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Abstract: Spatial transcriptomics (ST) enables studying spatial organization of gene expression within tissues, offering 
insights into the molecular diversity of tumors. Recent methods have demonstrated the capability to 
disaggregate this information at subspot resolution by leveraging both expression and histological patterns. 
Elucidating such information from histology alone presents a significant challenge, but if solved can enable 
spatial molecular analysis at cellular resolution even where ST data is not available, reducing study costs. 
This study explores integrating single-cell histological and transcriptomic data to infer spatial mRNA 
expression patterns in colorectal cancer whole slide images. A cell-graph neural network algorithm was 
developed to align histological information extracted from detected cells with single cell RNA, facilitating 
the analysis of cellular groupings and gene relationships. We demonstrate that single-cell transcriptional 
heterogeneity within a spot could be predicted from histological markers extracted from cells detected within 
it. Our model exhibited proficiency in delineating overarching gene expression patterns across whole-slide 
images. This approach compared favorably to traditional computer vision methods which did not incorporate 
single cell expression during the model training. This innovative approach augments the resolution of spatial 
molecular assays utilizing histology as sole input through co-mapping of histological and transcriptomic 
datasets at the single-cell level. 

1 INTRODUCTION 

Cancer poses tremendous global burden on healthcare 
and quality of life. By the end of 2023, nearly 2 
million new cancer cases and more than 600,000 

 
* Denotes equal first authorship. 

cancer deaths will occur in the United States (Siegel 
et al., 2020, 2023). Colorectal cancer (CRC) is a 
particularly formidable solid tumor, with an annual 
incidence of approximately 150,000 new cases in the 
United States and a 63% 5-year survival rate (Siegel 
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et al., 2020, 2023). With the shift in CRC to younger 
demographics and tumor metastasis being 
responsible for most cancer deaths, there is a pressing 
need for high-fidelity screening and prognostication 
(Cheng et al., 2022). The treasure trove of imaging 
and genomics information provided by nascent 
molecular assays and informatics techniques has the 
potential to inform more effective, targeted treatment 
options by revealing novel prognostic biomarkers. 

Tumor Infiltrating Lymphocytes (TIL) are critical 
in modulating the Tumor Microenvironment (TME) 
and Tumor Immune Microenvironment (TIME) (de 
Visser & Joyce, 2023). The TME consists of 
malignant and benign cells, blood vessels, and 
extracellular matrix, interconnected through complex 
communication via cytokine recruitment factors (de 
Visser & Joyce, 2023). Recent studies highlight the 
importance of immune infiltrates, such as T cells, B 
cells, NK cells, and monocyte/lymphocyte cells, and 
their distribution, density, and relationships in 
mounting an effective anti-tumor response. For 
example, high levels of cytotoxic T cells within the 
tumor may indicate immune exhaustion (Collier et 
al., 2021). Understanding molecular changes and 
spatial arrangements associated with colon cancer 
metastasis is still incomplete, though several digital 
pathology assays have incorporated existing findings 
to serve as independent risk factors for recurrence. 
These assays include: 1) Immunoscore, which 
measures the density of cytotoxic T-cells at the 
tumor's invasive margin and inside the tumor (Galon 
et al., 2014), 2) CDX2, an epithelial marker of 
pluripotency indicating the tumor's ability to bypass 
immune response and growth inhibition checkpoints 
(Dalerba et al., 2016; Saad et al., 2011; Tarazona et 
al., 2020), and 3) circulating tumor DNA, such as 
mutations in the Vascular Endothelial Growth Factor 
(VEGF) pathway (G. Chen et al., 2021; H. Li et al., 
2019). While these assays are predictive of recurrence 
risk, they provide only a limited perspective on tumor 
metastasis phenomenology. 

Spatial omics technologies, like 10x Genomics 
Visium Spatial Transcriptomics (ST) or GeoMX 
Digital Spatial Profiling (DSP), have facilitated the 
simultaneous analysis of multiple biomarkers, 
including the whole transcriptome, with remarkable 
spatial resolution (K. H. Chen et al., 2015; Hu et al., 
2021; Lewis et al., 2021; Moses & Pachter, 2022). 
These technologies have been applied to further 
characterize TIL subpopulations in TME. However, 
their clinical utility is limited due to high costs, low 
throughput, and limited reproducibility. In previous 
work, we demonstrated the feasibility of utilizing 

machine learning algorithms to extract TIL and 
spatial biology information from Hematoxylin and 
Eosin (H&E) stains. This can be a cost-effective and 
high-throughput digital biomarker that could be 
employed prospectively as an adjunct test similar to 
Immunoscore for recurrence risk assessment (Monjo 
et al., 2022; Zeng et al., 2022). We found that careful 
selection of algorithms is crucial to capture molecular 
alterations and pathways reflective of 
histomorphological changes or large-scale tissue 
architecture changes (Fatemi et al., 2023; Srinivasan 
et al., 2023). 

