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Abstract: Smart city operations face risks due to project complexity and the involvement of multiple stakeholders. Such 
risks include cybersecurity, data security and privacy, system interoperability, maintenance of smart 
technology, shortage of trained experts, complicated governance, and stakeholder engagement challenges. 
Assessing these risks is vital to ensure the availability and efficiency of smart city services, support reputation, 
and sustain revenue. Existing assessment tools evaluate smart cities' operational smartness, sustainability, and 
management but often lack comprehensiveness in risk assessment. This paper contributes by proposing a risk 
assessment model using the Dempster-Shafer theory that can consider a full spectrum of risks in smart city 
operations. The model is evaluated on preliminary operational data from a smart transportation system in 
Qatar, and key operational phase risks in smart mobility are assessed.

1 INTRODUCTION 

A smart city aims to enhance citizens' quality of life, 
support the economy, resolve various urban 
problems, such as transportation and traffic 
congestion, foster a sustainable environment, and 
facilitate interaction with government authorities  
(Ismagilova et al., 2019; Sharif & Pokharel, 2021) 

To achieve these goals, proper communication, 
involvement, and active contribution from smart city 
stakeholders are crucial (Hasija et al., 2020). 
Accordingly, smart city operation requires constant 
stakeholder communication to gather and access smart 
city's citizens' usage of services, which will support 
demand estimation, enhance provided services, and 
identify implementation challenges and risks.  

Also, during operation, interoperability between 
digital platforms, operation processes, and incentive 
mechanisms is considered (Hasija et al., 2020).  

Smart city operation is exposed to different risks 
due to the complexity of the smart city project and the 
multiple engaged stakeholders (Sharif & Pokharel, 
2021).  

The risks can be grouped into technological risks, 
such as cybersecurity, data security and privacy, 
system interoperability, and lack of maintenance of 
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smart technology (Shayan et al., 2020)., and non-
technology risks such as scarce trained and 
specialized smart city experts, complicated 
governance, and stakeholders' engagement 
challenges (Shayan et al., 2020). These risks affect 
the availability and efficiency of services.  

Assessment tools are introduced by different 
authors to assess risks related to the operation, 
sustainability, or management ( Deveci et al., 2020; 
Fernandez-Anez et al., 2018; Patrão et al., 2020 ). 

However, these assessment tools are not 
comprehensive (Alawad et al.2020; Dimitriadis et al. 
,2020;Domingos et al., 2008) as they focus mainly on 
technology risks independently from non-technical 
risks (Singh & Helfert, 2019).Regarding operation, 
which is the focus of this paper, risks become 
interrelated and affect performance (Zheng et al., 
2020). 

This paper proposes a risk assessment model by 
considering technical and non-technical risks during 
the operation phase of smart mobility. The model 
assesses risks using the Dempster-Shafer (DS) theory. 

The paper contributes by proposing a risk 
assessment model for smart cities. The model is 
generic and is able to include a wide spectrum of 
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technical and non-technical risks across smart city 
project operational phase. 

Therefore, the following research questions are 
addressed in this paper.  
RQ1: What are the main operation phase risks in 
smart mobility? 
RQ2: How can a smart city risk assessment model be 
applied to smart mobility application data? 
Further discussion in this paper is organized as 
follows: literature review in Section 2. Smart mobility 
data is provided in Section 3. Section 4 discusses the 
outcome of the analysis, and Section 5 provides the 
conclusions. 

2 LITERATURE REVIEW 

This section illustrates the literature research on the 
smart mobility dimension in smart cities, operational 
phase risks, and risk assessment tools and models.   

2.1 Smart Mobility 

Smart mobility is the main dimension of a smart city 
that solves common transportation issues(Sharif & 
Pokharel, 2021). Technology can support integrated 
mobility (Porru et al., 2020).  

The technologies that enable smart mobility 
include AI, IoT, big data, and blockchain (Paiva et al., 
2021). Smart mobility should aim to use autonomous 
vehicles and provide coordinated choices for people 
to ease commutation (Appio et al., 2019). The 
communication between autonomous cars and smart 
mobility is achieved through IoT devices that collect 
real-time decision-making data (Silva et al., 2018). 
The ability to communicate among the vehicles 
through IoT makes it the Internet of Vehicles (IoV), 
which allows communication between vehicles and 
helps to support traffic safety, efficiency, and smart 
mobility (Ismagilova et al., 2019).  

