data, which in this
case is done by reading the data that has already been
collected (CICIoT2023 data set), extracting the main
features and sending this data to the second process
(ML engine) to predict whether the data is normal or
an attack. For this communication, the two processes
exchange information via a shared memory in the ker-

nel, through the Unix socket.
The security agent also has the ability to commu-

nicate and collaborate with other agents, where mes-
sages are exchanged over the network via TCP/IP.
Thus, on receiving the prediction made by the ML en-
gine, it is evaluated by the agent, which will analyze
the reliability of the prediction and take the action of
requesting help when necessary. When it needs help
due to the uncertainty of its prediction, it will ask the
other agents to evaluate the selected data and will re-
ceive the predictions of the other agents in the system
together with their confidences to make a final deci-
sion, which is based on Equation 1. Different ways of
aggregating the different results were also compared,
analyzing the results obtained through a simple vote,
a simple average and the weighted average (Equation
1), the latter being considered for the analysis of the
strategies because it showed better results than the
others. In this way, the IDS becomes collaborative
and distributed at the edge.

4.3 Evaluation Metrics

The metrics used to evaluate the performance of the
ML algorithms were calculated, namely accuracy, re-
call, precision, f1-score and ROC-AUC. In addition,
the number of collaboration requests in each strategy
was analyzed, as well as the number of samples that
had collaboration, and consequently the number of
samples that had the prediction error avoided due to
collaboration.

In short, accuracy parameter measures the propor-
tion of correct predictions made by the model across
the entire data set/samples, as shown in Equation 2.

accuracy =
T P+T N

T P+T N +FP+FN
(2)

where the True Positive (TP) indicates the correct
identification of an attack, True Negative (TN) indi-
cates the correct identification of normal data, False
Positive (FP) indicates the incorrect identification of
normal data (normal traffic) and False Negative (FN)
indicates the incorrect identification of an attack.

Accuracy is a good metric when the different
classes are well balanced. However, when there is un-
balance between classes, it can give a false impression
of good performance. When dealing with attacks, es-
pecially DoS/DDoS, accuracy can be used to measure
the improvement of one technique over another, but
care must be taken with the performance obtained and
it is necessary to analyze other metrics together.

Precision, on the other hand, measures the pro-
portion of true positive predictions among all positive
predictions made by the model, focusing on the qual-
ity of positive predictions, as shown in Equation 3.

Distributed Machine Learning and Multi-Agent Systems for Enhanced Attack Detection and Resilience in IoT Networks

199



precision =
T P

T P+FP
(3)

Recall, also known as sensitivity, measures the
proportion of true positive predictions among all ac-
tual positive instances, focusing on the quality of neg-
ative predictions, as shown in Equation 4.

recall =
T P

T P+FN
(4)

The evaluation of the f1-score metric consists of
calculating the harmonic mean of precision and recall,
and is used when a balance is sought between high
precision and high recall. If one of the components
(precision or recall) shows low values, this metric will
be punished, clearly indicating the disparity between
them. Equation 5 shows the calculation for f1-score.

f1-score =
2× precision× recall

precision+ recall
(5)

Another metric widely used to evaluate model per-
formance is the ROC-AUC score, which summarizes
a model’s capacity to generate relative scores to dis-
tinguish between positive or negative instances at all
classification thresholds. The score goes from 0 to 1,
where 0.5 indicates random guessing and 1 indicates
perfect performance.

4.4 Discussion of Results

The achieved results are shown in Table 1, which
contains data on the accuracy, recall, precision, f1-
score, and ROC-AUC of the three strategies tested,
namely collaboration with full knowledge, collabora-
tion with specialized knowledge and the centralized
approach where there is no collaboration. In addition,
for the two approaches with collaboration, the number
of samples that required collaboration and the number
of errors avoided (wrong predictions that were cor-
rected with collaboration) were also evaluated.