Nevertheless, the resolution of these findings is 
currently restricted to the available resolution of 
Visium spots, typically around 50 microns, which 
aggregates expression data across a small number of 
cells (1-10 cells). Incorporating single-cell 
information, captured through the new Chromium 
Flex technology can improve characterization of 
spatial cellular heterogeneity to enhance the 
resolution of the Visium data. Recent advancements 
in profiling technologies, including 10x Flex and 
CytAssist assays, enable the profiling of single-cell 
transcriptomics (scRNASeq) on serial sections of 
formalin-fixed paraffin-embedded (FFPE) tissue. 
This has the potential to enhance the capacity to 
perform spatial assessments at single-cell resolution 
on diverse cohorts. 

Existing technologies to increase the resolution of 
Visium data require both ST and histological 
information and do not operate on tissue images 
alone. Previous studies have made attempts to infer 
single-cell RNA sequencing (scRNA-seq) data from 
breast cancer tissue slide sections, improving the 
resolution of the data and enabling the identification 
of different cell types within the tissue (Choi & Kim, 
2019). Others have made attempts to infer Visium ST 
expression patterns aggregated across several cells 
per spot using image classification techniques with 
some domain-specific adaptations. For example, 
recent studies have trained DenseNet-121 and 
InceptionV3 models to predict gene expression (B. 
He et al., 2020; Levy-Jurgenson et al., 2020), and 
another work used a custom convolutional layer 
along with a graph attention network and transformer 
model to share information between Visium spots 
(Zeng et al., 2022). While the Visium platform 
primarily provides low-resolution, aggregated 
expression measurements across cells contained 
within a 50-micron spot (Duan et al., 2022; J. Liu et 
al., 2022), single-cell analyses offer a more 
comprehensive view of cellular heterogeneity. 
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The primary goal of this study is to enhance the 
predictive capability of algorithms that infer ST data 
solely from histology images, capturing single-cell 
heterogeneity within a spot and their aggregate spot-
level expression. To achieve this, we combine the 
precise locations of individual cells, as identified in 
whole cell images, with the granular data from single-
cell RNA sequencing (scRNA-seq). This approach 
integrates histological details from localized nuclei 
within and around Visium spots with corresponding 
scRNA-seq profiles mapped to the same spots. By 
seamlessly merging these datasets, our framework 
stands extracts richer molecular insights from cells, 
facilitating a more accurate prediction of both Visium 
ST and individual cell information. 

We develop attribution methods to examine the 
structural organizations of cells that are most 
correlated with the expression of specific genes. This 
can contribute to a better understanding tumor-
immune microenvironment dynamics and potentially 
aid in developing prognostic tools for colorectal 
tumors. In this paper, we compare the accuracy of 
methods that use cells as features with conventional 
computer vision methods featured in our previous 
work. Importantly, this study does not claim to infer 
scRNASeq data at specific locations of individual 
cells. Rather, we demonstrate the ability to leverage 
single-cell information to enhance the expression 
prediction at Visium spots on held-out tissue slides. 
This research establishes a foundational workflow 
and conceptual framework for the future inference of 
such information. 

2 RESULTS 

2.1 Overview of Cells2RNA 
Framework: Bridging Histological 
Patterns with Single-Cell 
Expression 

Cells2RNA was crafted to infer single-cell expression 
from discernible histological patterns in instances 
where spatial transcriptomics and single-cell data 
might be lacking (Figure 1). The challenge lies in 
deducing single-cell nuances solely from histological 
patterns surrounding pinpointed cells (Figure 2A). 
Prior research has been limited to interpreting 
aggregated spot-level data. Yet, when disaggregated 
to the individual cell level, a richer tapestry of 
heterogeneity emerges, which becomes our focal 
point for inference. The goal of this study is to derive 

molecular insights paralleling the depth of Visium-
based investigations, but strictly from histological 
imaging. 

Central to our approach is a co-mapping 
methodology where histological patterns detected at 
the cellular level are intricately aligned with single-
cell expression data (Figure 1A). Spatial 
transcriptomics serves as an intermediary in this 
process: during training, single-cell RNASeq data is 
mapped to corresponding Visium spots (Figure 1B) 
where cells are located and acts as an inference target 
for the histological attributes derived from these 
located cells. Although this alignment might not be 
perfect, it closely mirrors genuine single-cell 
expression dynamics within each Visium spot.  