The risks associated with smart mobility 
applications are the unavailability of network and 
sensors' connectivity (Porru et al., 2020), problems 
with security and privacy of mobility as a service 
application (Paiva et al., 2021), the unavailability of 
real-time connectivity and data analytics to use crowd 
smart applications(Tao, 2013). These risks need 
consideration during the planning and operation of 
smart mobility applications (Ullah et al., 2021). 

 
 
 

2.2 Risks Related to Smart Mobility 
During Operation 

During the operation, smart mobility applications are 
vulnerable to multiple risks, such as legal, financial, 
governance, and technical resources. In addition to 
technological risks such as security, interoperability, 
network connections,  and data privacy (Oladimeji et 
al., 2023). A study by Alanazi & Alenezi (2024) 
identified major risks in smart mobility applications, 
specifically in smart transportation systems: lack of 
standards, which will lead to interoperability 
challenges when connecting different applications, 
and risks related to stakeholders' collaboration and 
engagement.  

The study provided multiple interoperability 
issues related to the layers of the traffic management 
system and proposed an interoperability platform 
requirement to overcome challenges and risks. 

Another study by Lacinák (2021) categorized 
risks related to smart transportation systems as risks 
related to personal level, such as cyber-attacks and 
data privacy. Risks related to the community level, 
namely outdated technology infrastructure and 
insufficient network connections. Other risk 
categories are related to economic levels like 
untenable pricing policies, design levels such as 
inadequate infrastructure, and strategy levels related 
to users' culture change in smart transportation 
systems (Lacinák, 2021). 

Studies highlight cybersecurity as a significant 
risk associated with IoT technology, which is 
considered a main building block of smart mobility 
applications (Lee, 2020; Ande et al., 2020).  

Addressing smart mobility risks requires a robust 
legislation and governance framework to set 
standards, policies, and guidelines to provide 
solutions to technology and non-technology-related 
challenges of operating smart transportation systems 
and other smart mobility applications  (Suthanthira 
Vanitha et al., 2021).  

2.3 Risk Assessment Tools and Models 

Dimitriadis et al. (2020) developed a cybersecurity 
risk assessment tool that uses a conjunction of the 
OCTAVE approach (for identification, analysis, and 
prioritization) and MAGERIT approach (for 
identification, analysis, and mitigation and 
specifically utilized for communication-related risks) 
for a computerized risk assessment in smart sensor 
environments. The tool deploys existing standards 
and platforms and extracts attack patterns to evaluate 
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risks in the automated systems used in smart city 
dimensions.  

Another tool is the Smart City KPI-guided 
Security tool proposed by Ye et al. (2023). The tool 
and applications; however, this model is useful for the 
design phase of a smart city.  

Ullah (2018) proposed a risk index model. The 
author applied linear estimation, hierarchical fuzzy 
logic, and a composite model to evaluate the risk 
index. This model focuses on underground locations 
and clustered risk factors to develop a risk index to 
prioritize underground locations (Ullah, 2018).  

Alawad et al. (2020) proposed a smart mobility 
risk assessment model by considering railway 
applications. The model evaluates and controls 
security and safety risks within railway operations. 
The model uses an adaptive neuro-fuzzy inference 
system (ANFIS) and artificial neural networks 
(ANN) to train an AI model to improve the accuracy 
of the risk projections, learning, and capturing actual-
time risk levels. However, the model assumes 
linearity of inputs and risk assessment and requires 
time for the artificial neural network training. 

The use of AI and machine learning for risk 
assessment is proposed by (Sharma & Singh, 2022). 
The tool is expected to help identify and predict future 
risks. 

3 RESEARCH DESIGN 

This section provides the research method, data 
collection, the proposed risk assessment model for 
smart cities, and the application of smart mobility 
operations risks.  

3.1 Research Method 

Figure 1 will illustrate the proposed risk assessment 
model for smart cities, which will be detailed in the 
following paragraphs: 

 

3.1.1 Inputs  

Initial data is collected through interviews with 
experts and a review of the risk register.  

3.1.2 Risk Identification  

Initial data is analyzed as follows: 
a. Risk incidents are ranked during the interviews. 