The results show that the rate of collaboration re-
quests in the specialized knowledge strategy is much
higher than in the full knowledge strategy, being four
times higher, which was already expected due to the
fact that each agent has specific knowledge and could
therefore rely more on other agents to help them make
decisions. But when analyzing the percentage of re-
quests in both approaches, it shows that they had no
more than 4.3% of requests, which is an acceptable
amount in relation to not being in doubt about the de-
cisions to be made and always asking for help, which
could block the whole system with too many requests.
Although the specialized knowledge strategy made
more requests for collaboration, it had much more im-
pact on correcting wrong predictions, with a rate of

32.1%, indicating that specialized knowledge collab-
oration prevented many errors in predictions. On the
other hand, the full knowledge strategy had 7.7% in
correcting wrong predictions, also contributing sig-
nificantly. The large difference between these two
values can be justified by the fact that having special-
ized knowledge is subject to more errors due to differ-
ent characteristics that have not been learned by the
model, and will therefore be corrected through col-
laboration. In a way, this makes this approach more
resilient in detecting new attacks.

Another important aspect is the memory used by
these models in these different approaches, which is
a sensitive point when it comes to an edge approach.
Specialized knowledge may be the best choice when
there are many memory constraints, because it uses
less data to train each model, optimizing the memory
used by the model.

Regarding the performance metrics of each ap-
proach, it can be seen that the collaborative ap-
proaches performed better than the centralized one,
although they did not show a higher accuracy value.
This can be explained by the fact that accuracy is a
global metric that measures the proportion of all cor-
rect predictions. However, it can be insensitive to
unbalanced classes (there is much more attack data
than normal data, mainly due to DoS and DDoS at-
tacks) or to specific cases where precision and re-
call are more critical (scenarios with attacks). Thus,
the improvement in all other metrics, especially f1-
score and ROC-AUC, indicates that collaborative ap-
proaches are doing a better job of correctly identify-
ing the instances of interest, even if this does not di-
rectly increase overall accuracy.

In relation to the specialized knowledge strategy,
the models can be better adjusted to capture nuances
in the data, which can directly result in improvements
in precision and recall metrics due to better detec-
tion of specific patterns. It should be borne in mind
that the increase in precision and recall reflects di-
rectly on the correction/reduction of false positives
and false negatives, which can have a significant cost
for an IDS, where attacks are considered as normal
data and are not identified, and normal data are iden-
tified as attacks and start to interfere in the analysis
when having to mitigate the attacks (e.g. in the next
step with the implementation of an Intrusion Preven-
tion System (IPS)). Figure 7 summarizes the improve-
ment of the different approaches due to collaboration.
It can be seen that the collaborative approaches con-
tributed significantly to improving precision, recall,
f1-score and ROC-AUC compared to the centralized
one, showing improvements between 2.3% and 3.3%.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

200



Table 1: Detailed comparison of distributed strategies and centralized approach.

Attribute Full Knowledge
Strategy

Specialized Knowledge
Strategy Centralized Strategy

Total Samples Analyzed 9507466
Samples Requiring Collab. 98043 (1.03%) 407269 (4.28%) -
Errors Avoided by Collab. 7574 (7.73%) 131069 (32.18%) -
Memory Usage - model size 13748 KB 5799 KB 15900 KB
Accuracy 0.9952 0.9948 0.9968
Recall 0.9970 0.9950 0.9645
Precision 0.9981 0.9997 0.9679
F1-Score 0.9976 0.9974 0.9662
ROC-AUC 0.9904 0.9918 0.9677

Accuracy Recall Precision F1-score ROC-AUC
Metrics

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t (
%

)

-0.16

3.37
3.12 3.25

2.35

-0.20

3.16 3.29 3.23

2.49

Full Knowledge Strategy
Specialized Knowledge Strategy

Figure 7: Percentage improvement for the different dis-
tributed strategies compared to the centralized one.

4.5 Key Findings

Considering the analysis of the results obtained in
the case study and with the study of the literature,
it was possible to summarize the main key findings
in distributing the ML algorithms, listed in Table 2,
where some important aspects were considered when
having more robust algorithms (strong algorithm) and
algorithms with more restrictions (weak algorithm),
and the impact observed. In terms of memory usage,
the better the algorithm chosen (within the limitations
and restrictions found), the less CPU memory will be
used, as fewer collaborations will be needed, reducing
the amount of message/knowledge exchange.