Using Visium and paired 40X resolution whole 
slide imaging from a cohort of nine stage pT3 
colorectal patients (see section “Data Collection and 
Preprocessing”), the co-mapping technique was 
benchmarked against patch-level models 
(Inceptionv3) and other CGNNs that utilize 
alternative information extraction methods. We 
assessed their performance on predicting spot-level 
expression, capturing cellular heterogeneity within 
spots (using Wasserstein distance), maintaining tissue 
architectural relationships, and pathway analysis. 

2.2 Model Comparison 

Overall, models have strong performance– selecting 
the top CGNN model per gene resulted in an AUROC 
of 0.8138 ± 0.0069 and Spearman's statistic of 0.5724 
± 0.0133 (Table 1). However, across all experiments, 
model performances did not appear significantly 
different from each other, though we noticed several 
important trends (Figure 3,4). CGNN models were 
on-par with the Inception model (AUC=0.8204 ± 
0.0073). The most predictive cell-based model had an 
AUROC of 0.8093 ± 0.0083, similar to the 
InceptionV3 model's AUROC interval of 0.8204 ± 
0.0073, which leveraged additional information 
beyond the cell's immediate neighborhood and may 
have also benefited from the built-in structural feature 
extraction of CNNs. There was high agreement in 
top-performing genes between CGNN methods using 
graph contrastive learning or single-cell penalization 
as compared to a CGNN with no 
penalization/pretraining (Appendix Figure 1, 
Appendix Table 1). 
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Figure 1: Overview of Cell2RNA’s Co-Mapping Approach: (A) Low-dimensional visualization of single-cell RNA profiles, 
clusters indicating cell-type. (B) Spatial layout of identified cells across the tissue slide (assignment to spots represented by 
hexagons), color-coded by distinct gene expression patterns mapped from single cell profiles featured in (A). (C) In-depth 
view of cells located within a specific Visium spot, illustrating connectivity and cell relationships. Expression-related 
histological features, represented by grey rectangles, are shared among neighboring cells through red curves via a graph neural 
network. (D) A side-by-side low-dimensional comparison of scRNASeq profiles for a representative Visium spot: actual 
expression (red), model-predicted expression using the co-mapping training approach (green), and expression prediction 
without co-mapping training (blue). 

Table 1: Comparison of model performance. Aggregate AUROC is calculated as the median AUROC across genes. Gene-
level AUROC is calculated as the mean across cross-validation folds. 

Modeling Approach Spearman AUROC Optimal Transport 
(EMD) 

Vanilla CGNN 0.5591 ± 0.0146 0.8093 ± 0.0083 0.2113 ± 0.0018
CGNN: Graph Contrastive 

Learning 
0.5356 ± 0.0177 0.8049 ± 0.0083 0.1900 ± 0.0020 

CGNN: Single-Cell 
Penalization 

0.5381 ± 0.0158 0.8012 ± 0.0074 0.1473 ± 0.0018 

CGNN: GCL and Single-
cell penalization 

0.5464 ± 0.0156 0.8084 ± 0.0093 0.1415 ± 0.0018 

Top CGNN per Gene 0.5637 ± 0.0135 0.8138 ± 0.0069 N/A 
Top Model per Gene 0.5766 ± 0.0122 0.8206 ± 0.0076 N/A 

InceptionV3 (256x256) 0.5724 ± 0.0133 0.8204 ± 0.0073 N/A 
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Figure 2: Schematic Representation of the Neural Network Workflow for Single-Cell Analysis. During the training phase, 
(A) a pre-trained Mask R-CNN model is applied to histology images to detect individual cells, after which a 6-nearest 
neighbors graph is constructed for the detected cells. (B) Features for each cell are extracted using a ResNet-50 neural 
network, and the aggregation of neighboring cell information is modeled using a Graph Attention Network (GAT). For each 
Visium spot, the node features are aggregated using sum pooling. (C) Pre-pooled node values are jointly optimized against 
single-cell RNA-sequencing (scRNA-seq) data, and (D) pooled Visium spot predictions are optimized against the 
corresponding ground truth data, using a mean-squared-error loss computed across log-transformed counts. (E)-(G) Visual 
description of neural network architectures and penalizations employed: (E) a two-stage neural network comprising a feature 
extraction stage and a prediction stage, this was not used in this work, (F) an end-to-end neural network encompassing the 
entire process from cell detection to feature extraction, graph convolutions and prediction, utilized in this study, and (G) the 
incorporation of single-cell-level penalties into the loss function to enforce consistent predictions with scRNA-seq data. 
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Figure 3: Performance comparison between methods. A) Boxplot of AUROC scores from each method; B) comparison of 
AUROC for best CGNN and CNN for each gene. 

 
Figure 4: Predicted expression for various genes: CNN, CGNN, compared to ground truth for genes CDX1, COL3A1, CDH1 
and EPCAM across sections from all nine patients.