The interview scripts are studied; challenges and 
incidents causing risks are denoted by (I).  

b. The data is further streamlined to name subjects 
of risk, essentially leading to a basic probability 
assignment (the probability of a risk to occur), 
represented by (m), for the likelihood of an 
incident leading to risk.  

c. Incidents causing risks and basic probability 
assignments resulted from the risk identification 
step.  

3.1.3 Risk Analysis  

a. The analysis is performed using the DS Theory, 
which is considered a generalized probability 
theory in a fixed space. In this theory, the 
probability of one potential event is assigned to 
reciprocally exclusive sets (Dempster, 1968). 

b. The inputs for DS theory are incidents causing 
each risk resulting from the initial data analysis 
and the initial likelihood for these incidents to 
occur.  

c. DS theory calculates the combined basic 
probability assignment of multiple incidents 
causing a specific risk. 

d. Three main functions are used in DS theory for 
analysis: the basic probability assignment 
function (m), the belief function (Bel), and the 
plausibility function (Pl) are used in the DS 
theory. The basic probability assignment 
function defines the probability measure over a 
set of sample spaces, mapping each subset to a 
value between 0 and 1 (eq 1). It assigns a zero 
probability to the empty set (eq 2) and ensures 
that the sum of probabilities for all subsets in the 
power set equals 1 (eq 3).   𝑚: 𝑃(𝑋) → ሾ0,1ሿ,                         (1) 𝑚(∅) = 0,                                    (2)                ∑ 𝑚(𝐴)஺∈௉(௑)  = 1,                        (3) 

 

Where P(X) is the power of set X and ∅ the null set. 

Figure 1: Risk assessment model for smart city. 
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e. The interval [0,1] is defined by two factors: 
belief (Bel) and plausibility (Pl). For 
example, if set (𝐴ଵ) includes all states under 
consideration (risks in this paper), and set 
(𝐵ଵ ) is considered a subset of these states 
(incidents causing the risks), then Bel (𝐴ଵ) 
represents the sum of all basic probability 
assignments (m) for subsets (𝐵ଵ). Similarly, 
plausibility Pl (𝐴ଵ) is the sum of the basic 
probability assignments for subsets (𝐵ଵ) that 
intersect with the set (𝐴ଵ) 𝐵𝑒𝑙(𝐴ଵ) = ෍ 𝑚(𝐵ଵ)஻భ|஻భ⊆஺భ                (4)𝑃𝑙(𝐴ଵ) = ෍ 𝑚(𝐵ଵ)஻భ|஻భ∩஺భஷ∅               (5)

f. The basic probability assignments denoted as 
(m), which are combined based on expert 
inputs and risk register documents for risk 
incident identification, are analyzed using the 
DS combination rule.  

g. DS combination rule is a  stringent AND 
operation on the evidence obtained from 
various sources to form a joint belief (Sentz 
& Ferson, 2002). 

h. The joint belief, represented through a basic 
probability assignment (𝑚ଵଶ), is decided by 
summing the product of the basic probability 
assignments for all sets (referred to as 
incidents in this context), as shown in (eq 6). 
According to (eq 7), the combined basic 
probability assignment (𝑚ଵଶ), of the null set 
is zero.  

i. The variable (K) is the basic probability 
assignment in conflict scenarios, occurring 
when the intersection between incidents is 
null, as indicated in (eq 8). The factor (1-K) 
is the normalization factor to mitigate the 
influence of conflicting evidence. Table 1 
illustrates the combination rule parameters. 

j. The risk analysis is applied to a sample risk, 
which is data protection and privacy, referred 
to as DPR. Data protection and privacy risk 
is caused by multiple incidents; for example, 
incident B incident C, the basic probability 
assignment of incident B is denoted as 𝑚 ଵ (𝐵) , and the basic probability 
assignment for incident C is denoted as 𝑚ଶ (𝐶) 

 
 
 

 

Table 1: DS combination rule parameters. 

 
The following formula shows the combination rule, 
which merges the basic probability assignment of a 
subset (B) (representing the risk's first incident in this 
research) with the basic probability assignment of a 
subset (C) (representing the second incident). In this 
context, DPR refers to the set of incidents causing this 
specific risk. The DS combination rule emphasizes 
the agreement among various incidents, which are 
sources of risk while reducing the influence of 
conflicting data using a normalization factor. 