The use of RAM, on the other hand, will depend
directly on the platform on which it is being used.
Linked to this, the weaker the algorithm used due to
the restrictions, the greater the requests for collabo-
ration, which will consequently increase the commu-
nication load. In terms of improved detection, algo-
rithms that are not very powerful show a significant
improvement, while algorithms that already perform
very well require little collaboration, but still show

improvement because with collaboration they are able
to correct the small errors they would have.

More powerful algorithms have a lower probabil-
ity of error and, on the contrary, weak algorithms have
a high probability of error if they don’t collaborate.
With the collaboration mechanism, this probability
is significantly reduced because they start to use the
strengths of the other algorithms. In terms of scal-
ability, if the collaboration network has many weak
algorithms, it can generate many bottlenecks, while if
they are strong, requests will be made to correct small
errors in each of the algorithms, making it highly scal-
able for large-scale systems.

5 CONCLUSIONS

This paper addresses various challenges within the
IoT ecosystem when processing data remotely from
its source. These challenges include response time,
network bandwidth, data transmission rate, and se-
curity concerns. Security is particularly critical for
IoT devices, especially in terms of threat detection
within this environment. Consequently, there is a
need to bring data processing as close to the data
source as possible to achieve faster and more efficient
responses. To address these requirements, this study
proposes a distributed and collaborative IDS at the
edge, specifically on IoT devices. This system uti-
lizes MAS for distribution and collaboration, along
with ML algorithms to identify data patterns collected
from the network. To assess the most effective meth-
ods for distributing the IDS at the edge, various strate-
gies were studied and evaluated using performance
metrics for ML algorithms. This analysis aimed to
highlight the strengths and weaknesses of each ap-
proach. The well-known CICIoT2023 data set was
used to validate the proposed approach, which pro-
vides real data from a large environment of diverse
IoT devices and a variety of attacks on a network.

Distributed Machine Learning and Multi-Agent Systems for Enhanced Attack Detection and Resilience in IoT Networks

201



Table 2: Key findings in the distribution and collaboration of ML algorithms.

Aspect Strong
Algorithm

Weak
Algorithm Impact

Memory
Usage Low High

Weak algorithms will use more processor memory
because they will require more collaboration. On the
other hand, specialized agents use less memory to
store models, while generalist agents need more.

Collaboration
Requests Low High Weak algorithms request more collaboration, leading

to communication overhead.
Accuracy
(Without Collab.) High Low Strong algorithms have good standalone accuracy.

Accuracy
(With Collab.)

Slight
improvement

Significant
improvement

Weak algorithms improve more with collaboration
but may overly rely on it.

Effective
Final Decision

Weighted
Average Simple Voting Weighted decisions are more robust when

collaboration is frequent.
Communication
Overhead Low High More collaboration leads to higher data traffic.

Processing Time Standard High Evaluate if edge network overhead is significant.

Error Probability Low High Weak algorithms may misjudge, leading to higher
error rates without sufficient collaboration.

Edge Network
Impact Low High Network delays may occur depending on the volume

of communication between agents.

Scalability High Limited Strong algorithms are better suited for handling
larger-scale systems with multiple agents.

Energy
Consumption Low High Collaboration requires more energy in IIoT

environments.
Platform
Constraints Low High Stronger algorithms are easier to embed, while weak

algorithms may have limitations on specific hardware.

The proposed approach, which includes different
distribution and collaboration strategies, has shown
promising results, indicating that distribution and col-
laboration outperform centralized structures, are more
resilient to new threats, and significantly reduce the
error rate in predictions. In general terms, the strate-
gies with collaborative IDS showed between 2.35%
and 3.37% improvement in precision, recall, F1-score
and ROC-AUC. Also, among the predictions that had
low confidence, a correction of these predictions of
between 7.73% and 32.18% was observed, indicating
the great potential of the approaches analyzed. Over-
all, it was possible to summarize the strengths and
weaknesses of each approach, bringing out the impor-
tant impacts of each choice and system constraints.