2.3 Single-Cell Attribution Maps Point 
to Spatial Cellular Heterogeneity 

Single-cell regularization significantly improved 
alignment of cellular information extracted from 
located cells, as measured by the Earth Mover's 
(Wasserstein) distance between cells assigned to 
spots using Tangram and their closest detected 
matches (EMD=0.1415 ± 0.0018 with penalization, 
0.2113 ± 0.0018 without penalization). This 
improvement does not negatively impact AUROC. 
Cells were embedded using UMAP based on the 
ground truth and predicted expression, with and 
without penalization with scRNASeq. Visual 
inspection of these UMAP embeddings confirmed the 
quantitative results of differences in EMD (Appendix 
Figure 2), that single-cell penalization causes node-
level predicted expression from cellular 

histomorphology for genes to more closely resemble 
the distribution of single-cell data assigned to the 
Visium spot.  

Overall, more than 80% of the genes exhibited a 
positive correlation between ground truth and 
predicted single-cell expression when single-cell 
regularization was employed, compared to around 
20-30% of the genes without such regularization was 
not used (Appendix Figure 3). As illustrated in Figure 
5E-G, we juxtapose the predicted level of EPCAM 
expression for each cell against ground truth data 
from a Visium assay. Our model's predictions and the 
ground truth at cellular resolution are visually 
consistent (Figure 5A-D), corroborating the high 
accuracy reported in the previous section as well as 
the lower EMD reported through single-cell 
penalization. 
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2.4 Topological Consistency of Inferred 
Expression Patterns 

Across all capture areas, predicted spot level 
expression clustered similarly to the true expression 
(Figure 6). However, overlaying the clusters assigned 
to ground truth embeddings over the predicted 
expression embeddings, we found that clusters were 
less separated and fuzzier than the ground truth. 
Nonetheless, overlaying cluster assignments across 
the whole slide image demonstrates the ability of 
these models to derive expression signatures that can 
delineate key histological architectures. 

2.5 Pathway Analysis 

To compare performance across prediction targets, 
we selected pathways from MSigDB's Hallmark 
Gene Sets (Liberzon et al., 2011; Subramanian et al., 
2005) and reported average AUC for genes from 
these sets. Across modeling approaches, genes 
involved in DNA repair and E2F targets were 
predicted with higher performance as compared to 
other molecular pathways (Appendix Figure 4). 
Dysregulation of DNA repair can accelerate tumor 

progression (L. Li et al., 2021), and therefore 
accurately detecting the presence of relevant genes 
may be useful in prognostication. We did notice that 
for some pathways, e.g., Epithelial to Mesenchymal 
Transition, penalizing by single-cell expression led to 
some loss of performance in distinguishing these 
molecular signatures (Appendix Figure 4). 

We performed a pathway analysis by 
subsetting the top 10% of genes per modeling 
approach for further analysis using the Enrichr 
software/database (E. Y. Chen et al., 2013; Xie et al., 
2021). Notably, we found that the WNT in Epithelial 
to Mesenchymal Transition in Cancer pathway, a 
chief contributor to the migration and metastasis of 
cancer cells, and several pathways associated with 
desmosome assembly (which regulate intercellular 
adhesion between metastasizing cells) were among 
the top ten most statistically significant gene sets 
detected in all four techniques, and EPCAM in 
Cancer Cell Motility and Proliferation is a 
statistically significant gene set in all four techniques. 
The WNT in Epithelial to Mesenchymal Transition in 
Cancer pathway has an AUROC of 0.8686 ± 0.0273 
for the Inception model and 0.8638 ± 0.0238 for the 
"vanilla" cell graph model. 

 

 
Figure 5: Alignment of True and Predicted Single-Cell and Visium-Spot Level Expression on a Histological Section. 
Illustration of the relationship between true and predicted single-cell expression on a histological section for genes CD24, 
KRT8, and S100A6. A) and C) display the ground truth of single-cell expression with and without single-cell regularization, 
respectively. B) and D) visualize the respective predicted single-cell expressions. Progressing from individual cellular 
predictions to a broader view, D)-G) detail the transition through EPCAM expression: from predicted cell-level expression 
in D) to an overarching cell graph across multiple Visium spots in E) and concluding with spot-level Visium expression in 
G). 
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Figure 6: UMAP embeddings of tissue slides from selected capture areas, color-coded by HDBSCAN clusters. Comparisons 
include CGNN, CGNN with single-cell penalization, and patch-based methods against the ground truth. Clusters derived 
from the ground truth are overlaid on the slides for context. Patients with/without metastasis (METS) included.