 𝑚ଵଶ (𝐷𝑃𝑅) = ∑ ௠ಳ∩಴సಲ భ (஻) ௠మ (஼)ଵି௄ , when𝐷𝑅𝑃 ≠ ∅  
(6)

 𝑚ଵଶ (∅) = 0 (7)

were, K= ∑ 𝑚ଵ (𝐵)𝑚ଶ (𝐶)஻∩஼ୀ∅    (8) 

k. As a result of the risk analysis step, incident 
combinations are utilized to calculate the 
probability of risk occurrence using Bayesian 
theory and to identify interrelations through a 
Bayesian Network (BN), as the illustrated 
formulas in  (Stephenson, 2000). Risk scenarios 
are developed during risk analysis based on the 
initial data analysis from experts' interviews and 
the combinations derived from the DS theory. 
The complexity of smart city project and the 
multiple stakeholders made the development of 
the risk scenarios challenging.  

3.1.4 Risk Evaluation  

a. The risk evaluation step is completed through 
risk scenario identification and evaluation.  

b. Risk scenarios are represented using a Bayesian 
Network, a graphical probabilistic model. The 
Bayesian Network (BN) is a directed acyclic 

Notation Description 

𝑚ଵଶ (DPR) Combined basic probability assignment 
of a risk of interest (DPR) 

𝑚ଵ (𝐵) Basic probability assignment of an 
incident (B) 

𝑚ଶ (𝐶) Basic probability assignment of incident 
(C) 

K Basic probability assignment of a conflict 
situations 
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graph where all edges have a specific direction, 
used to find the joint probability of variables 
(Stephenson, 2000).  

c. The joint probability from the Bayesian Network 
is used to calculate the combined probability for 
each scenario. Specifically, the combined basic 
probability assignment for a given risk is 
considered. For instance, the joint probability 
resulting from other risks causing operation risk 
(OP) is illustrated as follows: 

 

P (CybR, DPR, OP) = P (OP| DPR). 
P(OP). P(DPR| Cybr). (9)

 

Where OP is operation phase risk, DPR is data 
protection and privacy risk, and CybR is 
Cybersecurity risk. 

The general equation for the joint probability 
function in the Bayesian Network is presented as 
follows: 

P(X) = ∏ (𝑃(𝑋௜|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝑋௜))௡௜ୀଵ            (10) 
d. The resulting joint probability for each risk 

scenario is used to create decision-making 
criteria by evaluating these scenarios against 
their impacts on smart city sustainability using 
the Analytical Hierarchy Process (AHP). As 
introduced by Saaty (1987), AHP involves 
pairwise comparisons of risks, where preferences 
between elements are assessed on a scale from 1 
to 9. The consistency index (CI) and consistency 
ratio (CR) are calculated based on these ratings. 
If the CR is less than or equal to 0.1, the 
evaluation matrix is considered acceptable 
(Awasthi & Chauhan, 2011).  

e. The evaluation vector is then used to assess each 
risk scenario using the weighted sum method. 

The following section will provide the collected data 
and the application of the first two steps of the model, 
where risks will be identified in the first step and 
analyzed in the second step of the model. 

3.2 Data Collection 

Data on smart mobility in Qatar are collected through 
an operation team focus group. The discussions 
focused on the research questions. Comprehensive 
conversations with the focus group took place to 
identify the interrelations between risks based on their 
experience and daily observations. Also, common 
incidents causing risks are used to develop the risk 
scenarios. 

Project documents were examined to find risks 
and risk management strategies throughout the 
operation phase for smart mobility. The data collected 
are summarized in Table 2, where risks are 

considered, incidents causing each risk, and the 
experts' basic probability assignment for each 
incident to occur; the risk register presents three years 
of operation. The basic probability assignments are 
ranked using a Likert scale where five is considered 
very high probability, four is high, three is moderate, 
two is low, and one is very low.   

Table 2: Smart transportation application operational risks. 
 