Future work will be dedicated to extend the analy-
sis of the ML distribution for a distributed IDS at the
edge, in order to further optimize the models to be em-
ployed on computational constrained devices. In ad-
dition, collaboration between cloud and edge agents
will be studied taking advantage of MAS to build a
more efficient and resilient IDS.

ACKNOWLEDGEMENTS

This work has been supported by national
funds through FCT/MCTES (PIDDAC): CeDRI,
UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2
020) and UIDP/05757/2020 (DOI: 10.54499/UIDP/
05757/2020); and SusTEC, LA/P/0007/2020 (DOI:
10.54499/LA/P/0007/2020). The author Gustavo
Funchal thanks the FCT Portugal for the PhD Grant
2022.13712.BD.

REFERENCES

Alsboui, T., Qin, Y., Hill, R., and Al-Aqrabi, H. (2021). Dis-
tributed Intelligence in the Internet of Things: Chal-
lenges and Opportunities. SN Computer Science, 2(4).

Berman, D. S., Buczak, A. L., Chavis, J. S., and Corbett,
C. L. (2019). A Survey of Deep Learning Methods
for Cyber Security. Information, 10(4).

Duan, J., Zhang, S., Wang, Z., Jiang, L., Qu, W., Hu, Q.,
Wang, G., Weng, Q., Yan, H., Zhang, X., Qiu, X., Lin,
D., Wen, Y., Jin, X., Zhang, T., and Sun, P. (2024).

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

202



Efficient Training of Large Language Models on Dis-
tributed Infrastructures: A Survey.

Funchal, G., Pedrosa, T., Prieta, F. D. L., and Leitao, P.
(2024). Edge Multi-agent Intrusion Detection System
Architecture for IoT Devices with Cloud Continuum.
In 2024 IEEE 7th ICPS.

Ghosh, S., Mukherjee, A., Ghosh, S. K., and Buyya,
R. (2020). Mobi-IoST: Mobility-Aware Cloud-Fog-
Edge-IoT Collaborative Framework for Time-Critical
Applications. IEEE Transactions on Network Science
and Engineering, 7(4):2271–2285.

Gyamfi, E. and Jurcut, A. (2022). Intrusion Detec-
tion in Internet of Things Systems: A Review on
Design Approaches Leveraging Multi-Access Edge
Computing, Machine Learning, and Datasets. Sen-
sors, 22(10):3744.

Hamouda, D., Ferrag, M. A., Benhamida, N., and Seridi,
H. (2021). Intrusion Detection Systems for Industrial
Internet of Things: A Survey. In 2021 ICTAACS.

IBM Security (2023). Cost of a Data Breach Report. https:
//www.ibm.com/reports/data-breach.

Jennings, N. R. (2001). An agent-based approach for build-
ing complex software systems. Communications of
the ACM, 44(4):35–41.

Jia, Z., Zaharia, M., and Aiken, A. (2018). Beyond Data
and Model Parallelism for Deep Neural Networks.

Kagermann, H., Wahlster, W., and Helbig, J. (2013). Se-
curing the Future of German Manufacturing Indus-
try: Recommendations for Implementing the Strategic
Initiative INDUSTRIE 4.0. Technical report, ACAT-
ECH.

Khouas, A. R., Bouadjenek, M. R., Hacid, H., and Aryal,
S. (2024). Training Machine Learning models at the
Edge: A Survey.

Kong, L., Tan, J., Huang, J., Chen, G., Wang, S., Jin, X.,
Zeng, P., Khan, M., and Das, S. K. (2022). Edge-
computing-driven Internet of Things: A Survey. ACM
Computing Surveys, 55(8):1–41.

Leitão, P. (2009). Agent-based distributed manufacturing
control: A state-of-the-art survey. Engineering Appli-
cations of Artificial Intelligence, 22(7):979–991. Dis-
tributed Control of Production Systems.