3 DISCUSSION 

Our primary objective was to draw inferences about 
spatial mRNA expression patterns from whole slide 
images (WSI), specifically by fusing single-cell 
histological and transcriptomic data. Instead of 
relying on expensive spatial molecular assays, our 
technique offers an economical avenue method which 
can subsequently aid in the risk evaluation of 
recurrence. Our results highlight the viability of 
utilizing spatial transcriptomics as a rich pretraining 
source, using scRNASeq to guide single-cell level 
interpretations that could benefit from graph-based 
representations.  

Our study revealed that by considering cells' 
histomorphology and spatial relationships, we could 
effectively predict gene expression patterns across 
whole slide images. In some instances, these 
approaches outperformed traditional patch-based 
computer vision methods that analyze cropped 
images around each Visium spot. However, the 
predictive capacity of these approaches was found to 
be similar to patch-based methods, which is 
reasonable considering that the cells are contained 
within these patches and should present some loss of 
information. By explicitly incorporating cells as 
nested observations, attribution methods enabled the 
identification of structural cell organizations that 

exhibited the strongest correlation with the 
expression of specific genes. 

3.1 Comparison of Cell-Level 
Approach to Patch-Based Methods 

The performance of the CNN model does not surpass 
that of the cell-based approaches. Interestingly, our 
basic cell model demonstrates a bootstrapped 
AUROC confidence interval overlapping with that of 
the Inception model. This indicates that even when 
operating with potentially less diverse information 
like the extracellular matrix and connective tissue, the 
cell-based model remains competitive against its 
CNN counterpart. Although CNN may show a slight 
performance advantage, its insights are limited to 
single-pixel attributions, neglecting the broader scope 
of cell-cell interactions. Conversely, the GNN model 
offers superior explainability, permitting direct 
visualization of pivotal cell-cell interactions for 
particular genes and topological methods for 
deciphering important structural motifs.  

3.2 Impact of Single-Cell Penalization 

Single-cell penalization and contrastive pretraining 
showed minimal influence on the final outcome. This 
indicates that employing single-cell penalization can 
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shed light on the spatial nuances of cellular disparities 
without compromising performance. We believe this 
is due to the large dataset size (more than 60,000 
Visium spots), which may mitigate the need or 
potential benefit of pretraining. Additionally, 
although we hoped that single-cell penalization 
would improve the model's robustness (by grounding 
predictions in real single-cell RNA quantification), 
the penalization provided modest performance gains 
over other methods. This suggests that models may 
produce the same optimum regardless of the 
intermediate feature values (i.e., cell-level 
predictions). Notably, single-cell data is not required 
during model inference as it is used solely for 
regularization during training 

3.3 Revisiting Topological Consistency 
and Intermediate  
Histologically-Associated 
Molecular States 

We discovered that although the predicted expression 
patterns mirrored the essential topological 
relationships tied to specific histological structures, 
they were more intertwined compared to the true 
expression, resulting in less pronounced clustering. 
Such mixed clustering might suggest that these 
clusters signify different degrees of cellular activity 
for various phenomena. It seems easier for machine 
learning models to distinguish between low and high 
activity levels, but interpolating intermediate levels of 
activity poses a challenge from a visual standpoint. 
Nevertheless, overall, the model's predictions are 
topologically in line with the ground truth. Areas of 
tissue with similar ground truth measurements also 
exhibit similar predicted expressions. 

3.4 Reflections on Pathway Analysis 
and Immunological Considerations 

The WNT in Epithelial to Mesenchymal Transition in 
Cancer and EPCAM in Cancer Cell Motility and 
Proliferation were notable pathways from the results 
section. Wnt/β-catenin signaling is implicated in cell 
differentiation and proliferation and has been 
implicated in increasing the number of "stem-like" 
cells in a tumor (Pai et al., 2017). EPCAM is 
responsible for modulating epithelial  cell adhesion, 
and - while having conflicting trends in recent 
research - can result in adhesive and migratory cell 
activity, potentially impacting the potential for 
metastasis (Fagotto & Aslemarz, 2020). 

Our approach to unveil single-cell heterogeneity 
from whole slide images through alignment with 

single-cell expression bears several important 
immunological implications. First, the spatial 
arrangement of immune cells not only influences 
processes governing the anti-tumoral response but 
may offer insights as to the efficacy of 
immunotherapies including checkpoint inhibitors 
which has been a timely subject of inquiry (Dermani 
et al., 2019, p. 1; X. Wang et al., 2022). Deciphering 
the spatial make-up may also further reveal how 
tumors can establish immunosuppressive 
environments or contribute to an immune exhaustion 
phenotype (Ando et al., 2020; Yang et al., 2019). 
These topics underscore work being done to study 
how tumors can alter their immunogenicity and 
immune evasion tactics, potentially informing CAR 
T-cell therapies or selection of specific antibodies 
which can be applied in a personalized manner (Z. 
Liu et al., 2022; Peng et al., 2022; F. Wang et al., 
2023). Revealing additional heterogeneity may refine 
selection of adjuvant therapy choices outside of 
existing prognostic measures. 