Risk Incidents causing 
risks 

Basic 
Probability 
Assignment 

(m)

    

Y
ea

r1
 

Y
ea

r2
 

Y
ea

r 3
 

Partners 
Engagement 
Risk  

  

Lack of 
communication 
between different 
Partners 

4 3 4 

Turnover of some 
outsourced 
employees from 
partners 

4 3 4 

Professionals 
and consultants   
Risk  

Limited 
knowledgeable 
and trained 
experts and 
consultants  

2 2 3 

Continuity of 
Operation risk 

No clear disaster 
recovery plan  4 4 4 

Communication 
and Network 
Infrastructure 
risk  

Cyberattacks  5 5 5 

Lack of 
maintenance 
model for systems  

4 4 3 

Data Protection 
and Privacy 
Risk  
  

  

Operational error 4 4 3 
Cyber attacks  5 5 5 
Lack of security 
awareness at the 
users' level 

3 3 2 

Cybersecurity 
  

  

Lack of 
maintenance 
model for systems  

4 4 3 

Lack of security 
awareness at the 
users' level 

3 3 2 

Cyberattacks   5 5 5 

3.3 Application of DS Theory and 
Combination Rule 

Application of DS theory and combination rule is 
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performed to calculate combined basic probability 
assignments for the identified risks, which is 
presented in Table 3. The combinations of incidents 
causing each risk with the highest values are 
presented to be considered by the decision-makers.  

For each risk, DS theory is applied to incidents as 
illustrated in section 3.1, in the risk analysis step. 

The collected data presents that partners' 
engagement risk resulted from the incidents of lack of 
communication between partners and turnover of 
some outsourced employees from partners. Applying 
DS theory to the data from year 1, year two, and year 
three shows that partner engagement risk will occur 
due to both incidents occurring concurrently with a 
value of 0.444, with the highest combined basic 
probability assignment resulting from DS theory and 
combination rule application.  

For professional and consultant risk, the 
combined basic probability assignment of the 
incident limited knowledgeable and trained experts and 
consultants for the three years is 0.222. 

Continuity of operation risk is caused by no clear 
disaster recovery plan. Combining the three years of 
data of the basic probability assignment shows that 
the combined basic probability for this risk to occur 
is a value of 0.222.  

Data protection and privacy risk are caused by 
three incidents: operation error, lack of security 
awareness at the user level, and cyberattacks. 
Application of DS theory and combination rule 
results that the combined basic probability 
assignment has a value of 0.667 for the risk to occur 
due to operational error and cyberattacks occurring 
simultaneously. The risk has a combined basic 
probability assignment of 0.447 to occur if operation 
error, lack of security awareness, and user' level 
incidents happen at the same time.  

Cybersecurity risk results from a lack of 
maintenance model for systems, lack of security 
awareness at the users' level, and cyberattacks. 
Applying the DS theory and combination rule shows 
that the combined basic probability assignment for 
this risk to occur due to cyberattacks alone is 0.667. 
Also, if there is a lack of security awareness at the 
users' level and cyberattacks happen concurrently, the 
combined basic probability assignment for 
cybersecurity risk to occur is 0.667. The incidents of 
lack of security awareness at the users' level and lack 
of maintenance model for the system, if occurred 
simultaneously, will cause cybersecurity risk to occur 
with combined basic probability assignment with a 
value of 0.447 
 

 

Table 3: Combined basic probability assignments. 
 

Risk 
 

Combined 
incidents 

Combined 
basic 

probability 
assignment 

Partners 
Engagement 
Risk 

Lack of 
communication 
between different 
Partners  0.444 Turnover of some 
outsourced 
employees from 
partners  

Professionals and 
consultants Risk 

Limited 
knowledgeable 
and trained 
experts and 
consultants 

0.222 

Continuity of 
Operation risk 

No clear disaster 
recovery plan 0.222 

Communication 
and Network 
Infrastructure 
risk 

Cyberattacks  

0.667 
Lack of 
maintenance 
model for 
systems  

Data Protection 
and Privacy Risk 

Operational error 0.667 Cyberattacks  
Lack of security 
awareness at the 
users' level 

0.447 
 

Operational error 

Cybersecurity 

Lack of 
maintenance 
model for 
systems  0.447 

 Lack of security 
awareness at the 
users' level 
Cyber attacks   

0.667 Lack of security 
awareness at the 
users' level 
Cyberattacks   0.667 

 

The common risk scenario for operation risk to 
occur is due to the occurrence of cybersecurity risk 
that will cause data protection and privacy risk, 
causing operations discontinuity of interruptions.  

P (CybR, DPR, OP) = P (OP| DPR). P(OP). 
P(DPR| Cybr) 

The joint probability for this scenario is calculated 
using (eq10); using the collected data, the value for 
the probability of this scenario to transpire is  
P (CybR, DPR, OP) = 0.495 
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4 DISCUSSIONS  

Smart city operation is a complex and 
multidisciplinary task where multiple smart systems 
must be considered. Since the provided services 
within the smart city depend on technological and 
non-technological factors, the smart city operation 
phase will be vulnerable to multiple risks. This paper 
focussed on two research questions. The first one is 
related to operation phase risks related to smart 
mobility.  

