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Abstract: In this paper, we present RacketDB, a specialized dataset designed to address the challenges of detecting
badminton rackets in images. This task often hindered by the lack of dedicated datasets. Existing general-
purpose datasets fail to capture the unique characteristics of badminton rackets. RacketDB includes 16,608
training images, 3,175 testing images, and 2,899 validation images, all meticulously annotated to enhance ob-
ject detection performance for sports analytics. To evaluate the effectiveness of RacketDB, we utilized several
established object detection models, including YOLOv5, YOLOv8, DETR, and Faster R-CNN. These mod-
els were assessed based on metrics like mean average precision (mAP), precision, recall, and F1. Our results
demonstrate that RacketDB significantly improves detection accuracy compared to general datasets, highlight-
ing its potential as a valuable resource for developing advanced sports analytics tools. This paper provides a
detailed description of RacketDB, the evaluation process, and insights into its application in enhancing auto-
mated detection in badminton. The dataset is available at https://github.com/muhabdulhaq/racketdb.

1 INTRODUCTION

The advancement of computer vision technologies
has significantly impacted various fields, including
sports analytics, where accurate object detection plays
a crucial role in performance analysis, coaching, and
automated game monitoring. However, the effective-
ness of these technologies is highly dependent on the
availability of high-quality datasets that capture the
specific characteristics of target objects. Detecting
rackets in badminton is crucial to evaluate player per-
formance, refining coaching methods, and boosting
viewer experience with automated highlights. Despite
this need, there is a notable gap in existing datasets
that specifically cater to badminton rackets, posing
challenges for researchers and developers working on
related applications.

General purpose datasets such as COCO (Lin
et al., 2014) and PASCAL VOC (Everingham et al.,
2010) have contributed significantly to progress in ob-
ject detection. However, they are inadequate for spe-
cialized areas such as the detection of sports equip-
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Figure 1: Examples of racket detection across multiple
frames in the RacketDB dataset. The bounding boxes high-
light the position of the badminton rackets.

ment. These datasets do not adequately represent the
unique attributes of badminton rackets. The absence
of a specialized dataset hampers the development of
robust models that can reliably detect rackets under
diverse conditions encountered in real-world scenar-
ios, such as varying lighting, cluttered backgrounds,
and dynamic player movements.

RacketDB is introduced as a response to this chal-
lenge, offering a comprehensive dataset specifically
designed for badminton racket detection. It includes
22,682 images, with detailed annotations that capture
rackets in various movements. This dataset aims to
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bridge the gap between general-purpose object detec-
tion datasets and the specific needs of sports equip-
ment detection, providing a valuable resource to the
research community.

To evaluate the effectiveness of RacketDB, we
employed several established object detection mod-
els, including YOLOv5 (Jocher et al., 2020),
YOLOv8 (Jocher et al., 2023), DETR (Carion et al.,
2020), Faster R-CNN with ResNet50 (He et al., 2016)
and ResNet101 (He et al., 2016). These models repre-
sent a range of approaches, from traditional convolu-
tional neural networks to modern transformer-based
architectures, allowing us to benchmark the dataset
across diverse methodologies. Our evaluation focuses
on assessing the performance of these models in terms
of mean average precision (mAP), precision, recall,
and F1, providing insight into the strengths and limi-
tations of RacketDB.

In our evaluation of the RacketDB test dataset us-
ing the RacketDB model with YOLOv5, we achieved
a mAP50 score of 0.77. Surpassing YOLOv5 trained
on the COCO dataset, which achieves a mAP50 score
0.63 for tennis racket detection. This performance
highlights the value of RacketDB in the specific task
of badminton racket detection and demonstrates that
specialized datasets can significantly enhance object
detection models. Figure 1 illustrates examples of
racket detection in the RacketDB dataset, highlight-
ing the challenges of detecting badminton rackets
across multiple frames. We evaluate RacketDB us-
ing YOLOv5, YOLOv8, DETR, and Faster R-CNN as
backbone architectures, demonstrating the applicabil-
ity of the RacketDB dataset in this task. Furthermore,
the dataset’s versatility extends beyond object detec-
tion, with potential applications in activity recogni-
tion and game strategy analysis, making it a valuable
resource for sports analytics.