3.5 Limitations and Future Directions 

Our study has several limitations that offer avenues 
for future research. First, while our cohort of nine 
samples is large for a Visium study, we plan to amass 
a larger, more diverse cohort to bolster the robustness 
of our findings by accounting for further tumor 
heterogeneity. As our cohort was restricted to pT3 
patients, future work will examine the predictiveness 
of these algorithms at additional tumor sites and 
levels of TME invasiveness. Inaccurate mapping of 
single-cell profiles to Visium spots may have also 
impacted the validity of single-cell associations and 
could improve with the adoption of other spatial 
mapping methods. We will also investigate how 
performance of single cell disaggregation is different 
based on level of expression. Overall, our study 
signifies a crucial step towards improving cancer 
diagnostics and prognosis by incorporating spatial 
transcriptomics into histological images, and future 
efforts will focus on refining these techniques.  

4 CONCLUSION 

Our study revealed that by considering cell 
histomorphology and spatial relationships, we could 
effectively predict gene expression patterns across 
whole slide images and recover local patterns of 
cellular heterogeneity. Identifying structural cell 
organizations that exhibited the strongest correlation 
with the expression of specific genes has the potential 
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to drastically improve our understanding of the 
tumor-immune microenvironment and potentially 
guide personalized treatment. Future applications of 
this method could include predicting response to 
immunotherapy based on the spatial distribution and 
expression patterns of immune cells in the tumor 
microenvironment. Our work is a promising direction 
for enhancing not only the diagnosis and prognosis of 
cancer but also our broader understanding of the 
clinical and immunological intricacies of tumor 
microenvironments. 

5 METHODS 

5.1 Data Collection 

The dataset used in this study comprised nine patients 
with pathologic T Stage-III (pT3) colorectal cancer. 
Following IRB approval, these patients were selected 
through a retrospective review of pathology reports 
from 2016 to 2019. Patients were matched based on 
various criteria such as age, sex, tumor grade, tissue 
size, mismatch repair/microsatellite instability 
(MMR/MSI/MSS) status, and tumor site, balanced 
representation across these factors. Specific regions 
of interest within these sections, including 
epithelium, tumor-invasive front, intratumoral areas, 
and lymphatics, were annotated by a board-certified 
GI pathologist. Following annotation, these regions 
were dissected from the tissue, and subjected to H&E 
staining, imaging, and Visium profiling at the 
Pathology Shared Resource at Dartmouth Cancer 
Center and Single Cell Genomics Core in the Center 
for Quantitative Biology. 

To achieve uniform staining and enhance image 
quality, we incorporated the CytAssist workflow, 
which allows Visum profiling of tissues on standard 
histology slides, enabling the use of automated 
staining (Sakura Tissue-Tek Prisma Stainer– Sakura 
Finetek USA, Inc. 1750 West 214th Street, Torrance, 
CA 90501) and WSI at 40x resolution (0.25 micron 
per pixel) via Aperio GT450s to obtain high-quality 
images. Following the preparation of the tissue slides, 
we employed the Visium assay using the CytAssist 
technology according to the manufacturer’s protocol 
(CG000495) (Rosasco et al., 2023). For data 
processing, we utilized Spaceranger V to align the 
CytAssist images with the corresponding 40X H&E 
stains, conduct quality control, and convert the  
Visium Spatial Transcriptomics (ST) data into genes 
expression matrices (Sun et al., 2020). 

We utilized the Chromium Flex assay to acquire 
single-cell RNA-Seq data, specifically from serial 

sections of patients identified in Capture Areas 2 (left 
section) and 5 (right section), as detailed in Table 2. 
This method allows for single cell profiling of 
disaggregated FFPE tissue sections using the same 
transcriptomic probe set as the Visium assay, 
revealing the diverse cell types within the tissue. Data 
were processed using CellRanger v7.1.0 to generate 
quality control metrics and a cells by genes 
expression matrices for downstream processing. 
Notably, this single cell data was profiled from 
different serial sections than the Visium experiments. 

5.2 Preprocessing and Augmentation 

We curated a list of 1,000 target genes by initially 
filtering out those not appearing in at least 100 spots 
per patient. These genes were subsequently ranked 
based on the fraction of their spatial variance, as 
determined through SpatialDE analysis. To rectify 
aberrant gene expression levels, we applied a 
transformation to both prediction and target gene 
counts using the expression log(1 + counts). 