Leitão, P., Colombo, A. W., and Karnouskos, S. (2016). In-
dustrial automation based on cyber-physical systems
technologies: Prototype implementations and chal-
lenges. Computers in Industry, 81:11–25. Emerging
ICT concepts for smart, safe and sustainable industrial
systems.

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen,
R., Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., and
Dean, J. (2017). Device Placement Optimization with
Reinforcement Learning.

Mohy-eddine, M., Guezzaz, A., Benkirane, S., and Azrour,
M. (2022). An effective intrusion detection approach
based on ensemble learning for IIoT edge comput-
ing. Journal of Computer Virology and Hacking Tech-
niques, 19(4):469–481.

Mwase, C., Jin, Y., Westerlund, T., Tenhunen, H., and Zou,
Z. (2022). Communication-efficient distributed AI

strategies for the IoT edge. Future Generation Com-
puter Systems, 131:292–308.

Neto, E. C. P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu,
R., and Ghorbani, A. A. (2023). CICIoT2023: A Real-
Time Dataset and Benchmark for Large-Scale Attacks
in IoT Environment. Sensors, 23(13).

Popescu, D., Zilberman, N., and Moore, A. (2017). Charac-
terizing the impact of network latency on cloud-based
applications’ performance. Technical report.

Pourrahmani, H., Yavarinasab, A., Monazzah, A. M. H.,
and Van herle, J. (2023). A review of the security
vulnerabilities and countermeasures in the Internet of
Things solutions: A bright future for the Blockchain.
Internet of Things, 23:100888.

Prazeres, N., de C. Costa, R. L., Santos, L., and Rabadão, C.
(2023). Engineering the application of machine learn-
ing in an IDS based on IoT traffic flow. Intelligent
Systems with Applications, 17:200189.

Qadir, J., Sainz-De-Abajo, B., Khan, A., Garcı́a-Zapirain,
B., De La Torre-Dı́ez, I., and Mahmood, H. (2020).
Towards Mobile Edge Computing: Taxonomy, Chal-
lenges, Applications and Future Realms. IEEE Ac-
cess, 8:189129–189162.

Queiroz, J., Leitão, P., Barbosa, J., and Oliveira, E. (2019).
Distributing Intelligence among Cloud, Fog and Edge
in Industrial Cyber-physical Systems. In Proceed-
ings of the 16th ICINCO. SCITEPRESS - Science and
Technology Publications.

Quy, N. M., Ngoc, L. A., Ban, N. T., Hau, N. V., and Quy,
V. K. (2023). Edge computing for real-time Internet of
Things applications: Future internet revolution. Wire-
less Personal Communications, 132(2):1423–1452.

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
Computing: Vision and Challenges. IEEE Internet of
Things Journal, 3(5):637–646.

Tyagi, S. and Tyagi, A. (2024). Edge Computing: Empow-
ering Real-Time Data Processing and Connectivity.

Wang, H., Liu, T., Kim, B., Lin, C., Shiraishi, S., Xie, J. L.,
and Han, Z. (2020a). Architectural Design Alterna-
tives based on Cloud/Edge/Fog Computing for Con-
nected Vehicles. CoRR, abs/2009.12509.

Wang, Y. E., Wu, C.-J., Wang, X., Hazelwood, K., and
Brooks, D. (2020b). Exploiting Parallelism Oppor-
tunities with Deep Learning Frameworks.

Wooldridge, M. (2009). An Introduction to MultiAgent Sys-
tems. Wiley.

Xie, R., Tang, Q., Wang, Q., Liu, X., Yu, F. R., and Huang,
T. (2019). Collaborative Vehicular Edge Computing
Networks: Architecture Design and Research Chal-
lenges. IEEE Access, 7:178942–178952.

Yang, R., He, H., Xu, Y., Xin, B., Wang, Y., Qu, Y., and
Zhang, W. (2023). Efficient intrusion detection toward
IoT networks using cloud–edge collaboration. Com-
puter Networks, 228:109724.

Zhou, Z.-H. and Zhou, Z.-H. (2021). Ensemble learning.
Springer.

Distributed Machine Learning and Multi-Agent Systems for Enhanced Attack Detection and Resilience in IoT Networks

203