The contributions of this paper are threefold: (1)
we introduce RacketDB, a specialized dataset for bad-
minton racket detection, addressing a critical gap in
sports analysis; (2) we evaluate the dataset using
state-of-the-art object detection models, demonstrat-
ing its impact on performance; and (3) we provide a
detailed analysis of the evaluation results, offering in-
sights for future research. By making RacketDB pub-
licly accessible, we aim to drive further advancements
in sports technology, enabling more accurate and effi-
cient detection models for badminton and potentially
other sports.

2 RELATED WORK

Object detection has become an essential tool for im-
proving performance assessment, strategy develop-
ment, and automated game monitoring in sports anal-
ysis. Large-scale datasets such as COCO (Lin et al.,
2014), PASCAL VOC (Everingham et al., 2010), and
ImageNet (Deng et al., 2009) have driven advance-
ments in object detection, leading to the development
of state-of-the-art models such as YOLO (Redmon
et al., 2016), Faster R-CNN (Ren et al., 2015), SSD
(Liu et al., 2016), and DETR (Liu et al., 2016). These
datasets and models have shown effectiveness across
a range of applications, including sports analytics;
however, they primarily cater to general-purpose ob-
ject detection tasks and lack the specificity required
for niche applications such as equipment detection in
badminton.

General-Purpose Object Detection Datasets.
COCO (Lin et al., 2014) and PASCAL VOC (Ever-
ingham et al., 2010) have set benchmarks for object
detection by offering diverse categories and a large
volume of labeled images. These datasets have en-
abled the development of robust detection models;
however, their broad focus means they do not ad-
dress the specific needs of sports equipment detection.
Meanwhile, COCO has the ”tennis racket” label and it
can be applied to badminton racket detection, but its
performance is poor (as demonstrated in section 5).
The datasets are designed to handle a wide array of
object categories, but they fall short in scenarios re-
quiring high precision and specialized annotations for
sports equipment like badminton rackets.

Sports-Specific Object Detection Datasets. Ex-
isting datasets for sports generally emphasize player
detection and tracking rather than equipment detec-
tion. For instance, TennisNet (Faulkner et al., 2020)
and FootballDB (Team, 2023) focus on tennis rack-
ets and soccer-related objects, providing valuable in-
sights into equipment detection in those sports. These
datasets have demonstrated the benefits of specialized
data for improving detection accuracy, highlighting
the importance of domain-specific resources. How-
ever, no equivalent dataset has been developed for
badminton rackets, leaving a significant gap in the
field of racket sports analysis.

Research in Badminton Sport Analysis. Tra-
ditional research in badminton has concentrated on
player detection, pose estimation in badminton match
(Ding et al., 2024). Studies employing some neural
network models have focused on shuttlecock track-
ing (Haq et al., 2024)(Sun et al., 2020)(Tarashima
et al., 2023), offering valuable insights for coaching
and performance enhancement. Despite this progress,
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Figure 2: Distribution of rally counts by match ID from
video sources.

there has been minimal attention to detecting and an-
alyzing badminton rackets, which are crucial for a
comprehensive understanding of the sport. Moreover,
a tool like VIRD (Chu et al., 2022) that offers an
immersive analysis of a badminton match has high-
lighted this gap. A coach using the system specifically
recommended including racket data to enhance the
accuracy of visualizations and provide deeper insights
into shot mechanics. This underscores the need for a
specialized dataset like RacketDB, which focuses on
racket detection to complement existing models and
improve the granularity of badminton performance
analysis.

Limitations of Existing Datasets. The lack of
specialized datasets for badminton rackets is evident
when considering the broader context of sports equip-
ment detection. Datasets like TinyImage (Torralba
et al., 2008) have been used for general object recog-
nition tasks but are less suited for sports applications
due to high noise levels and lack of detail.

RacketDB’s Contribution. RacketDB addresses
these gaps by providing the first comprehensive
dataset specifically designed for badminton racket de-
tection. It includes annotations of capturing rack-
ets in various environments of 22,682 images. By
evaluating established object detection models such
as YOLOv5, YOLOv8, DETR and Faster R-CNN,
RacketDB allows for benchmarking the performance
of different approaches across diverse methodolo-
gies, from traditional convolutional neural networks
to transformer-based architectures. Our evaluation
demonstrates that the object detection model per-
forms effectively in detecting badminton rackets,
highlighting the advantages of using the RacketDB
dataset, and highlighting its potential as a valuable
resource for advancing sports equipment detection in
badminton. RacketDB not only fills a critical gap in
badminton research but also sets the groundwork for
comprehensive analysis tools that encompass some
aspects of the sport.