Cell detection was performed using the Mask-
RCNN framework, which was trained on both the 
Lizard dataset and our internal dataset (Graham et al., 
2021; K. He et al., 2017; Vuola et al., 2019). The 
nuclei detection model, available through the public 
Detectron2 Model Zoo, served as our pre-trained 
base. This model was fineturned on our dataset for up 
to 5,000 epochs. After training, this cell detection 
model was systematically applied across each Whole 
Slide Image (WSI). 

The associated image was normalized for each 
detected cell through standard scaling applied over 
the image channels. We implemented data 
augmentation techniques to enhance our dataset, 
including random rotations (up to 90º) and color jitter 
adjustments. These augmentations were specifically 
applied to the images and cell detections cropped 
around the Visium spots during the training phase. 

5.3 Deep Learning to Integrate 
Information from Localized Cells 
to Predict Spatial Gene Expression 

Cell graph neural networks (CGNN) facilitate the 
exchange of messages between adjacent cells, 
enabling the exchange/incorporation of contextual 
information (Jaume et al., 2021; Levy et al., 2021; M. 
M. Li et al., 2022; Reddy et al., 2022). This approach 
effectively captures the relationships between 
different cell populations within the tissue, including 
tumor cells and surrounding immune and other cell 
subpopulations. Leveraging these relationships can 
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enhance the predictive performance of our spatial 
RNA inference algorithms while providing additional 
information as to relevant cells for these predictions. 

We implemented an end-to-end training strategy 
that integrates the simultaneous training of a 
Convolutional Neural Network (CNN) and a Graph 
Neural Network (GNN). The CNN is designed to 
extract cell-level features from histological images, 
while the GNN contextualizes these features by 
incorporating information from neighboring cells. 
Our end-to-end approach aims to harmonize the 
feature extraction and contextualization processes, 
enabling the CNN to learn cell-level features that are 
more effectively contextualized through iterative, 
integrated training with the GNN (Figure 1,2). 

The backbone of the model is a four-layer graph 
attention network (GAT) (Raju et al., 2020; 
Veličković et al., 2018), which uses self-attention 
mechanisms to update the representation of each cell 
with the information of its neighbors. We extract 
nodal attributes from detected cells using a ResNet-
50 model, which is trained jointly with the graph 
attention layers. The Euclidean distances between the 
spatial locations of detected cells are used to form k-
nearest-neighbor cell graphs (k=6, determined 
through a sensitivity analysis). The model maps each 
cell to 512-dimensional vectors, and final node 
embeddings pass through a linear layer producing a 
vector representing each gene's relative pseudocount-
transformed expression for each cell. Cells 
corresponding to the same Visium spot are 
aggregated through global sum pooling to predict 
expression for the spot. This is compared to the 
pseudocount-transformed ground-truth Visium data 
with mean squared error. 

5.4 Comparison of Cell-Graph Neural 
Network Regularization Strategies 

In addition to evaluating the congruence between 
ground truth and predicted expression at the spot 
level, we explored the following methodological 
variations: 

1. Vanilla Supervised Learning Objective: 
This baseline approach focuses solely on the 
supervised learning objective, serving as a reference 
for evaluating the potential gains from additional 
regularization strategies. 

2. Incorporating Graph Contrastive Learning: 
This approach introduces a self-supervised 
regularization term that encourages the model to learn 
embeddings through the comparison of augmented 
viewpoints of the same cell graph / Visium spot to 
different cell-graphs / Visium spot. This can enhance 

the model's sensitivity to spatial patterns in the data, 
potentially improving its predictive accuracy for 
spatial transcriptomics patterns. 

3. Incorporating Single-Cell RNA-Seq 
Penalization through Optimal Transport: This 
strategy introduces a penalty term that encourages the 
model to align cell-level histological features more 
closely with corresponding single-cell RNA-Seq 
data. By leveraging optimal transport theory, this 
term effectively "guides" the model towards a 
solution where the spatial patterns inferred from 
histology are maximally consistent with independent 
single-cell RNA-Seq measurements, thereby 
enhancing the biological validity of the model's 
predictions. 

4. Combining Graph Contrastive Learning 
and Single-Cell Penalization: This approach 
synergistically combines both the graph contrastive 
learning and the single-cell RNA-Seq penalization 
strategies, aiming to leverage the benefits of both 
spatial context awareness and alignment with single-
cell RNA-Seq data. This dual-regularization strategy 
is designed to promote a model that is both sensitive 
to spatial patterns and tightly aligned with 
independent molecular measurements, potentially 
offering a balance between spatial sensitivity and 
biological validity. 