The literature shows that during the operation 
phase of smart mobility applications, including 
technology risks such as cybersecurity and 
interoperability, and non-technology risks such as 
lack of standards and governance. Smart mobility, as 
a major dimension of a smart city, has applications 
such as smart transportation systems, which are 
studied in this paper.  

The technical risks considered in the sample 
transportation system are like the risks reviewed in 
the literature, yet operation teams need to consider 
interoperability risks between various smart mobility 
applications.  

For non-technology risks, legislation risks, 
governance risks, and lack of policies and standards 
risks need more attention from operation and 
decision-making teams to avoid challenges, such as 
service discontinuity, and reputation damage. The 
previous paragraph answered the first research 
question regarding the main operation phase risks in 
smart mobility applications.  

The second research question concerns the tools 
and models that can be used for assessment. A model 
with four main steps and three main tasks (risk 
identification, risk analysis, and risk scenarios 
evaluation) is proposed. The model uses a focus 
group and documentation search (qualitative 
approach) for data collection. At the same time, the 
analysis phase used DS theory to quantify the 
likelihood of risks occurring and to calculate the 
combined probability of risk occurrence. The 
Bayesian network is used for scenario presentation in 
the fourth step, and scenario probabilities are 
calculated using Bayesian theory. The presented 
scenario probability shows that operation risk will 
occur due to technology-related risks, especially 
when cybersecurity risk occurs since it will lead to a 
cascading effect on other risks.  

The model is tested on smart transportation 
applications in the operation phase in Qatar. In Qatar, 
the operation team considers six main risks: 
cybersecurity, data protection and privacy, 
communication and network infrastructure, partner 

engagement, professional and consultant, and 
continuity of operations. The data provided the 
incidents leading to these risks and the experts' basic 
probability assignments for the incident to arise. 
Technology-related risks, namely cybersecurity, data 
privacy and protection, and communication and 
network infrastructure risks, share similar incidents. 
Thus, they are interrelated. The combined incidents 
with cyberattack incidents have a high basic 
probability assignment. Accordingly, serious 
protective measures need to be taken to avoid or 
minimize the consequences on smart transportation 
systems in case such incidents occur.   

The paper shows that applying DS theory and the 
combination rule provides a quantitative value for 
combined basic probability assignments for incidents. 
Accordingly, decision-makers can take the proper 
measures to manage these risks. High probability 
risks from specific incidents will be clear, and 
mitigation plans can be developed to avoid or 
minimize the consequences of the risks. 

For instance, the combined basic probability 
assignments for the incidents, cyber-attacks, and lack 
of security awareness at the users' level is 0.667, 
which is considered high probability(Acebes et al., 
2024) and, in comparison to the other incidents, and. 
Thus, in the case of an application, management 
needs to take measures to raise cyberattack security 
awareness. 

Also, looking at partners' engagement risk, the 
probability of the two incidents causing this risk to 
occur in the same period is obtained as 0.444. 
Therefore, management must ensure proper 
communication between different partners and 
minimize the turnover of outsourced employees, 
specifically from partners. 

Identifying individual scenarios is challenging, as 
each smart city scenarios could be different due to 
unique design of applications systems and represent 
complexity through a number of interconnections 
between systems and stakeholders (Damasiotis, 
2022).  

Based on the outcome, it can be mentioned that 
data gathering and analysis with DS theory can help 
decision-makers understand the risk situation and 
prepare the right measures to mitigate risk impact.   

5 CONCLUSIONS 

The paper reviews various risk factors and assessment 
models that can be applied to smart mobility 
applications. A model is proposed to address risks in 
smart mobility. The model is tested on a smart 
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transportation application in Qatar and found that the 
assessment with the proposed model can help make 
risk management decisions.  

Future research can investigate the interrelations 
between smart mobility risks, apply the Bayesian 
Network and theory, and produce a decision-making 
criterion for this significant smart city dimension.  

Another aspect of future research is investigating 
the transferred risks from the design or 
implementation phases of the smart city application 
lifecycle. Finding a way to consider them in 
probability calculations will provide robust results 
when the decision-making criteria are built.  
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