Figure 3: The annotation process for the RacketDB dataset.
Each racket is manually labeled with a bounding box to ac-
curately capture its position and size.

Figure 4: Comparison of labeled racket images between
RacketDB and racket on COCO dataset.

3 DATASET DESCRIPTION

RacketDB is a specialized dataset developed to ad-
dress the unique challenges of detecting badminton
rackets in real-world scenarios. This section provides
an overview of the data collection process, annotation
details, dataset composition, and the format used to
ensure RacketDB’s applicability for training and eval-
uating object detection models.

3.1 Data Collection

The dataset used in this work is derived from videos
originally collected for a study conducted on 2-vs-
2 men’s doubles badminton games among members
of a college badminton club. The original data col-
lection was approved by the Ethics Committee of
Anhui Normal University (approval number [AHNU-
ET2022042]) on April 14, 2022, and was conducted
according to the principles of the Declaration of
Helsinki, with all participants providing their signed
informed consent (Ding et al., 2024).

The videos were captured using two DJI Air 2S
drones (Da-Jiang Innovations Science and Technol-
ogy Co., Ltd., China) to provide back views of the
badminton court. The video resolution was 4K (3,840
× 2,160 pixels), and the frame rate was 30 fps. We ue
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Table 1: Number of bounding boxes and rallies for training,
validation, and test splits.

Split Bounding Boxes Rallies
Train 12,343 83

Validation 1,923 18
Test 1,779 18
Total 16,045 119

the video that conclude 27 games, resulting in a total
of 119 rallies. Figure 2 presents the counts of ral-
lies categorized by match IDs extracted from various
video sources. This data provides insights into the fre-
quency of rallies across different matches, which can
be crucial for analyzing gameplay patterns and per-
formance metrics in badminton.

For our purposes, we processed the original videos
by splitting them into individual frames, which now
serve as the primary data source for our analysis and
model training.

3.2 Annotation Process

The RacketDB dataset was manually annotated us-
ing the Computer Vision Annotation Tool (CVAT)
(Sekachev et al., 2020). The annotation process in-
volved several key steps to ensure the accuracy and
consistency of the dataset. CVAT was selected for its
user-friendly interface and robust features suitable for
bounding box annotations. Figure 3 illustrates how
each image in the dataset was annotated with bound-
ing boxes around badminton rackets, all labeled with
the tag ”racket” to maintain standardization and clar-
ity in object detection.

The annotations were performed manually by the
author. This involved carefully drawing bounding
boxes around each visible racket, ensuring that the
boxes were as precise and accurate as possible. The
author rechecked all annotations to confirm their ac-
curacy and consistency. This review included veri-
fying that the bounding boxes properly enclosed the
rackets and making adjustments where necessary.

During the annotation process, there were many
images where the racket was not visible, often due
to the player’s position, especially during pre-defense
movements when the racket was facing away from the
camera. Additionally, short rallies led to a high fre-
quency of serve poses where the racket was not fully
visible in front of the camera. Consequently, the num-
ber of bounding boxes is lower than the total number
of images. Initially, we attempted to annotate all visi-
ble rackets, including those partially obscured behind
the net, but this approach degraded detection perfor-
mance and produced poor results. To improve accu-
racy, we removed annotations for rackets behind the

net, which enhanced the model’s performance by fo-
cusing on clearly visible racket instances and avoiding
the negative impact of ambiguous or hidden objects.

By manually annotating the dataset and imple-
menting a detailed quality control process, the Rack-
etDB dataset offers high-quality annotations essential
for evaluation of object detection models.

3.3 Dataset Composition

The RacketDB dataset is organized into three sub-
sets to support comprehensive training and evaluation
of object detection models: training, validation, and
test sets. The dataset is split into 70% for training,
15% for validation, and 15% for testing. The Rack-
etDB has total 16,045 labeled rackets. The training
set has 12,343 bounding boxes in 83 rallies. The vali-
dation set comprises 1,923 bounding boxes in 18 ral-
lies, while the test set contains 1,779 bounding boxes
in 18 rallies. These splits ensure a balanced distri-
bution for model training and evaluation, providing
comprehensive coverage across various scenarios for
accurate racket detection, as detailed in Table 1.