5.5 Graph Contrastive Learning 

Using the PyGCL package, graph contrastive learning 
was implemented through augmentations to random 
cell positions in the nearest neighbor graph 
construction, dropping edges with a probability of 
0.1, and masking out features with a probability of 
0.3. Graph contrastive learning is a form of self-
supervised learning that can improve the 
generalizability and robustness of graphs (Qiu et al., 
2020; Zhu et al., 2021). By intentionally adding noise 
to the training cell graphs and comparing these 
representations at different Visium spots, we aimed to 
improve the model's generalizability when tested on 
held-out data. 

5.6 Incorporating Single Cell 
Expression 

By encouraging the predictions derived from 
histological images of individual cells to align closely 
with the corresponding true single-cell expression 
profiles, we aim to enhance the interpretability of our 
models through more consistent and biologically 
meaningful cellular information, and increase the 
likelihood that our predictions accurately reflect the 
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true cellular composition at each spatial location. 
Single-cell profiles are only utilized during model 
training, and are not needed during ultimate 
inference.  

We initiated our analysis by mapping scRNA 
profiles to Visium spots using Tangram (Biancalani 
et al., 2021), and we selected the top k most likely 
cells to be assigned to each spot, where k represents 
the number of detected cells in that spot. Tangram 
generates unique 1:1 mappings from single cell 
expression profiles to spatial transcriptomics spots 
based on transcriptomic similarity. We leveraged the 
Wasserstein loss – which measures the work required 
to transform one distribution into another (Flamary et 
al., 2021; Villani, 2009) – as an effective metric for 
aligning our predictive single-cell expression profiles 
with the true expression profiles derived from scRNA 
data. 

5.7 Comparison to Convolutional 
Neural Network Approaches 

The CGNN approaches were compared to patch-
based convolutional neural network methodologies 
deemed highly predictive from previous works – 
namely the InceptionV3 neural network trained on 
images of tissue patches encompassing multiple cells 
inclusive of surrounding tissue architecture. We 
initialize the model with ImageNet weights (with the 
final layer truncated) and apply the same visual 
transformations as for the cell embeddings. 

5.8 Training and Validation 

CGNN models were implemented with the torch-
geometric Python package (Fey & Lenssen, 2019). 
We use PyGCL (Zhu et al., 2021) to apply graph 
augmentations. CGNN were trained using the Adam 
optimizer (Kingma & Ba, 2017) with a learning rate 
of 0.0001 on one Nvidia V100, quickly converging 
after two epochs. Similarly, the CNN model was 
trained for around 100000 iterations on a Nvidia 
V100 GPU.  

The final performances of these models were 
compared using leave-one-patient-out cross-
validation. Statistics are reported with the Spearman 
correlation coefficients. We also sought to assess the 
performance of predicting binary gene expression 
(low/high), by dichotomizing expression according to 
(Levy-Jurgenson et al., 2020). We used this to 
calculate the area under the receiver operating 
characteristic curve (AUROC) as another 
performance measure. Performance statistics were 
generated for each cross-validation fold, including 

Spearman's correlation coefficients and area under 
the receiver operating characteristic curves 
(AUROCs) by gene. The results were then averaged  
across all folds to assess the best-performing model 
on a gene-specific basis. We calculated 95% 
confidence intervals for all performance statistics, 
reported using 1000 sample non-parametric 
bootstrapping. 

5.9 Model Interpretation Through 
Gene Embedding and Pathway 
Analysis 

We sought to understand how well each approach 
could recapitulate the relationships between the 
Visium spots. This was accomplished by applying 
Uniform Manifold Approximation and Projection 
(UMAP) to each predicted expression profile 
(McInnes et al., 2018). Each method's predicted and 
actual gene expressions were aligned and clustered 
using the AlignedUMAP method. Clusters determined 
by running HDBSCAN (McInnes et al., 2017) on the 
ground truth expression data were overlaid on top of 
the UMAP plots for the other methods. Then, we 
annotated each of our prediction points with the 
corresponding HDBSCAN cluster of the ground truth 
and performed an aligned UMAP, jointly minimizing 
the distance between similar expressions in the 
embedding space and between paired ground truth and 
true locations. In addition, we annotated our histology 
images with the HBDSCAN clusters to interpret the 
tissue type of origin for each point. 

Pathway analyses were performed to assess the 
ability of the methods to capture broader biological 
phenomena. We used separate methods: 1) aggregating 
the Spearman correlation and AUROC statistics across 
genes associated with pathways identified from the 
MSigDB Hallmarks gene set, and 2) evaluating the 
enrichment of the highest genes as ranked using their 
performance statistics, utilizing enrichR, which 
employs a modified Fisher's exact test. By examining 
the average performance across pathway analysis and 
overlap tests for the top-performing genes, we can gain 
insights into which biological phenomena each method 
effectively represents. 
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