Compared to COCO, which includes 3,561 la-
beled instances of rackets, RacketDB is significantly
larger and more specialized, containing annotated in-
stances of badminton rackets (See Figure 4). This size
advantage is crucial for improving detection accuracy,
as it allows for better model training and performance
in racket detection tasks. The diversity and scale of
RacketDB provide a robust foundation for object de-
tection specific to badminton.

In bounding box dimensions, the average width
and height in the training set are 16.3 ± 7.8 pixels
and 29.0 ± 12.3 pixels, respectively. In the valida-
tion set, the average width is 17.3±8.7 pixels, while
the average height is 27.5 ± 10.5 pixels. The total
area of bounding boxes, reflecting the detected racket
sizes, is 486.3± 343.8 pixels2 in the training set and
493.1±343.4 pixels2 in the validation set. These av-
erages and standard deviations, presented in Table 2,
highlight the consistency in racket size and the vari-
ability across the dataset splits. The slightly larger
width standard deviation in the validation set and the
consistent area standard deviations across both splits
ensure that the dataset represents a diverse yet bal-
anced range of bounding box sizes for effective train-
ing and evaluation.

Lastly, the ratio of bounding box dimensions to
the frame size remains relatively stable across both
training and validation sets. In the training set, the
bounding box width occupies approximately 2.5 ±
1.2% of the frame, and the height accounts for 4.5±
1.9%, with the total area covering around 0.1±0.1%
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Table 2: Bounding box size metrics and size ratios to frame
size with averages and standard deviations for training and
validation splits.

Metric Train Validation
Width (pixels) 16.3±7.8 17.3±8.7
Height (pixels) 29.0±12.3 27.5±10.5
Area (pixels2) 486.3±343.8 493.1±343.4

Width Ratio (%) 2.5±1.2 2.7±1.4
Height Ratio (%) 4.5±1.9 4.3±1.6
Area Ratio (%) 0.1±0.1 0.1±0.1

of the frame. Similarly, in the validation set, the width
ratio is 2.7±1.4%, the height ratio is 4.3±1.6%, and
the area ratio is 0.1± 0.1%. These standard devia-
tions reflect the natural variation in racket sizes and
positions within the frames. Overall, the ratios, sum-
marized in Table 2, indicate that racket size, in re-
lation to the overall frame, remains consistent across
the dataset splits, ensuring uniformity and reliability
in the bounding box annotations.

3.4 Data Format and Accessibility

The RacketDB dataset is available in multiple widely-
used annotation formats to ensure broad compatibility
and ease of use with various object detection frame-
works and tools. The available formats include:

• COCO 1.0: A structured and versatile format
commonly used in object detection, supporting
a range of deep learning frameworks (Lin et al.,
2014).

• CVAT for images 1.1: Compatible with the Com-
puter Vision Annotation Tool (CVAT), which was
used during the annotation process, allowing easy
management and editing of annotations.

• Datumaro 1.0: A flexible format that facilitates
conversions between different dataset types, aid-
ing in data handling and manipulation tasks.

• Open Images V6 1.0: Suitable for those us-
ing the Open Images dataset format, provid-
ing structured annotations for object detection
(Kuznetsova et al., 2020).

• PASCAL VOC 1.1: A traditional format used in
the PASCAL VOC challenges, widely adopted for
object detection and segmentation tasks.

• YOLO 1.1: Designed for YOLO (You Only Look
Once) models, this format is optimized for use
with YOLO-based detection pipelines (Redmon,
2016).

• YOLOv8 Detection 1.0: A format specific to the
YOLOv8 models, ensuring compatibility with the
latest version of the YOLO object detection series
(Jocher et al., 2023).

RacketDB provides formats that facilitate easy in-
tegration into research workflows across various plat-
forms and applications.

4 EVALUATION
METHODOLOGY

To assess the effectiveness of RacketDB, we evalu-
ated several established object detection models, in-
cluding YOLOv5, YOLOv8, DETR and Faster R-
CNN. These models were chosen for their diverse
architectural approaches, ranging from convolutional
neural networks (CNN) to transformer-based frame-
works, providing a comprehensive evaluation across
different detection paradigms.

4.1 Model Selection

The models selected for evaluation represent a broad
spectrum of object detection architectures:

4.1.1 YOLOv5 and YOLOv8

These models are part of the YOLO (You Only Look
Once) family, known for their balance of speed and
accuracy in real-time object detection. YOLOv5 uti-
lizes a CNN-based architecture with optimized fea-
ture extraction and detection heads (Jocher et al.,
2020), while YOLOv8 introduces further refinements
in feature fusion and model efficiency (Jocher et al.,
2023).

4.1.2 DETR (DEtection TRansformers)

DETR leverages a transformer-based architecture
with self-attention mechanisms to directly predict ob-
ject bounding boxes and class labels. This model de-
parts from traditional CNN approaches by utilizing
a set-based prediction, which simplifies the detection
pipeline and offers a novel approach to object detec-
tion tasks (Carion et al., 2020).

4.1.3 Faster R-CNN

Faster R-CNN are region-based convolutional neu-
ral network models widely used for object detection
tasks. We use Faster R-CNN with ResNet50 and
ResNet101 as backbone networks. ResNet50 and
ResNet101 differ in depth, with 50 and 101 layers,
respectively, providing insights into the impact of net-
work depth on detection performance (Ren et al.,
2015). We use Faster R-CNN with ResNet50, re-
ferred to as FRCNN (R50), and Faster R-CNN with
ResNet101, referred to as FRCNN (R101).
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Figure 5: Comparison between detection result using YOLOv5 on COCO pretrained model (a) and RacketDB model(b).
Because there is no badminton racket in COCO, we use tennis racket detection when using COCO pretrained model.

Table 3: Hyperparameters used for training all models on
the RacketDB dataset.

Hyperparameter Value
Epochs 100

Batch size 256
Image size 640
Optimizer Adam

Learning rate (initial) 0.01
Momentum 0.937

Weight decay 0.0005
Augmentation (AutoAugment) randaugment

Flipping (Horizontal) true (0.5)

4.2 Training Setup

All models were trained using the same hyperparam-
eters (as shown in Table 3) to ensure a fair evaluation
across different architectures. The training was con-
ducted for 100 epochs for each model, with identical
configurations applied uniformly to maintain consis-
tency in the evaluation process.

The training environment was set up with Python
3.10.13 and PyTorch 2.0.1+cu117, leveraging CUDA
for GPU acceleration. The hardware used for train-
ing included two NVIDIA RTX 6000 Ada Generation
GPUs, providing substantial computational power for
handling the large-scale training tasks. The process-
ing was further supported by an Intel® Xeon® Gold
6326 CPU @ 2.90GHz with 32 cores. The operating
system used was Ubuntu 22.04.4 LTS.

All models were trained with the same set of pa-
rameters, ensuring that the evaluation focused solely
on the differences in model architectures rather than
variations in training conditions.

5 RESULT AND DISCUSSION

In this section, we present the evaluation results for
the various object detection models applied to the
RacketDB dataset. We analyze how effectively each
model learned to identify and classify badminton
rackets, revealing their strengths and weaknesses in
practical scenarios. Additionally, we assess the mean
Average Precision (mAP) scores to provide a com-
prehensive measure of the models’ accuracy and re-
liability in detecting rackets. This evaluation under-
scores the effectiveness of RacketDB as a specialized
dataset for enhancing sports equipment detection in
badminton.

5.1 Detection Performance

The performance such as Precision, Recall, and F1
Score (Table 4). YOLOv5 achieves a high Preci-
sion of 0.90 and Recall of 0.72, with an F1 Score
of 0.80, indicating strong, balanced detection capa-
bilities. YOLOv8 shows similar performance, with a
slightly lower Precision of 0.89 but the same Recall
and F1 Score. DETR balances Precision (0.57) and
Recall (0.79) moderately, with an F1 Score of 0.66. In
terms of speed, ResNet50 leads with 83 FPS, followed
by YOLOv5 (76 FPS) and YOLOv8 (68 FPS), while
DETR prioritizes accuracy at only 20 FPS. Faster R-
CNN with ResNet50 achieving a Recall of 0.85 but
a lower Precision of 0.59, resulting in F1 Score of
0.70, while Faster R-CNN with ResNet101 shows
slightly lower Recall (0.84) and Precision (0.53), with
F1 Score of 0.65.
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Table 4: Precision, Recall, F1, and FPS of different models
on RacketDB.

Model Precision Recall F1 FPS
YOLOv5 0.90 0.72 0.80 76
YOLOv8 0.89 0.72 0.80 68

DETR 0.57 0.79 0.66 20
FRCNN (R50) 0.59 0.85 0.70 83

FRCNN (R101) 0.53 0.84 0.65 55

Table 5: mAP Metrics of different models on RacketDB.

Model mAP50 mAP50:95
YOLOv5 0.77 0.48
YOLOv8 0.78 0.47

DETR 0.70 0.35
FRCNN (R50) 0.78 0.47

FRCNN (R101) 0.77 0.43

While the performance metrics show promising
results, various challenges contribute to detection fail-
ures in the RacketDB dataset. Some typical cases of
detection failure include:

Occlusion. Detectors often fail when rackets are
partially hidden by players, other rackets, or objects in
the environment. For example, when players engage
in rallies, the action may block the view of the racket.

Lighting Variability. Changes in lighting con-
ditions such as glare, shadows, or dim lighting can
affect how the racket is perceived. For instance, a
brightly lit court may create reflections that obscure
the racket’s shape.

Motion Blur. Fast-paced actions in badminton
can result in motion blur, making it difficult for de-
tectors to accurately identify and localize the racket.

5.2 mAP Performance Analysis

The mean Average Precision (mAP) metric evalu-
ates a model’s effectiveness in object detection. Ta-
ble 5 summarizes these metrics for models tested on
RacketDB. YOLOv5 achieves mAP50 and mAP50-955
scores of 0.77 and 0.48, respectively, showing strong
detection precision. YOLOv8 performs similarly,
with an mAP50 of 0.78 and mAP50-95 of 0.47. DETR
achieves moderate scores of 0.70 (mAP50) and 0.35
(mAP50-95), indicating challenges in precise localiza-
tion. Faster R-CNN with ResNet50 show compara-
ble mAP50 scores 0.78 but slightly lower mAP50-95
scores 0.47, when Faster R-CNN with ResNet101
show mAP50 scores 0.77 and mAP50-95 scores 0.43,
reflecting variability in handling complex detections.
Notably, YOLOv5 trained on RacketDB achieves an
mAP50 of 0.77, significantly outperforming YOLOv5
trained with COCO, which achieves only 0.63 for ten-
nis racket detection, as shown in Table 6. This em-
phasizes the importance of specialized datasets like

Figure 6: Detection results on the TrackNet dataset, show-
casing racket detection in videos with different backgrounds
and environments.

Table 6: Performance of YOLOv5 on the COCO dataset

Model mAP50 (COCO) mAP50-95 (COCO)
YOLOv5 0.63 0.39

RacketDB for badminton racket detection.
We also evaluated our model on videos featur-

ing different backgrounds and environments, such as
those found in the TrackNet dataset (Sun et al., 2020).
This dataset primarily consists of professional bad-
minton singles matches annotated with shuttlecock
locations. As shown in Figure 6, our model suc-
cessfully detects rackets in these videos, demonstrat-
ing the generalizability of the model trained on Rack-
etDB.

6 CONCLUSION & FUTURE
WORK

This paper introduces RacketDB, a specialized
dataset for badminton racket detection, evaluated
using object detection models such as YOLOv5,
YOLOv8, DETR and Faster R-CNN. Results demon-
strate that RacketDB enhances detection accuracy and
reliability, with YOLOv5 achieving the best Preci-
sion and F1 Score, followed closely by YOLOv8.
Faster R-CNN showed high Recall but struggled with
false positives, while DETR performed reasonably
but lagged in efficiency.

RacketDB’s strong mAP50 highlight its value for
sports analytics and object detection research. It ad-
dresses challenges in racket detection and provides a
solid foundation for future advancements. Planned
enhancements include support for rotated bounding
boxes, specialized neural network architectures, and
expansion into broader sports applications like activ-
ity recognition and game strategy analysis. These de-
velopments aim to enable deeper insights into player
performance and tactics.
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